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Abstract: Multirate digital decentralized control design is presented for linear time-
invariant systems with interaction between subsystems. The design technique,
implemented in multirate digital control, eventually allows us to separately design
controllers for each subsystem without considering interaction between them. The
resulting closed-loop system with interaction between subsystems being eliminated
delivers the same desired closed-loop responses each subsystem produces, that can
be expected in the design stage. By this we mean that the resulting controller
eliminating the interaction between the subsystems delivers desired closed-loop
responses in the existence of interaction between subsystems. Copyright(©) 2005

IFAC
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1. INTRODUCTION

Interaction between subsystems is very problem-
atic in many control designs to obtain desired
closed-loop responses, that causes most likely very
different results from what we expect. Such prob-
lem becomes even more difficult for very large
scale systems. Although stabilization of such cou-
pled systems seems to be not difficult (see (Araki,
1993) and references therein), controller design to
attain desired responses becomes more challeng-
ing. Conventionally, separate control loops are de-
signed for each subsystem. However, each subsys-
tem interacts internally and thereby the controller
(designed neglecting such interaction) yields very
different (more likely unpredictable) responses. If
the dynamic coupling is not negligible, the result-
ing closed-loop system will exhibit performance
degradation and even become unstable. Thereby
control systems need to be designed considering
the dynamic interaction between subsystems. In
general, however, such design technique is very
complex and actual implementation also becomes
very difficult.

Control design for a plant with interaction be-
tween subsystems to attain desired subsystems’
responses is very challenging over the decentral-
ized stabilization problem. The single stage direct
closed-loop dynamics assignment strategy men-
tioned above is not easy to apply. The fundamen-
tal problem of decentralized control has been to
provide conditions under which a system can be
stabilized using local controllers. The stabiliza-
tion problem of a plant with independent decen-
tralized controllers has been widely studied (e.g.
(Wang and Davison, 1973; Corfmat and Morse,
1976; Sezer and Siljak, 1981; Ozgﬁler, 1990; Khar-
gonekar and Ozgiiler, 1994; Sebe, 2003)). Digi-
tal solutions such as multirate decentralized con-
trollers have been investigated in (Sezer and
Siljak, 1990; Ito, 1997; Longhi, 1994; Ciferri and
Longhi, 2003). So far, however, there has been no
work considering a decentralized control design for
desired responses over the stabilization problem.

This paper presents a multirate digital decentral-
ized control design for linear time-invariant sys-
tems with interaction between subsystems. The



problem considered in the paper is primarily the
elimination of interaction between the subsystems
and the design of a controller such that the de-
sired performance is achieved. The design tech-
nique, implemented in multirate digital control,
must allow us to separately design controllers for
each subsystem without considering the dynamic
interaction between them. The resulting closed-
loop system with interaction between subsystems
being eliminated must deliver the same desired
closed-loop responses each subsystem produces,
that can be expected in the design stage. By this
we mean that the decentralized feedback control,
eliminating the interaction between the subsys-
tems, must deliver desired closed-loop responses
in the existence of interaction between subsystem.

The proposed design technique uses one of many
potential capabilities of multirate control: it can
deliver an expanded spanning of the system’s in-
put matrix (or observation matrix dependent on
where the multirate sampling is applied). By using
multirate control, a full row rank input matrix
can be obtained, so that by a suitable (and easy
to compute) feedback law, all the closed-loop dy-
namics can be freely assigned (see (Araki, 1993)
and references therein). Then, a decentralizing
feedback in order to simplify the stabilization
of the plant can be obtained. Furthermore, the
single stage direct closed-loop dynamics assign-
ment strategy is available in the literature (e.g.
(Kabamba and Yang, 1991)) over the two stage
decoupling and stabilization strategy.

Throughout the paper, the notation M7T de-
notes the pseudo inverse matrix of M such that
MM*™M = M. Also, although not mentioned in-
dividually, all the matrix dimensions are assumed
to be appropriate for compatible matrix formula-
tions.

2. PROBLEM FORMULATION

To begin with, consider a real linear time-
invariant system model with interaction between
ng subsystems described by

& = Az + Bu (1a)

where
AERY™ = [Aum)]) iy o (1b)
B e R"™ = [Bum)]

I,m=1,--,ns "

The matrix elements A,y and B,,) describe
interaction between subsystems (A(”),B(”)) and
(A(mm)aB(mm)) for [ 7é m, l,m = 1,"' ,Ng.
The subsystems (A(”),B(”)), l=1,---,ng, each
have their dimensions, while the matrix elements
A@m) and By, I,m = 1,--- ,ns, must have
compatible dimensions. Throughout the paper,
it is assumed that all the subsystem doublets

(A(”),B(”)), l=1,---,ng, are controllable (and
thereby so is the system doublet (4, B)), and all
the state measurements are available for feedback.

