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Abstract: This paper considers the problem of estimatiegtirameters of an autoregres-
sive (AR) process in presence of additive white noise anggses a new identification
method, based on theoretical results originally develapedrors—in—variables contexts.
This approach allows to estimate the AR parameters, théndrivise variance and the
variance of the additive noise in a congruent way in thatalessimates assure the positive
definiteness of the autocorrelation matrix. The perforneasfahe proposed algorithm is
compared with that of bias—compensated least—-squaresdsdily means fo Monte Carlo
simulations. The results show the effectivenesss of themethod also in presence of
high amounts of noise&opyright(© 2005 IFAC
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1. INTRODUCTION and the prediction error method (Nehorai and Sto-
ica, 1988).

Autoregressive (AR) models are commonly used in Another class of methods is based on the bias—
a wide range of signal processing applications, like compensation technique. In this case the noise vari-
spectrum estimation, speech analysis, noise cancelance is assumed as known or is estimated. This in-
lation and digital comunications (Haykin, 1991). A formation is then used to correct the estimates given
considerable attention has been dedicated, in the literby an AR identification method. In many speech en-

ature, to the problem of estimating the AR parametershancement applications, for example, the white noise
from signals corrupted by white noise. This is, in fact, variance can be estimated from preceding silent por-
a very common situation. A correct description of tions of speech (silent frames), when present. In many
AR plus noise models requires also the introduction other contexts, however, this procedure cannot be ap-
of zeros so that the estimates obtained with classicalplied and the noise variance estimation constitutes an
AR identification methods are poor, particularly for essential part of the identification problem.

low signal-to—noise ratio conditions (Kay, 1980; Pali-

wal, 1986). In the last years a large variety of bias—compensated

least—squares (BCLS) techniques have been proposed
Since noisy AR processes can be described by mean¢Sakai and Arase, 1979; Zheng, 1999; &h al,

of ARMA models, the usual approach for solving 2002). These methods are based on iterative proce-
this problem is to use standard ARMA identifica- dures where, at each step, the current estimate of the
tion techniques for recovering their autoregressive noise variance is used to improve the estimate of the
part (Pagano, 1974). This can be done, for instance AR parameters andice versa A comparative analy-

by means of modified Yule-Walker equations (Kay, sis of various BCLS algorithms is reported in (&t
1988), the maximum-likelihood method (Tong, 1975) al., 2003).



This paper introduces a novel approach based on the oy (t) = () + pu(t), (8)
theoretical results originally developed in errors—in— ] ] ]
variables contexts in (BegheBit al, 1990). This ap-  that will be used in the subsequent analysis.
proach relies, in particular, on the properties of the
family of solutions of the dynamic Frisch scheme and

on the shift property of time—invariant dynamic sys- prgblem 1. Estimate the AR parameters, ..., a,
tems. The method allows to estimate the AR parame-gnd the variances?*, ¢2* starting from the avail-

w

ters, the driving noise variance and the variance of theaple measurementg(1), y(2),...,y(N), generated
additive noise in a congruentway since these estimatesyy model (1)—(2) under assumptions A1—-A3.
assure the positive definiteness of the autocorrelation

matrix.

The problem that will be considered is the following.

3. ASYMPTOTIC PROPERTIES OF NOISY AR

The effectiveness of the proposed algorithm has been
MODELS

tested by means of Monte Carlo simulations. The
results show that this approach yields better estimates . . .
than those obtained with BCLS methods, especially in D&fine the following covariance matrices
presence of low signal-to—noise ratios.

