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Abstract: A discrete-time sliding mode proximate time-optimal servomechanism
is developed using nonlinear sliding mode tangent to a reference velocity profile.
Instead of a strong nonlinear function causing control chattering in discrete-time, a
linear control is designed around the sliding surface. The resulting servomechanism
delivers a bounded motion about the sliding surface even in the presence of plant
uncertainties. Application results demonstrate accurate reference velocity tracking
and uniformly excellent seek performance regardless of seek length via enforced
sliding mode.
Copyright c©2005 IFAC

1. INTRODUCTION

Servomechanism in proximate time-optimal oper-
ation is widely used in the actuator positioning
control (e.g. disk drive actuator control). Since
time-optimal control which uses maximum ac-
celeration and maximum deceleration is unfortu-
nately known to be not robust with respect to the
system uncertainties and measurement noises, it
can hardly be used in practice. Removing such
maximum operation from the time-optimal con-
troller, which gives the system a finite bandwidth,
is much more practical for many applications. A
method for removing the infinite gain operation is
introducing a linear extension to a velocity profile
(e.g. the proximate time-optimal servomechanism
(PTOS) (Workman, 1987; Franklin et al., 1990)).
By introducing a linear extension (in the phase
plane) velocity profile, exponential tracking (in
the time plane) of the plant velocity (position and
control also) can be achieved in settling (Lee et

al., 2003). Although the target seek time is thus
discounted, it becomes fairly robust with respect
to system uncertainties and noises.

The PTOS delivers practically near minimum tar-
get seek time using maximum acceleration and

maximum deceleration until the error becomes
small where it switches to a linear control law
for asymptotic settling down to the target point.
Three basic servo modes are sequentially assigned
along the reference velocity profile for better seek
performance: referred to as acceleration, deceler-
ation, and settle (Lee et al., 2003). During ac-
celeration, the actuator is controlled to approach
the reference velocity profile. Once the plant tra-
jectory reaches the reference velocity profile, the
servo mode is changed to deceleration where the
actuator is controlled to follow the reference veloc-
ity profile until it approaches the target. The servo
mode is switched from the seek mode to the settle
mode near the target. In the PTOS design, it is
in general not easy to determine control gains for
deceleration and settle along a reference velocity
profile. Also, the resulting controller performance
possibly varies on individual disk drives with dif-
ferent parameters. Dependent on control gains
used as well as seek length, large tracking error
may occur possibly causing a oscillating settle and
longer target seek time. Accordingly, individually
modified PTOS algorithms are widely used in the
disk drive industry.



Sliding mode control (Utkin, 1992; Su et al.,
1996; Edwards and Spurgeon, 1998; Young et

al., 1999; Spurgeon, 1992), must be a good candi-
date in improving servo system performance and
robustness, that enforces plant trajectory to slide
on a certain hyperplane thereby must contribute
to reduce reference velocity tracking error. In
(Weerasooriya et al., 1993), adaptive sliding mode
disk drive control was designed using a reference
velocity profile with a pivot at the zero point as
a sliding surface. A servomechanism that consists
of a proximate time-optimal control for seek and
a sliding mode control for settle and track-follow
was proposed in (Lee et al., 1999). There, a state
feedback controller was applied near the sliding
mode, where the feedback gain can be chosen to
adjust convergence rate to the sliding mode. The
discrete-time sliding mode control was applied for
settle and track-follow, which was designed based
on the linear extension in a reference velocity pro-
file (Lee et al., 2003). In (Zhou and Wang, 2003), a
discrete-time nonlinear seek controller was applied
to obtain sliding mode control like results using a
series of time-varying fixed pivot sliding surfaces
going through the origin. There, the controller
design parameters were selected for convergent
sliding sequence and (proximate) time-optimal
control like responses. In general, using a fixed
pivot sliding mode appears to be problematic in
controlling the plant trajectory to follow a refer-
ence velocity profile because these two have very
different convergence directions.

The aim is to develop a sliding mode proximate
time-optimal servomechanism (SPTOS). A series
of tangent sliding modes are designed using a ref-
erence velocity profile with linear extension (Lee
et al., 2003). Such sliding mode must be natural
considering the reference velocity profile track-
ing in proximate time-optimal control. Instead of
a strong nonlinear function causing problematic
control chattering in discrete-time, a linear con-
trol is designed around the sliding surface. No
servo mode changing is introduced as the tan-
gent sliding mode ensures smooth convergence to
the target. The resulting SPTOS must delivers a
stable closed-loop as well as a bounded motion
about the sliding surface in the presence of plant
uncertainties. Also, the SPTOS must deliver accu-
rate reference velocity tracking regardless of seek
length that can only be produced via enforced
sliding mode.