Interaction between subsystems is very problem-
atic in many control designs to obtain desired
closed-loop responses. Many times, however, we
need to design a control system for such plants.
Conventional decentralized control design was fo-
cused on closed-loop stability. Although stabi-
lization of such plant seems to be not difficult
(as shown in the references (Wang and Davi-
son, 1973; Corfmat and Morse, 1976; Sezer and
Siljak, 1981; Ozgﬁler, 1990; Khargonekar and
Ozgiiler, 1994; Sebe, 2003; Sezer and Siljak, 1990;
Tto, 1997; Longhi, 1994; Ciferri and Longhi, 2003),
controller design to attain desired closed-loop re-
sponses becomes very challenging. In the presence
of dynamic interaction between subsystems, the
resulting stable closed-loop system most likely ex-
hibits serious performance degradation and even
unstable responses.

For a nonpathological sampling period T, the
zero-order-holder (ZOH) discrete-time equivalent
(Franklin et al., 1990) becomes

z(k+1) = ®x(k) +Tu (2)
where & = AT T = fOTS eAT==1) Bdn. Also, the
subsystems (A(”), B(”)), l=1,--+,ng, each have
their discrete-time equivalents

D = etanTs
Ts

F(ll) :/ eA(ll)(Tsfn)B(”)dn
0

-, ng such that

Then, the differences expressed by A® = & — &
and A =T —T' represent interaction between
the subsystems. Applying the control gain K =
diag (K(l), e ,K(ns)) determined for the system
(®,T) to the system (®,T') thereby yields the
closed-loop ® —-T'K = d—TK+Ad— AT'K most
likely producing very different results. Observe
Ad® — AT'K makes the closed-loop response fairly
different from what we expect.

The problem considered in the paper is primarily
the elimination of interaction between the sub-
systems and the design of a controller such that
the desired performance is achieved. By this we
mean that the resulting controller eliminating the
interaction between the subsystems must deliver
desired closed-loop responses in the existence of
interaction between subsystems, that can be ex-
pected in the design stage from each subsystem
response.



3. MULTIRATE DECENTRALIZED
CONTROL DESIGN

3.1 Multirate digital control scheme

Consider a multirate discrete-time equivalent of
(1) expressed by

x(k,i+1) = ®pa(k,i) + Trulk, i) (3)

where @ = eATe, Ty = fOT“ eATe=m) Bdn and
T, is the nonpathological control update period
and R, is the input multiplicity such that the
sampling update period Ty = T.R,,. The indexes
k and ¢ indicate measurement update and control
update instants, respectively, such that ¢ = (k +
i/R,)Ts for ¢ = 0,1,---,R, — 1. The lifting
technique (Kranc, 1957; Meyer, 1992; Albertos
and Salt, 1999) can be applied to represent the
multirate system as a time-invariant lifted finite-
dimensional discrete system. Using the lifting
technique, we can represent the plant as a lifted
time-invariant system in control update period T,
as

z(k+1,0) = dz(k,0) + Ta(k,0) (4)
where

b=of I=[af'r; T,

Corollary 1. The doublet (i),f‘
for any R, > 1if (&;,T'f) is controllable.

) is controllable

Proof: Build the controllability matrix of (é, T

and use the controllability matrix of (®;,T).
Then, it becomes apparent. ]

z(k,0 - a(k,0)[.— u(k, i)
o i )fl(Tt.ﬁTb]( H,f— Plant
x(k,0)

Sr,

Fig. 1. Multirate state feedback control system

Using the lifting operator
Lr.—1,) " l% — lg“s’ 1<p<

we build a multirate digital control scheme (Fig.
1) (Lee, submitted)

u(k,i) = L g g, a(k,0)

where
u(k,0)
i(k,0) = u(k.’ b
u(k, Ru -1)

(xr(kvo) - ‘T(kvo))

=K
= K (N,r(k,0) — z(k,0))

where K is the multirate control gain to be
determined for improved inter-sample behavior.

3.2 Multirate decentralizing state feedback control

To begin with, we let

(APf = dlag ((Ef,(ll)v ety <I)f,(nsns)) )
I'y = diag (Ff,(u), T aFf’(nsns))

and their lifted expressions

=+, [= |10y o Ty

where

(I)f,(’rn?n) = eA(mm)TEa
TC
Ff,(mm) :/ eA(mm)(Tc—n)B(mm)dn
0
form=1,--- ng.

Assumption 1. The state feedback control gain
matrix K = diag (K(l), e ,K(ns)) is determined
for the system (&,1) such that each subsystem
closed-loop described by @ ¢ (m) — L't (mm) K(m),
m=1,---,ng, produces desired responses.