T

The contents are organized as follows. Section 2 de- Leu(®) 2y ()], ©
fines the noisy AR identification problem. Section Y, =E[e.(t) oL (t)] —diag [0 ... 0 o*]. (10)
3 concerns some asymptotic properties of noisy AR n

models that are at the basis of the new identifica-
tion method presented in Section 4. In Section 5 the
performance of the proposed algorithm is compared 3, 0% =0, (12)
with that of BCLS methods by means of Monte Carlo

simulations. Some conclusions are finally reported in ~ 2n = E [¢x(t) o1 ()] + B [pu(t) 0y, (1)],  (12)

Section 6. Epw(t)pht)] = o Lnt, (13)

From (7), (8) and assumption Al it follows that

2 STATEMENT OF THE PROBLEM v_vhereE[-] dgnotes mathematical _expectation._ln par-
ticular, relation (11) can be obtained premultiplying

(7) by . (t) and applying the operatdt[], taking
into account tha®[x(t) e(t)] = E[e?(t)] = o%*. By
combining (10) and (12) it is finally possible to write

Consider a noisy autoregressive model of order
described by the equations

zt)=arz(t—1)+ - +a,z(t —n)+e(t), (1) Yp =3, + ¥ (14)
y(t) = 2(t) + w(d), )
where
wherez(t) is the output of the noise—free AR model,
driven by the inpute(¢) while y(¢) is the available o 0 e .. 0
observation, affected by the noise process). The 0 o 0 - 0
following assumptions will be assumed in the sequel. s | . : (15)
Al e(t) andw(t) are zero—mean white processes, : 52+ 0
mutually uncorrelated, with unknown variances 0 oo e 0 (02402

o2* ando?* respectively.
A2. e(t), z(t) andw(t) are ergodic processes. = diag [02" I,,, 02",

A3. The system order, is known. _

y " with 02* = 02 + o2,

By defining the vectors . . . o
y g Consider now the family of non-negative definite di-

agonal matrices’,, = diag [02, I,,, 02] such that

pa(t)=[a(t —n) ... a(t—1) 2(t)]",  (3) )
— > .
oy() =yt —n) ...yt =1) y®))", (@) Zn — 2n 20 (16)
_ _ _ T
pu(t) =[w(t —n) ... wlt =D w®], () This set can be described in a way similar to that
and the parameter vector reported in (Beghellet al,, 1990) with reference to
errors—in—variables (EIV) models. The following the-
0" = [an ceep — 1}T, (6) orem can be easily derived by considering noisy AR

instead than EIV models.

itis possible to represent model (1)—(2) inthe form  theorem 1. The set of all matrices,, satisfying

relation (16) defines the point8 = (02%,02) of a
(pL(t)—[0...0e(®)]) 6" =0, (7) convex curveS(Y,,) belonging to the first quadrant



of the noise plan&k? and whose concavity faces the The locusS(X,,) of solutions defined by (16) can
origin. Every pointP = (02,02) of S(%,,) satisfies ~ be parameterized on the basis of the following result
the relation (Guidorzi and Pierantoni, 1995).

in(P) =%, — diag [0 In,0%] > 0 17) Theqrem 2. Let¢ = (&,&) be a ge_neric_ point of
the first quadrant oR? andr the straight line from

) . . the origin througtt (see Fig. 1). Its intersection with

and can be associated with a coefficients veé{ét) S(%,) is the pointP = (2, 02,) defined by

satisfying the relation " ‘ sTow c

2 1 2 2

= —, Uw = T 21
5= Nr ar (21)

- g

S,(P)O(P) = 0. (18)

Figure 1 shows a typical shape §fX%,,). Note that where

the points(o2, 02)) of the curve witho? < o2 (dotted Ay = maxeig (z;l diag[&s I, Eﬂ) , (22)
line) are non admissible because they do not satisfy the

. 2 _ 2 _ 2 H 1 . . . .
conditiono; = o — o, > 0. The set of admissible i 06rem allows to associate a solution with every

solu_t|ons_ (continuous line) is thus delimited by the straight line from the origin lying in the first quadrant.

straight linec?, = o2.
Remark 2. In some applications the ratig =

2 o2* /o2* is a priori known (Zheng, 2001). In this case

v N the point P* can be easily determined by means of

=0} r Theorem 2 taking = (1 +n,1). In fact

06 / / i

5, = ding [0% 1,03 +07'

=o2* diag [I,,1+ 7], (23)

—Yw

so thatP* is the intersection betwee$(3,,) and the
straight line from the origin with slopg/(1 + 7).

