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Abstract: In this paper, a tracking algorithm for autonomous navigation of automated 
guided vehicles (AGVs) operating in container terminals is presented. The developed 
tracking algorithm is an interacting multiple model algorithm used to detect other AGVs 
using fused information from multiple sensors. In order to detect other AGVs, two 
kinematic models were derived: A constant velocity model for linear motion, and a 
constant-speed turn model for curvilinear motion. In the constant-speed turn model, a 
nonlinear information filter is used in place of the extended Kalman filter in nonlinear 
systems. The model-matched filter used in multi-sensor environments takes the form of a 
federated nonlinear information filter. In this paper, the structural features and 
information sharing principle of the federated information filter are discussed. The 
performance of the proposed filter using a Monte Carlo simulation under various patterns 
is evaluated. Copyright © 2005 IFAC 
 
Keywords: Automated guided vehicle, extended Kalman filter, information filter, 
interacting multiple model, navigation, sensor fusion, target tracking filter. 

 
 
 
 

 
1. INTRODUCTION 

 
Automated guided vehicle (AGV) is a vehicle that is 
driven by an automatic control system that takes the 
role of the driver. In container terminals, AGVs are 
used to replace the manually driven trucks that 
transport containers within the terminal. Fig. 1 shows 
an AGV, with a load, in the ECT terminal in 
Rotterdam. An AGV system consists of a vehicle, an 
onboard controller, a management system, a 
communication system, and a navigation system. Fig. 
2 shows a configuration of an AGV in the automated 
container terminal. The navigation system provides 
guidance and navigation to the AGVs in the 
operating yard. The effectiveness of a navigation 
system depends on the interpretation of the 
information arriving from sensors, which provide 
details of the surrounding environment. 
 
In order to detect other AGVs using the object 
information obtained from multiple sensors, tracking 
techniques based on the Bayesian approach are 
usually used (Bar-Shalom et al., 2001). Adam et al. 

 
Fig. 1. An AGV operating in the ECT at Port of 

Rotterdam, the Netherland. 
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Fig. 2. Configuration of an AGV in an automated 

container terminal. 
 



 

     

(1999) presented a method of determining the 
position and orientation of an AGV by fusing 
odometry with the information provided by a vision 
system. A natural landmark navigation algorithm 
was utilized for autonomous vehicles operating in 
relatively unstructured environments in Madhavan 
and Durrant-Whyte (2004). 
 
Techniques for tracking maneuvering targets are 
used in many tracking and surveillance systems as 
well as in applications where reliability is the main 
concern (Li and Bar-Shalom, 1993; Bar-Shalom et 
al., 2001). In particular, tracking a maneuvering 
target using multiple models can provide better 
performance than using a single model (Li and Bar-
Shalom, 1993; Jilkov et al., 1999; Bar-Shalom et al., 
2001). 
 
Generally, target motion models can be divided into 
two subcategories: the uniform motion model and the 
maneuvering model. A maneuvering target moving 
at a constant turn-rate and speed is usually modeled 
as a maneuvering model, and is called a coordinated 
turn model (Dufour and Mariton, 1992; Li and Bar-
Shalom, 1993; Jilkov et al., 1999; Bar-Shalom et al., 
2001). For application to air traffic control, a fixed 
structure interacting multiple model (IMM) 
algorithm with a single constant velocity model and 
two coordinated turn models was analyzed (Li and 
Bar-Shalom, 1993). Semerdjiev and Mihaylova 
(2000) discussed variable- and fixed-structure 
augmented IMM algorithms, and applied to a 
maneuvering ship tracking problem by augmenting 
the turn rate error. 
 
Data fusion techniques are used to employ a number 
of sensors and to fuse the information from all of 
these sensors in a central processor. In a distributed 
system, the processing of raw data is performed at 
local sensors and the results are transmitted to a data 
fusion center for track processing in order to obtain 
the final results (Rao and Durrant-Whyte, 1991; Bar-
Shalom and Li, 1995; Zhu et al., 2001). Carlson and 
Berarducci (1994) considered a federated structure as 
another means of data fusion. It is known that the 
federated KF (FKF) has the advantages of simplicity 
and fault-tolerant capability over other decentralized 
filter techniques.  
 