Assumption 2. For a control input dimension n,,
and a state dimension n, the input multiplicity R,,
satisfies the condition n, R, > n.

The multirate state feedback gain K needs to
be determined for improved inter-sample behavior
(e.g. no ripples).

Proposition 1. Given the control gain K designed
for (@ s r f), the multirate state feedback control

gain I% for (i,f‘) computed from

X Nt /= ~ A~ a0\ Bu

K = (T) (q>— (&5 - 1K) ) (5)
delivers discrete closed-loop matching with P ;-
r fK at every control instant.

Proof: Appears in (Lee, submitted). [ |

Directly determining the control gain K for

(®f,Tf) is not reliable in the case of complex
conjugate eigenvalue assignment. The gain and
the resulting closed-loop can become complex

valued. Also, even real valued control gain can
= xz\l/Ru

cause (CIJ -I'K )

R, > 1, while the closed-loop <i>f — f‘ff( must

be real producing (complex conjugate) eigenval-

ues. Accordingly, the stated “free closed-loop dy-

namics assignment” by a suitable feedback law”

to be complex valued for



(Araki, 1993) is in general not possible. The mul-

tirate control gain K thereby in general must be
computed indirectly as in (5).

The multirate state feedback control gain pro-
duces discrete closed-loop state matching and
thereby predictable response at each control up-
date instant. Increasing the control update rate
thereby tends to produce improved inter-sample
behavior of the closed-loop system (Lee, submit-
ted).

Applying the state feedback control law —K (k)

(®,T) delivers a
closed-loop expressed by ® — 'K that most likely
yields very different and even becomes unstable
behavior. A candidate to resolve such design com-
plexity in the design of controller for a plant with
interaction between subsystems is to use feed-
back control eliminating the interaction between
subsystems such that the resulting closed-loop
exhibits ® — TK = & — T'K. Then, the result-
ing closed-loop system must preserve closed-loop
stability and deliver the same desired closed-loop
response (with an appropriate reference mapping)
each subsystem produces in combination. Then,
the design technique provides not only stability
but also desired responses in the existence of in-
teraction between subsystems.

with K computed from (5) to

Proposition 2. Suppose that a discrete-time plant
model (3), with interaction between subsystems,
is given and the state feedback control gain K is
determined such that each subsystem closed-loop
produces desired responses. Then, the multirate
digital decentralized state feedback control law

( ) ‘C T ~>T (k70) (6)

= ﬁ(_T o, )K (er(k, 0) — z(k, O))
with N o
K:Oj @-(@-NQ) (7)
and
_ ~ _\tzxx
N, = (TK) TKN, (8)
delivers a decentralized closed-loop system matrix
& TK=¢ TK 9)

preserving closed-loop stability. Furthermore, the
resulting closed-loop system <(i> —TK,TKN, )
must XIGNId§ t~he same desired closed-loop response

$-TI'K,I'K Nx) produces, which in fact consists
of the desired responses of each subsystem.

Proof:  Simply introducing the state feedback
control —Kuz(k,0) with K in (7) exhibits

E(E) (o (- 55)

d-TK =

»eu
’11

I
K
I
L PN
S

Also, simply applying (%, 0)
with K and N, given in (7)
yields

z(k+1,0) = ®z(k,0) + La(k,0)
= 0x(k,0) + TK (N,r(k,0) — x(k,0))
- (&, - FK) (k,0) + LK Nyr(k, 0).

= K (N,r(k,0) —
nd (8), respectively,

The resulting closed-loop, with interaction be-
tween the subsystems being eliminated, must de-
liver desired closed-loop response. |

The resulting controller, eliminating the interac-
tion between the subsystems, must deliver desired
closed-loop responses (not only stability but also
desired responses) in the existence of interaction
between subsystem. Also, such responses in fact
can be expected from the desired responses of each
subsystem. Applying the proposed control design
technique, separate controller design is thereby
possible for each subsystem without considering
the dynamic interaction between them.

The condition n,R, > n given in Assumption
2 delivers a state feedback gain K in (7) which
exhibits exact decentralization as shown in (9).
Otherwise, the solution in the least squares sense
is obtained, which does not exhibit the exactly
decentralized closed-loop system. Also, due to the
numerical reliability problems, decentralized con-
trol design for ill-conditioned plants with inter-
action between subsystems possibly results in an
imperfect decentralization.

