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1. INTRODUCTION

Can you imagine that among more than 6 billion
people in the world, the length of the acquain-
tance chain between two randomly chosen persons
are just about 6? But basically it is true. This
well-known small-world phenomenon has been re-
discovered in many practical networks, ranging
from the Internet, the World Wide Web, human
society, power grids, to economic and biological
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systems (Albert and Barabasi, 2002; Wang and
Chen, 2003; Watts, 1999).

Recently, to study this important subject, New-
man, Watts, and Strogatz have proposed the
several small-world models (Newman and Watts,
1999; Watts, 1999) to mimic the large-cluster-and-
short-path property, which universally exists in
various large-scale networks.

On the other hand, it is now well known that
network structures significantly affect the emer-
gent network dynamics (Li and Chen, 2003; Li,
et al., 2004b, Lü, et al., 2004; Wang, 2002). Es-
pecially, the spreading (propagation) of diseases,
viruses, and disasters through a huge-scale small-
world network, including such similar phenom-
ena as power blackouts and financial crises, has



become one of the most concerned issues today.
How do social networks and computer networks
mediate the transmission of a human disease or
a computer virus? How do cascading failures and
crises propagate throughout a large power trans-
mission grid, or a global financial network? All
these point to the question of how does the small-
world networking property affect the dynamical
behaviors through the network.

Concerning network dynamics, bifurcation and
chaos with stability analysis of some continu-
ous spreading models have been investigated re-
cently, particularly for small-world networks (Li
and Chen, 2004; Li, et al., 2004a; Li and Chen,
2005; Yang, 2001). As a continued effort, in this
paper a new discrete spreading model is pro-
posed within the framework of the Newman-Watts
small-world networks. With the proposed model,
the effects of the so-called small-world parameter
and the practical nonlinear interaction gain con-
stant will be further investigated, regarding with
some typical discrete spreading dynamics such as
period-doubling bifurcations and chaos.

2. A DISCRETE SPREADING MODEL OF
THE N-W SMALL-WORLD NETWORKS

Newman and Watts proposed a model (Newman
and Watts, 1999), called the N-W small-world net-
work model hereafter, as a variant of the original
Watts-Strogatz small-world model (Watts, 1999),
which describes a transition between an ordered
lattice and a random graph. A N-W small-world
network is evolved as follows: (1) Start with a
ring lattice of N nodes, in which every node is
connected to its first K neighbors (K/2 on each
side, and generally assume 1 < K ¿ N). (2) Add
a new long-rang edge (short-cut) into the lattice
with probability 0 < p ¿ 1 between a randomly
chosen pair of nodes. It was shown that for suf-
ficiently large N and small p, the N-W model is
equivalent to the W-S model, both networks have
short average path lengths and large clustering
coefficients.

Afterwards, Newman and Watts (Newman and
Watts, 1999) looked at the problem of disease
spreading over small-world networks. In the N-
W model, a disease spreads from neighbor to
neighbor on the small-world network, where the
disease can only spread within the connected
cluster of susceptible individuals in which it first
started. Then, Moukarzel (1999) reexamined and
extended this basic spreading mechanism, fol-
lowed by the studies of Yang, Li, and Chen et al.
(Li and Chen, 2004; Li and Chen, 2005; Li, et al.,
2004a; Yang, 2001), using continuous differential-
difference spreading equations for modelling.

In this paper, for simplicity of presentation, it is
assumed that the N-W small-world network model
is an one-dimensional lattice which started from
a ring with K = 2 with constant shape factor
Γd = 1 (Moukarzel, 1999; Newman and Watts,
1999; Yang, 2001).

Consider that a disease (virus, power failure alike)
spreads with a constant radial velocity v = 1
from an original infected site (node) of the N-W
small-world network, in which the total volume of
infected individuals is V (k) at time k.