2. SLIDING MODE SERVOMECHANISM
DESIGN

2.1 Actuator modeling

Consider a rigid body actuator dynamics de-
scribed as

ẋ = Ax + Bu

y = Cx
(1)

with

A =

[

0 1
0 0

]

, B =

[

0
a

]

, C =
[

1 0
]

where a is the acceleration constant The state
vector xT =

[

x1 x2

]

=
[

y v
]

for the position
y and the velocity v. For a sampling period T , the
zero-order-holder (ZOH) discrete-time equivalent
(Franklin et al., 1990) becomes

x(k + 1) = Φx(k) + Γu

y(k) = Cx(k)
(2)

where Φ = eAT , Γ =
∫ T

0
eA(T−η)Bdη.

2.2 Sliding mode design with reference velocity

profile

Let ka = 2αaumax with α being 0 < α ≤ 1 denote
the acceleration discount factor. Integrating the
actuator model in (1) with u = umax delivers a
time-optimal reference velocity profile. Putting a
linear extension to the profile as shown in Fig. 1
for exponential tracking near the target (Lee et

al., 2003), we obtain a reference velocity profile
for a proximate time-optimal control

vr =







sgn(pe)
√

ka (|pe| − po) if |pe| > pl = 2po,√
ka

2
√

po

pe otherwise

(3)
where pe = pr − x1 denotes the position error
for the position reference pr, and po denotes the
position error shift. One can find that the profile
in (3) satisfies vr(0) = 0, vr(pe)pe > 0 ∀pe 6= 0,

dvr(pe)/dpe|pe=pl
=

√
ka

2
√

po

.

pe

vr

po

vr(pe − po)

Fig. 1. Reference velocity profile with linear ex-
tension

In the proximate time-optimal control the plant
trajectory is controlled to follow the reference ve-
locity profile so as to yield an exponential tracking
near the target. Whilst, in the sliding mode time-
optimal control the plant trajectory is enforced
to slide on the sliding surface. Accordingly, intro-
ducing a sliding mode tangent to the reference



velocity profile seems to be natural for the pro-
file tracking in proximate time-optimal control.
Without loss of generality, we only consider the
quadrant where pe ≥ 0 and vr ≥ 0 in the subse-
quent formulations. The results, however, can be
generalized.

Proposition 1. The surface

s = S1pe + vr + So (4)

with

S1 =















− ka

2vr

if pe > 2po,

−
√

ka

2
√

po

otherwise
(5)

and

So =

{

−vr − S1pe if pe > 2po,
0 otherwise

(6)

is tangent to the reference velocity profile (3) and
satisfies the constraint Sope ≥ 0 such that the
sliding surface can cross the origin (0, 0) and stay
thereafter as pe → 0.

Proof: Skipped due to space limitation.

2.3 Control design using the sliding mode

In order to design a discrete-time controller, let us
build a discrete-time sliding mode from (4) as

s(k) =
[

S1 1
]

x(k) + so(k). (7)

Introducing an approximation of stable sliding
sequence

s(k) = Sx(k) − ρSx(k − 1) (8)

where S =
[

ξS1 1
]

for some ξ ≥ 1 and 0 ≤ ρ < 1.
It should be noted that ξ = 1 and ρ = 0 for fixed
sliding mode. Also notice that introducing time
varying parameters ξ(k) and ρ(k) may yield exact
equivalence, although not used here. Considering
that the fixed sliding mode (to deliver exponential
decay while mostly affecting seek performance)
must be used in the end of seek, the above approx-
imation using constant parameters is very practi-
cal. The parameters ξ and ρ for tangent sliding
mode can be chosen to attain smaller reference
velocity tracking error during deceleration

minξ,ρ ‖vr(k)−s(k)‖ for all k > 0, s(k)u(k) ≤ 0.
(9)

Then, the ideal sliding mode condition s(k +1) =
s(k) = 0 gives the optimal equivalent control

ueq(k) = −Keqx(k) = − (SΓ)
−1

S (Φ − ρI)x(k)
(10)

minimizing reference velocity tracking error dur-
ing deceleration. The ideal sliding mode is then
described by

x(k+1) = Φeqx(k) =
(

Φ − Γ (SΓ)
−1

S (Φ − ρI)
)

x(k)

(11)

with its eigenvalue matrix Λeq = diag (λs, ρ)
and the corresponding eigenvector matrix Veq =
[

vs vn

]

. The nonzero eigenvalue λs satisfies
|λs| < 1 as it is designed for and the corresponding
eigenvector matrix vs belongs to the null space
N (S).