As an alternative method to improve the track fusion, 
the information filter (IF) was developed (Bar-
Shalom et al., 2001; Mutambara, 1998, Carelli and 
Freire, 2003, Guivant et al., 2000). The IF is 
essentially a KF expressed in measures of 
information about state estimates and their associated 
covariances. It has been called the inverse covariance 
form of the KF.  
 
The contributions of this paper are as follows. First, 
the IMM algorithm is provided as a tracking 
algorithm for AGVs in navigating autonomously in 
multi-sensor environments within an automated 
container terminal. Second, two kinematic models 
for the possible navigation patterns of AGVs were 
derived: A constant velocity model for linear 

motions, and a constant-speed turn model for 
curvilinear motions. Third, for the constant-speed 
turn model, a federated nonlinear information filter 
(FNIF) was used in multi-sensor environments. 
Fourth, in this study, unlike the FKF, there are no 
gain or innovation covariance matrices, and the 
maximum dimension of a matrix to be inverted is the 
state dimension. Fifth, this paper shows that, in 
information sharing, a federated IF/NIF (FIF/FNIF) 
is equal to a centralized IF/NIF (CIF/CNIF).  
 
This paper is organized as follows. In Section 2, we 
provide the various navigation patterns of AGVs. A 
stochastic hybrid system is formulated, and two 
kinematic models are discussed. In Section 3, we 
formulate an FIF for a constant velocity model and 
an FNIF for a constant-speed turn model in an IMM 
algorithm in multi-sensor environments. In Section 4, 
we evaluate the performance of these filters using a 
Monte Carlo simulation under the various patterns. 
Section 5 concludes the paper. 
 
 

2. PROBLEM FORMULATION 
 
2.1 Navigation Patterns. 
 
Fig. 3 depicts the various navigation patterns of an 
AGV (Lee et al., 2003): straight line and curve, cut-
in/out, and u-turn. Two stochastic kinematic models 
for describing these motions will be investigated: one 
for rectilinear motion, and the other for curvilinear 
motion. These typical navigation patterns are 
described briefly as follows. 
 
i) Straight line and curve: In this situation, the AGV 
detects a preceding AGV that follows straight lines 
and curves on a curved road. 
 
ii) Cut-in/out: Cut-in/out indicates the situation in 
which the AGV detects a maneuvering AGV that 
cuts in (or out) to (or from) the lane while it is being 
tracked. In this case, the target AGV changes its 
motion from a rectilinear motion to a curvilinear 
motion and then back to a rectilinear motion, and the 
detection of up to three surrounding AGVs is 
assumed: one in front, one to the left, and one to the 
right. 
 
iii) U-turn: This situation occurs when the target 
AGV changes its driving direction by o180 . The u- 
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Fig. 3. Various navigation patterns of AGVs: Cross-

lane layout. 



 

     

turn consists of three motions as follows: The target 
AGV moves rectilinearly, undergoes a uniform 
circular turning of up to o180  at a constant yaw rate, 
and then converts to a rectilinear motion in the 
opposite direction. 
 
 
2.2 Stochastic Hybrid System. 
 
Following the work of Li and Bar-Shalom (1993), a 
stochastic hybrid system with additive noise is 
considered as follows: 

)]()],(,1[),1(,1[)](),1(,1[)( kmkmkkxkgkmkxkfkx −−−+−−= ν  
    (1) 
with noisy measurements 
   )](,[)](),(,[)( kmkwkmkxkhkz +=  (2) 

where xnkx ℜ∈)(  is the state vector including the 
position, velocity, and yaw rate of the AGV at 
discrete time k. m(k) is the scalar-valued modal state 
(navigation mode index) at instant k, which is a 
homogeneous Markov chain with probabilities of 
transition given by 