4. AR IDENTIFICATION

As pointed out in Section 3, the solution of Problem 1
requires the determination of the poiit on S(%,,).
Define, for this purpose, the vectors

Fig. 1. Typical shape of(%,,). All admissible solu-
tions lie on the continuos line.

o (t) = [0z (1) (t + 1], (24)
5,(t) = [0l (t) y(t+1)]7, (25)
Remark 1. The intersection ofS(3,,) with the o2 cf)y( ) W;( )yt + 1)) r
axis is the point’s = (¢2_,..0) given by the least Pu(t) =lew(t) wt+1)]7. (26)
squares solution From (1) it follows that
=T n*x __
o2 = det (En)7 (19) (PL(t)—[0...0e(t+1)]) 6" =0, (27)
max = et (3,)
where
whereX is obtained fromX,, by deleting its(n + 7" — [Oan ap — 1]T _ [O G*T]T. (28)
1)-th row and column. The intersection 6{%,,)
with the straight lineoy, = o is the pointPa = pefine also the covariance matrices
(02 axs Tomax)» Given by the eigenvector solution
O max = 10N €ig (X,). (20) Sni1=E[@y(t) @y (1)], (29)
S =E[@.(t) 7y ()] — diag [0... 0 027].(30)
Since pointP4 corresponds ta? = 0 it is not a n+1

solution for Problem 1. Sincep, (t) = @ (t) +w(t), from (27) and Assump-

Because of (11) and (14), the poiRt = (02*,02%)  tonAlitis easy to obtain

associated with the actual noise variances belongs a1 0 =0, (31)
to S(X,) and the AR model associated wiff* is R ~
characterized by the true coefficients, #eP*) = 6*. Tnt1 =Zny1 + X040, (32)

In this asymptotic context, the determinaton/f on 3
S8(2,,) leads to the solution of Problem 1. with 3% | = diag (02" In41,025%].



Making reference td,,.; we can now introduce the
curveS(X,,+1), belonging to the first quadrant of the
noise plane” = (¢2,02) , whose shape is similar to
that ofS(%,,). Every pointP = (o2, 02) of this curve
satisfies the condition

Sni1(P) = 5, — diag [0}, Tn41,02] > 0. (33)
It is also possible to prove (Beghedit al., 1990) that
S(Zn41) lies underS(%,,). It can be easily verified
that, because of (31) and (32 belongs to both
S(X,) andS(Z,41).

In this asymptotic context, the determination of the
common pointP* leads to the solution of Problem 1.
However, when the lengtN of the sequences is finite,
3, andX,, 1 must be replaced by the sample quanti-
tiesxZ, £, ;. In this caseS(X)) andS(x4, ;) do

no longer exhibit any common point so that it is nec-

essary to introduce a suitable and consistent criterion

to select a single model af(X2). The criterion that
will be proposed in the following is based on the shift
property of time—invariant dynamic systems describe
by relation (31).

Let P/ = (0 02') and P" = (62",62") be the

intersections of a line from the origin with(%,,) and
S(2,+1) respectively, so that

2/ 2 1
Define then the cost function
J(P',P") = |[n 1 (P")0(P)I3
=o"(P)S} (P v(P), (35)
where
v(P") =[067(P")]". (36)

This function exhibits the following properties:

iy J(P',P")>0
iy J(P',P")=0« P =P"=P*

Itis thus possible to solve Problem 1 searching for the

solution that minimizes (35).

The following consistent algorithm for identifying

noisy AR processes from finite sequences of data can

thus be considered.

Algorithm 1.

(1) Compute the estimates Bf, andX,,, 1 given by
the sample quantities

yV = L 5 t) ol (t
n*N_n ‘Py()‘Py()v
t=n—+1
1 t=N-—1
N AOEAGE
t=n-+1

(2) Start from a generic point (a generic direction)
& = (&,8), & > & in the first quadrant of
R? and compute, by means of (21)—(22), the
corresponding point®’ = (¢2',02"), P’ =
(02//

o2"yonS(2N) andS(=Y, ).