Corollary 1. A sufficient condition for the exis-
tence of the discrete-time sliding mode is that
there exists a positive integer ko such that

|s(k + 1)| ≤ w(k) |s(k)| , 0 ≤ w(k) < 1, k ≥ ko

(12)
in the region Nǫ = {|s(k)| = |Sx(k)| < ǫ}.

The sufficient condition (12) is equivalent to

−w(k) |s(k)| ≤ s(k+1) ≤ w(k) |s(k)| , 0 ≤ w(k) < 1.

Here, we let s(k +1) = w(k)|s(k)|. Then clearly, a
sufficient condition for the existence of the sliding
mode is |w(k)| < 1. Using s(k + 1) = Sx(k +
1) = −SΓueq(k) + SΓu(k) we have

u(k) = ueq(k) + (SΓ)
−1

w(k)|s(k)|. (13)

Then, we have

u(k) = ueq(k) + (SΓ)
−1

w(k)sgn[s(k)]s(k). (14)

Considering the problematic control chattering in
digital implementation of sliding mode control,
discontinuous control is not used. Introducing
W = w(k)sgn[s(k)], referred to as convergence
rate factor, we build

u(k) = ueq(k) + (SΓ)
−1

Ws(k). (15)

Furthermore, introducing a control bound, we
have

u(k) = sat
[

ueq(k) + (SΓ)
−1

Ws(k)
]

(16)

where

sat[u] =

{

sgn[u]umax if |u| > umax,
u otherwise

is the saturation function and umax denotes the
maximum control input. Accordingly, the control
regions are defined as follows:

S+ = {x : u = umax};
S− = {x : u = −umax};
U = {x : |u| < umax}: boundary layer.

Observation 1. The resulting SPTOS system be-
comes linear in the boundary layer U with the
state feedback equivalent sliding mode control
u(k) = −Kx(k) where

K = Keq − (SΓ)
−1

WS. (17)

As a matter of fact, a linear control is applied
around the sliding surface where the error is small.
A strong nonlinear function may be preferred
to a linear control because of its strong acting



control around the sliding surface. The strong
control achieves disturbance rejection. In discrete-
time however, the discontinuous control action
can become impractically fast, this limits some
benefits of the sliding mode control, causing con-
trol chattering. Thereby in this paper, instead of
a strong nonlinear function like switching, a linear
control is designed around the sliding surface to
eliminate the chattering problem. A question that
may naturally arise at this point is if the resulting
SPTOS then guarantees a bounded motion about
the sliding surface, a very useful characteristic of
sliding mode control. The linear control in gen-
eral does not have such a desirable property. The
next section is dedicated to discussing a bounded
motion about the sliding surface.

2.4 Analysis of the SPTOS

Let us examine if the resulting SPTOS delivers a
stable closed-loop and a bounded motion about
the sliding surface. For this purpose, it is neces-
sary to examine the eigenvalues of the closed-loop
in the boundary layer U where the error is small
and the control becomes linear.

Let the control closed-loop eigenvalue matrix Λ̃ =

diag
(

λ̃s, λ̃n

)

corresponding to the eigenvector

matrix Ṽ =
[

ṽs ṽn

]

. The we find the followings.

Proposition 2. Introducing the convergence rate
factor W satisfies

λ̃s = λs, λ̃n = W + ρ. (18)

Proof: Skipped due to space limitation.

Theorem 1. Suppose that an actuator in the form
of (1) with an initial condition (xi, 0) is given. A
reference velocity profile

vr =







sgn(pe)
√

ka (|pe| − po) if |pe| > pl = 2po,√
ka

2
√

po

pe otherwise

is designed such that a sliding mode s(k) =
Sx(k) + ρSo delivers the equivalent control

ueq(k) = − (SΓ)
−1

S (Φ − ρI)x(k).