M,    , )}(|)1({ ∈∀=+ jiijij mmkmkmP π  (3) 
where }{⋅P  denotes the probability and M is the set 
of modal states, which are, constant velocity, 
constant acceleration, constant angular rate turning 
with a constant radius of curvature, among others. In 
the autonomous navigation of an AGV, m(k) denotes 
the navigation mode of the preceding AGV, in effect 
during the sampling period ending at k, that is, the 
time period ],( 1 kk tt − . The event for which a mode 

jm  is in effect at time k is denoted as 

   })({)( jj mkmkm ==
∆

. (4) 
znkz ℜ∈)(  is the vector-valued noisy measurement 

from the sensor at time k, which is mode-dependent. 
νν nkmk ℜ∈− )](,1[  is the mode-dependent process 

noise sequence with mean )](,1[ kmk −ν  and 

covariance )](,1[ kmkQ − . znkmkw ℜ∈)](,[  is the 
mode-dependent measurement noise sequence with 
mean )](,[ kmkw  and covariance )](,[ kmkR . Finally 
f, g, and h are nonlinear vector-valued functions. 
 
 
2.3 Two Kinematic Models. 
 
Two kinematic models for rectilinear and curvilinear 
motions are now derived. First, assuming that 
accelerations in the steady state are quite small, 
linear accelerations or decelerations can be 
reasonably well accounted for by process noises with 
the constant velocity model. That is, the constant 
velocity model plus a zero-mean noise with an 
appropriate covariance representing the magnitude of 
acceleration can handle uniform motions on the road. 
In discrete-time, the constant velocity model with 
noise is given by 
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    (5) 
where T is the sampling time (0.01 sec), x(k) is the 
state vector including the position and velocity of the 
preceding vehicle in the longitudinal (ξ ) and lateral 
(η ) directions at discrete time k, that is, 

   ])(  )(  )(  )([)( ′= kkkkkx ηηξξ &&  (6) 
with ξ  and η  denoting the orthogonal coordinates 
of the horizontal plane, and ν  is a zero-mean 
Gaussian white noise representing the accelerations 
with an appropriate covariance Q. If )(kν  is the 
acceleration increment during the kth sampling 
period, the velocity during this period is calculated 
by Tk)(ν , and the position is altered by 2/)( 2Tkν . 
 
Second, a discrete-time model for turning is derived 
from a continuous-time model for coordinated turn 
motion (Bar-Shalom et al., 2001, p. 183). A constant-
speed turn is a turn at a constant yaw rate along a 
road of constant radius of curvature. However, the 
curvatures of actual roads are not constant. Hence, a 
fairly small noise is added to a constant-speed turn 
model for the purpose of capturing the variation of 
the road curvature. The noise in the model represents 
the modeling error, such as the presence of angular 
acceleration or a non-constant radius of curvature. 
For a vehicle turning at a constant angular rate and 
moving at a constant speed (the magnitude of the 
velocity vector is constant), the kinematic equations 
in the ),( ηξ  plane are 

   )()( tt ηωξ &&& −= , )()( tt ξωη &&& =  (7) 

where )(tξ&&  is the normal (longitudinal) acceleration 
and )(tη&&  denotes the tangential acceleration, and ω  
is the constant yaw rate (ω  > 0 implies a counterc -
lockwise turn). The tangential component of the 
acceleration is equal to the rate of change of the 
speed, that is, dttddttdt /))((/)()( ωξηη == &&& , and 
the normal component is defined as the square of the 
speed in the tangential direction divided by the radius 
of the curvature of the path, that is, 

)(/)()(/)()( 222 ttttt ξξωξηξ −=−= &&&  where =)(tη&  
)(tωξ . The state space representation of Eq. (7) with 

the state vector defined by =)(tx )()([ tt ξξ &  
])()( ′tt ηη &  becomes  

   )()( tAxtx =&  (8) 
where  
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The state transient matrix of the system, Eq. (8), is 
given by 
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It is remarked that if the angular rate ω  in Eq. (7) is 
time-varying, Eq. (9) would no longer be true. In the 
sequel, following the approach in Bar-Shalom et al. 
(2001, p. 466), a "nearly" constant-speed turn model 
in a discrete-time domain is introduced. In this 
approach, the model itself is derived from Eq. (9), 
but the angular rate is allowed to vary. 
 