(3) Compute 3,,(P'), £,41(P") and (P') by
means of the relations

. !/ /
= E,]:[ — diag [0121) I,, 0? 1,

S (P
EA:n-‘,-l (P”)

"

)l

=¥/ —diag (02" Iis1, 0
3. (P O(P') = 0.

(4) Compute the cost functioh(P’, P").
(5) Search o§(3L) for the pointP° = (02°,02°)

associated with the minimum of(P’, P").
(6) Estimate the driving noise variance as

d The ergodicity property A2 and property ii) assure the

consistency of the proposed procedure since

lim Y =%, (37)
N—oo

Jim B =S, (38)
lim min J(P',P")=0, (39)

N—oo pes(=l)
1" N
pres=l )

and relation (39) holds only faP’ = P = P*.

5. SIMULATION RESULTS

The performance of Algorithm 1 has been tested by

means of numerical simulations whose results have
been compared with those of the bias—compensated
least—squares method proposed by Zheng (Zheng,
1999), which, according to the author, gives better

results than previous traditional methods. Consider the
following 4th—order AR model (Jiat al,, 2003)

a(t)=24z(t—1)—3.03z(t — 2) + 1.986 (¢ — 3)
—0.6586 2(t — 4) + e(t),

where e(t) is white noise with unknown variance
E[e?(t)] = o?* = 1. Two Monte Carlo simulations
of 100 independent runs have been performed with
signal-to—noise ratios (SNR), defined as

SNR = 20 log, g [[522((?)]]
=20 log;, E[jzfﬁ)] , (dB)

of 20 dB and 10 dB. Differently from (Jiat al, 2003),
the number of samples has been limitedvic= 1000.



Table 1. True and estimated values of parameters and vasdoc Algorithm 1 and the
BCLS method, SNR =20 dB.

aq

a2

a3

Qq

2%

Oe¢

2%

)

true

2.4

—-3.03

1.986

—0.6586

1

0.3973

Alg.1

2.3940 £ 0.0635

—3.0244 £ 0.1312

1.9828 + 0.1259

—0.6656 £ 0.0509

1.0254 + 0.1868

0.3924 £+ 0.0283

BCLS

2.3945 £ 0.0639

—3.0253 £ 0.1320

1.9832 + 0.1266

—0.6658 £ 0.0512

1.0249 4+ 0.1842

0.3933 £ 0.0281

Table 2. True and estimated values of parameters and vasdoc Algorithm 1 and the
BCLS method, SNR = 10 dB. * The values reported for the BCLShoethave been
averaged over 97 runs because of its lack of convergenceda thns.

2%

2%

ay (D) as Qq Oc Tw

true 2.4 —3.03 1.986 0.6586 1 3.9730
Alg.1 [2.3239 £ 0.4648|—2.8904 + 0.9159| 1.8578 £ 0.8577 |—0.6170 + 0.3288| 1.6099 =+ 1.9908 |3.8376 + 0.4464
BCLS*[0.9815 4= 0.0727 | —0.4349 4= 0.0918 | —0.3532 4= 0.0667| 0.1500 =& 0.0241 |10.5626 =& 1.3009 |1.4053 =+ 0.6292

In every run, a gaussian white noise sequanGé has 6. CONCLUSIONS
been generated by means of the functiandn of
MATLAB and added to the AR output(-). In this paper, a new identification method for iden-
) i tifying autoregressive models in presence of additive
The results are summarized in Tables 1 and 2 thaty e noise has been proposed. This approach relies,
report the true values of parameters and variances, the, particular, on the properties of the family of solu-

mea(rjm vzltcjjes_of_their estimates and the correspondingjons of the dynamic Frisch scheme and on the shift
standard deviations. property of time—invariant dynamic systems.

The good selectivity of cost function (35) can be ob-
served in Figure 2 that reports the valuegoP’, P")
versus the noise varianeg, alongS (%) in a typical
run of the Monte Carlo simulation.

The effectiveness of the proposed algorithm has been
tested by means of Monte Carlo simulations which
show that this approach yields better estimates than
those obtained with bias—compensated least-squares
methods, especially in presence of low signal-to—
noise ratios.
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