Then, for any factor W with |W + ρ| < 1,
producing convergent discrete sliding modes, the
resulting sliding mode control law

u(k) = sat
[

ueq(k) + (SΓ)
−1

Ws(k)
]

delivers a globally asymptotically stable discrete-
time closed-loop system with |Λ| < I.

Proof: Skipped due to space limitation.

What is then the best value of the closed-loop
eigenvalue λ̃n? In the case of using nonlinear tan-
gent sliding mode, this is equivalent to finding
the best value of W that may deliver the best
value of the closed-loop eigenvalue λ̃n = W + ρ
together with ρ from (9). Observing the control
scheme (that must be designed for accurate ref-
erence tracking) eventually expressed in terms of
the closed-loop eigenvalue λ̃n = W + ρ, one can
rewrite the minimization problem (9) in terms of
the parameters ξ and λ̃n as

minξ,λ̃n
‖vr(k)−s(k)‖ for all k > 0, s(k)u(k) ≤ 0.

(19)
This expression is preferred to (9) because one
can also determine the best value of the closed-
loop eigenvalue λ̃n = W + ρ. The values of
each of the parameters W and ρ are in fact
not required in the controller design. The state
feedback equivalent control gain in (17) must be
optimal with the parameters from (19). In the case
of using fixed sliding mode, on the other hand,
the convergence rate factor W (that equals λ̃n

since ρ = 0) is determined for fast yet smooth
access to it. Applying the minimization problem
(19) to the fixed sliding mode must deliver W =
λ̃n = 0 producing the equivalent control ueq and
instantaneous access to the fixed sliding mode,
that is undesirable in practice considering the
actuators’ flexible dynamics.

Let us consider a case of using the state estimator
(Franklin et al., 1990)

x̄(k + 1) = Φx̂(k) + Γu(k)

x̂(k) = x̄(k) + Lc (y(k) − Cx̄(k))
(20)

where x̄(·) and x̂(·) are predicted and corrected
state estimates, respectively, Lc is the state es-
timator gain to be determined for desired state
estimation with a diagonal eigenvalue matrix Λest.

The sliding mode in terms of the state estimate is

s(k) = Sx̂(k) + ρSo. (21)

Also, the equivalent control in terms of the state
estimate is

ueq(k) = − (SΓ)
−1

S (Φ − ρI) x̂(k). (22)

Let us consider the closed-loop system subject
to a bounded matched plant uncertainty g(k)
described by

x(k + 1) = Φclx(k) + g̃(k) (23)

where x =

[

x(k)
x(k) − x̄(k)

]

and

Φcl =

[

Φ − ΓK ΓK (I − LcC)
0 Φ − ΦLcC

]

, g̃ =

[

g(x)
g(x)

]

.

The uncertainty is bounded such that ‖g(k)‖ ≤
ǫ ‖x(k)‖ for a positive constant ǫ. This uncertainty
bound is realistic since state estimation error can



become sufficiently small even in the presence
of unknown plant uncertainty (Lee and Chung,
2003). Let Λcl = diag (Λ,Λest), the closed-loop
eigenvalue matrices, then the robust closed-loop
stability can be stated as follows.

Corollary 2. If ‖Λcl‖+
√

2ǫ < 1, for 0 ≤ ‖x(ko)‖ <
r, the uncertainty closed-loop system (23) is
globally uniformly asymptotically stable about
the ball B(d) =

{

x ∈ R
2n : ‖x‖ ≤ d

}

such that

‖x(k)‖ ≤ d(r,Λcl, ǫ, k) =
(

‖Λcl‖ +
√

2ǫ
)k−ko

r for
all k ≥ ko.

Proof: Skipped due to space limitation.

This result can be applied to state bounded mo-
tion about the sliding surface.

Corollary 3. The distance from the sliding mode
is bounded by

‖s‖ ≤ ‖S‖d(r,Λ, ǫ, k)+‖so‖ < 2‖S‖d(r,Λ, ǫ, k−1).

Furthermore, ‖s‖ ≤ ‖S‖d(r,Λ, ǫ, k) for |pe| ≤ 2po.

Proof: Skipped due to space limitation.