A new state vector formulated by augmenting the 
angular rate )(kω  to the state vector of Eq. (7) is 
defined as follows:  
 ])()()()()([)( ′= kkkkkkxa ωηηξξ &&  (10) 
where superscript a denotes the augmented value. 
Then, the nearly constant speed turn model is defined 
as follows (Bar-Shalom et al., 2001, p. 467): 
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3. FNIF FOR CURVILINEAR MOTIONS 
 
In this study, two models in the IMM algorithm (Bar-
Shalom et al., 2001, p.454; Li and Bar-Shalom, 
1993) were used: one for rectilinear motion, and the 
other for curvilinear motion. The tracking procedure 
of the AGV in a rectilinear motion, using Eq. (5), is 
carried out by an FIF. However, in tracking 
curvilinear motions, which requires the estimation of 
ω  with a new augmented model, Eq. (8) in Section 2, 
an FNIF is used. 
 
 
3.1 The FIF for the Constant Velocity Model. 
 
The federated filter can obtain the globally optimal 
estimate by applying the information-sharing 
principle to each local filter and then fusing the 
estimates of these local filters. Denote the 
information matrix as )|()|( 1 kkPkkY −

∆
=  and 

information state as )|(ˆ)|()|(ˆ 1 kkxkkPkky −
∆
= , 

respectively. For the systems of a local filter 

structure, the global information state and the 
information matrix equations are as follows: 

)|()|()|( 1 kkYkkYkkY Nmaster ++= L , (12) 

∑
=

=
N

i
imaster kkykky

1
)|(ˆ)|(ˆ . (13) 

 
Theorem 1. For system Eqs. (1) and (2), and the local 
filter structure, the solution of the FIF, Eqs. (12) and 
(13), is equal to the solution of the CIF, if conditions 
a) - c) are satisfied. 
a) The initial value of the information matrix, the 
initial information state, and the process noise 
covariance are distributed to local filters as follows: 

)0|0(1)0|0( YY
i

i γ
= , Ni ,,1L= , (14) 

)0|0(ˆ)0|0()0|0()0|0(ˆ 11 yYYy ii
−−= , Ni ,,1L= , 

    (15) 
)()( kQkQ ii γ= , Ni ,,1L= . (16) 

b) The information state and its information matrix, 
which are calculated using Eqs. (12) and (13), are 
distributed to the local filters as follows: 

)|(1)|( kkYkkY master
i

i γ
= , Ni ,,1L= , (17) 

)|(ˆ)|(ˆ kkykky masteri = , Ni ,,1L= . (18) 
c) An information-sharing factor is defined as 
follows: 

110      ,11
1

≤≤=∑
= i

N

i i γγ
. (19) 

 
Remark 1: In the suggested filter, the master filter 
combines only the filtered information state and its 
information matrix of local filters. Therefore, the 
number of variables transmitted from the local filters 
to the master filter is diminished. The FIF structure is 
shown in Fig. 4. 
 
 
3.2 The FNIF for the Constant-Speed Turn Model. 
 
Since the model in Eq. (11) is nonlinear, the 
estimation of the state, Eq. (10), will be performed 
via the FNIF. The nearly constant-speed turn model 
of Eq. (11) can be rewritten as follows: 

)1()1()]1(),1([)( −−+−−= kkGkkxfkx aaaa νω  
    (20) 
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where the function )(⋅af  is known and remains 
unchanged during the estimation procedure. The 
noise transition matrix )1( −kG  is the same form as 
that given in Eq. (11). To obtain the predicted state 

)1|(ˆ −kkxa , the nonlinear function in Eq. (20) is 
expanded in Taylor series around the latest estimate 

)1|1(ˆ −− kkxa  with terms up to first order, to yield 
the first-order EKF. The vector Taylor series 
expansion of Eq. (20) up to first order is 
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where HOT represents the higher-order terms and 
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     (22) 
is the Jacobian of the vector af  evaluated with the 
latest estimate of the state. 
 