The final formulation in (7) allows an efficient si-
multaneous control design for stability and desired
time responses: Given a plant with internally cou-
pled subsystems, we find controller which achieves
not only stability but also desired time response
in the each subsystem. By this we mean that
the controller delivers desired closed-loop response
while compensating the interaction between the
subsystems, that can be expected from each sub-
system response. The proposed multirate digital
state feedback decentralized control scheme is also
applicable to multi-input multi-output systems.
Furthermore, no ripple will exist at continuous
process output because actually each fast rate
control is being computed with links among them
(Lee, submitted).

Actual control design using the proposed method
is very simple as explained in the following design
procedure:

Step 1) Build (®;,Tf) and (®;,T) and their
multirate discrete-time equivalents (@, I')
and ((i)f, ff);

) Determine K for (&, T);
Step 3) Compute I:( from (5);
) Compute K from (7);
) Implement the multirate control in (6).

z(k,0))



4. AN APPLICATION EXAMPLE

Consider a simple continuous-time plant model
with strong interaction between two subsystems:

© = Az + Bu
where
4= [Aay A(m)}
| A1) Agaz)
[0 1.0 0 —0.1
o o 0 0
~10-05 0 1.0 '
|0 0 —1.5x10° —2.0x10"
0 0
B [B(H) B(12)} _ | 50000 50
—25000 1500

The system has interaction between the subsys-
tems (A(ll)aB(ll)) and (A(QQ),B(QQ)) represented
by A1), B2y, and B(a1). Observe both subsys-
tems affecting each other.

Let us consider a sampling period T = 100 usec,
and an input multiplicity R, = T/T. = 4
such that the corresponding control period be-
comes T, = 25 psec. Then, we obtain the multi-
rate discrete-time equivalent models expressed by

(@500, Tran)s (Pr.22):Tp22), and (Dg,Ty).
Firstly, the control gains K,,) are determined for
(<I>f7(mm),Ff,(mm)), m=1,2, such that
K = diag (K(l), K(g))
14173 0.1364 0 0
() 0 —9.547x10° —15.908 |

Then, its multirate version K is computed from
(5) as

[413.56 0.13608 0 0

0 0  —1.1329x10° 6.2618
347.20 0.12303 0 0

i 0 0  —8.6356x10° —28.138
280.84 0.10998 0 0

0 0  —1.1294x10° —53.209
214.49 0.09693 0 0

0 0  —2.9751x10° —34.704 |

Finally, we compute the decentralized feedback
control gain K from (7) as

[ 2015.9 —0.86237 2.5296x10% 1.7994 ]
305.11 —0.40017 1.5946x10* 1.4581
—2213.6 2.5670 —6.6837x10* —7.5413
185.58 —0.17505 4.7079x10° 0.5337
743.84 —1.8973 1.2668x10° 9.5018
—212.76 0.38574 —1.8883x10* —1.5666
710.23  0.65804 —6.2335%x10* —3.7570

| —634.31 0.88431 —3.6907x10% —3.2983 |

=
Il

Then we must have —'K = —T'K with closed-
loop eigenvalues 0.66430 £ 0.21716¢, 0.47435 +

0.16445i. On the other hand, the closed-loop

d — TK yields eigenvalues 0.88636 =+ 0.24942,
0.25631+0.27959. Although still in stable, the lat-
ter system is expected to produce fairly different
responses.

To obtain desired plant output, we use
N.=[10-10]".

Then N, can be computed from (8) as

N, = [5.560 —1.229x10* —0.5255 —8.167x10°]"

Fig. 2 compares normalized step responses. Ob-
serve the contribution of the proposed decentral-
ized feedback control. The decentralized feedback
control contributes to produce the same time re-

sponse (—I'K, T K N,) produces with the control

gain K computed from K that is designed for
(®s,T'¢) to obtain a desired closed-loop (Figs. 2(a)
and 2((:)).~ On the other hand, simply applying

the gain K to (®,T), the system with interaction
between subsystems, produces quite a different
response (Fig. 2(b)).

5. CONCLUSIONS

This paper has presented multirate digital decen-
tralized controller design for linear time-invariant
systems with interaction between subsystems.
The problem considered in the paper was pri-
marily the elimination of interaction between the
subsystems and the design of a controller such
that the desired performance is achieved. Apply-
ing the proposed control design technique, imple-
mented in multirate digital, separate controller
design was possible for each subsystem without
considering interaction between them. The result-
ing closed-loop system with interaction between
subsystems being eliminated delivered the same
desired closed-loop responses each subsystem pro-
duces, that can be expected in the design stage.
By this we mean that the resulting controller
eliminating the interaction between the subsys-
tems must deliver desired closed-loop responses in
the existence of interaction between subsystems.
Application results demonstrated the utility of the
proposed multirate digital decentralized feedback
control. The decentralized feedback control, elim-
inating the interaction between the subsystems,
delivered desired closed-loop responses in the ex-
istence of interaction between subsystem.
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