The resulting SPTOS is shown to deliver a
bounded motion about the sliding surface even
in the presence of plant uncertainties. Although
not producing a strong acting control around the
sliding surface, the SPTOS that becomes linear
in the boundary layer U is shown to enforce the
plant trajectory points robustly converge to the
sliding surface against uncertainties in Corollaries
2 and 3, that can not happen in the linear control
design. The resulting SPTOS thereby must deliver
a desired plant trajectory that can only be pro-
duced via enforced sliding mode. Such bounded
motion about the sliding surface then eventu-
ally guarantees bounded motion about the corre-
sponding reference velocity profile. As mentioned,
the design parameters ξ and λ̃n for tangent sliding
mode can be chosen to attain a minimized refer-
ence velocity tracking error during deceleration.
Solving the minimization problem (19) delivers
optimal parameter values for tangent sliding mode
to reduce the maximum reference tracking error.
Larger residual tracking error in general causes
oscillating settle and results in a slower seek time.
Therefore, accurate reference velocity tracking by
the SPTOS must improve seek performance. This
is the key benefit of the proposed SPTOS.

3. AN APPLICATION EXAMPLE

The proposed SPTOS is applied to a disk drive
actuator expressed by a triplet (A,B,C):

A =

[

0 0
0 1

]

, B =

[

0
a

]

, C =
[

1 0
]

with a = 2.4194×104 Amp−1sec−2. For a sampling
rate of 150 µsec, a control limit of umax = 0.7
Amp, a track density of 47,000 tracks per inch,
a SPTOS is designed based on a discrete-time
equivalent triplet (Φ,Γ, C) following the given
design procedure.
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Fig. 2. Exemplary sliding mode tangent to refer-
ence velocity profile

Exemplary sliding mode tangent to the reference
velocity profile (designed for po = 24 tracks and
α = 0.975) is shown in Fig. 2.
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Fig. 4. Target seek profiles in phase plane

The SPTOS yields typical track seek profile as
shown in Figs. 3 and 4. The plant trajectory
points near the target in the phase plane (Fig.
4(a)) shows perfect reference (i.e., the fixed slid-
ing mode or linearly extended reference velocity)
tracking. Similar perfect tracking was observed re-
gardless of seek length. This is fairly different from
the PTOS results in which quite large error even
causing oscillating settle may exist dependent on
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Fig. 5. Position and control profiles in target seek:
1, 1000, 3000, and 5000 tracks.

the control gains used as well as seek length. Con-
sidering that one of the design objectives of the
settle mode is to provide a small velocity/position
error initial condition for the regulation control
at the target, the SPTOS must improve control
performance (Fig. 3(a)). In addition, the SPTOS
also shows accurate reference tracking in the tan-
gent sliding mode region (Fig. 4(b)) and deliv-
ers excellent track seek performance (Fig. 3(b)).
Considering the trajectories of acceleration (with
full control) and deceleration, one can find the
SPTOS delivers an (almost symmetric) output
shape very close to the time-optimal one. Fig. 5
shows the position and control profiles in target
seek tests. Uniformly excellent seek performance
is observed regardless of seek length, that can only
be produced via enforced sliding mode.

In the SPTOS, the plant trajectory follows the
reference velocity profile quite accurately regard-
less of seek length. The reference tracking error
disappears rapidly dependent on the convergence
rate factor W as the fixed sliding mode region
is reached. The SPTOS using the state feedback
equivalent control gain K uniquely determined
and updated along the sliding mode (tangent to
the reference velocity profile) determines the plant
trajectory points converging to the target.

4. CONCLUSIONS

This paper has presented a discrete-time slid-
ing mode proximate time-optimal servomecha-
nism developed using nonlinear sliding mode tan-
gent to a reference velocity profile. Instead of a
strong nonlinear function causing control chatter-
ing in discrete-time, a linear control was designed
around the sliding surface. The sliding mode ser-
vomechanism that becomes linear in the boundary
layer was shown to deliver a bounded motion
about the sliding surface even in the presence
of plant uncertainties, that can not happen in

the linear control design. The utility of the pro-
posed servomechanism was demonstrated through
an application example. Accurate reference veloc-
ity tracking and uniformly excellent seek perfor-
mance regardless of seek length, that can only
be produced via enforced sliding mode, promises
improved seek performance yet simple design.

Note: Complete proofs and application example
appear in a full paper version.
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