For a local estimate by the jth sensor, the 
decentralized nonlinear estimation equations are 
given by 
i) Time update (prediction)  

)]1(),1|1(ˆ[)1|()1|(ˆ −−−−=− kkkxfkkYkky a
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    (23) 
ii) Measurement update 
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where 
)1|(ˆ|]),([)(

−=
′′∇=

kkxx
aa

x
a
x aaaa xhkh ω  is the 

Jacobian of the vector ah  evaluated at the predicted 
state )1|(ˆ −kkxa , and )(kυ  is the innovation given 

by ))(),1|(ˆ,()()( kwkkxkhkzk aa −−=υ . Then, the 
assimilation equations to produce global information 
estimates are as follows: 
i) Information state 

∑
=

=
N

i
imaster kkykky

1
)|()|(ˆ ( , (25) 

ii) Information matrix 
)|()|()|( 1 kkYkkYkkY Nmaster

(
L

(
++= . (26) 

 
Remark 2: Ultimately, the local filters in the FNIF 
produce the same results as the information state and 
information matrix of the DIF. However, the 

assimilation equations of the master filter produce 
the global optimal value by using only the updated 
value of each local filter. 
 
 

4. SIMULATIONS AND RESULTS 
 
Simulations were executed to compare the 
performance of the IMM algorithms using a 
centralized EKF (CEKF), a federated EKF (FEKF), a 
CNIF, and an FNIF, respectively, for curvilinear 
motion. Subscripts “CV” and “CST” stand for 
“constant velocity” and “constant speed turn,” 
respectively. The initial yaw rate of each navigation 
scenario was )0(ω  = - /s  .30 ° , - /s  .21 ° , and -

/s  4 ° , respectively. The error covariances of the 
initial state were as follows: 
CV mode: )0|0(Y  = diag{1  1  1  1}, 

CST mode: }   1   1   1   diag{1)0|0( 2
ωσ=Y  

where ωσ  = (0.1) /s° . The information sharing 
factors used for the two sensors were 

5.0/1/1 21 == γγ . The initial mode probability 
vectors µ  were chosen as follows: 
   =µ ]5.05.0[ ′ . 
 
The comparison results of the IMM algorithms using 
a CEKF, an FEKF, a CNIF, and an FNIF, 
respectively, for the curvilinear motion are shown in 
Figs. 5-7. It is evident that the two algorithms have 
almost equal position and velocity estimation 
accuracy for all scenarios. This confirms the 
algebraic equivalence which is mathematically 
proven and established in the derivation of the IF 
from the KF. Besides, it is evident that the suggested 
algorithm has almost equal position estimation 
accuracy for all scenarios. This is because, unlike the 
centralized filters, the federated filters can obtain the 
globally optimal estimate by using the information-
sharing factor for each local filter and then fusing the 
estimates of the local filters in the multi-sensor 
environments.  
 
 

5. CONCLUSIONS 
 
In this paper, a tracking algorithm for AGVs 
operated in automated container terminals was 
designed. In order to detect other AGVs, two 
kinematic models were derived: the constant-velocity 
model for linear motion, and the constant-speed turn 
model for curvilinear motion. For the constant-speed 
turn model, a federated nonlinear information filter 
was used in place of the extended Kalman filter in 
multi-sensor systems. Besides, it was mathematically 
shown that, in view of the information sharing factor, 
the federated information filter is equal to the 
centralized information filter. 
 
Comparison and analysis of the IMM algorithms 
using the CEKF, the FEKF, the CNIF, and the FNIF 
were performed. Three navigation patterns including 
the curvilinear motions with turn rates of - /s  .30 ° , 
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Fig. 5. Comparison of position errors in the case of 

straight lines and curves. 
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Fig. 6. Comparison of position errors in the case of 

cut-in/out. 
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Fig.7. Comparison of position errors in the case of u-

turn. 
 
- /s  .21 ° , and - /s  4 °  were detected by the IMM 
algorithms using the four filters. In each case, it was 
shown that, by using the values of the information 
sharing factor, 5.021 == γγ , the federated 
information filter is almost equal to the centralized 
information filter. 
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