According to the N-W evolving model, the in-
cremental volume ∆V (k) = V (k + 1) − V (k) at
time step k to the next step k + 1 includes two
parts: ∆V1(k) and ∆V2(k), where ∆V1(k) is the
part of incremental volume that comes from the
spreading between neighbors in the regular ring of
the N-W model. With the assumption of constant
spreading velocity v = 1, one has

∆V1(k) = 1. (1)

Meanwhile, at every time step, there is a new long-
rang connection (short-cut) being added into the
regular ring with probability 0 < p ¿ 1, and the
infected individuals V (k) have probability 2p to be
selected to connect with other individuals far from
them. Therefore, this part of incremental volume
is

∆V2(k) = 2pV (k). (2)

Besides these two parts, the nonlinear interac-
tions during the spreading process should not be
neglected. The nonlinear interactions include, for
example, (i) frictions due to congestion as in the
case of Internet and transportation traffic jams,
(ii) inability of re-firing due to the lack of sufficient
oxygen (Yang, 2001), (iii) inability of self-recovery
and immunity in epidemiology (Li, et al., 2004a).
Such a negative nonlinear interaction effect, de-
noted ∆V3(k), is described by

∆V3(k) = −µ(1 + 2p)V 2(k), (3)

where µ > 0 is the nonlinear interaction gain con-
stant. Obviously, this negative term varies when
p varies from 0 to 1 in the N-W model, because
different p means different amount of short-cuts
being added into the originally regular ring, which
results in different nonlinear interactions affecting
the volume V (k) (Li, et al., 2004a). The total
incremental infected volume is

∆V (k) = 1 + 2pV (k)− µ(1 + 2p)V 2(k) (4)

and the discrete N-W spreading model is thus
established as

V (k + 1) = 1 + (1 + 2p)V (k)



−µ(1 + 2p)V 2(k). (5)

3. DYNAMICAL ANALYSIS OF THE
DISCRETE N-W SPREADING MODEL

To analyze the effect of the small-world param-
eter p and the nonlinear interaction gain µ on
the spreading dynamical behaviors, the discrete
spreading model (5) is first cast into the form of
the well-studied logistic map.

In doing so, denote

v(k + 1) = A(V (k + 1) + B) (6)

v(k) = A(V (k) + B), (7)

where

A =
µ(1 + 2p)

1 +
√

4p2 + 4µ(1 + 2p)
, (8)

B =
−2p +

√
4p2 + 4µ(1 + 2p)

2µ(1 + 2p)
. (9)

Then, model (5) can be rewritten as

v(k + 1) = λv(k)(1− v(k)), (10)

which has the familiar format of the logistic map,
with

λ = 1 +
√

4p2 + 4µ(1 + 2p). (11)

It is well know that the parameter λ determines
period-doubling bifurcations and chaos in the lo-
gistic map: When 0 < λ ≤ λ0 ≈ 3, the logistic
map trends to a stable fixed point; when λ0 <
λ ≤ λ1 ≈ 3.5699, the logistic map is in a period
doubling cascade; when λ1 < λ ≤ λ2 = 4, the
logistic map is in chaotic states.

The interest of this paper is to uncover how
the parameters 0 ≤ p ≤ 1 and 0 < µ affect
the dynamical spreading behaviors of the discrete
spreading model (5). To do so, first, fix 0 < λ ≤ 4
and 0 ≤ p ≤ 1, to obtain

µ =
(λ− 1)2 − 4p2

4(1 + 2p)
. (12)

This means, with fixed 0 < λ ≤ 4 and 0 ≤ p ≤ 1,
when 0 < µ ≤ µ0, model (5) approaches to a
stable fixed point; when µ0 < µ ≤ µ1, the model
has spreading behaviors in the fashion of period-
doubling bifurcations; when µ1 < µ ≤ µ2, it has
chaotic spreading behaviors. Here,

µ0 ≈ 1− p2

1 + 2p
, (13)

µ1 ≈ 1.6511− p2

1 + 2p
, (14)

µ2 =
2.25− p2

1 + 2p
. (15)

Figure 1 illustrates the dependence of µ on p in
(13)-(15), where it can be observed that when p
increases from 0 to 1, those critical values of µ
that correspond to the cases of λ = 3, 3.5699, 4
all decrease. It should be noted that when λ = 3
and p = 1, the nonlinear interaction gain µ = 0.
It means that for any λ < 3, there does not exist
any positive µ > 0 for 0 ≤ p ≤ 1 in model (5).
Figure 1 shows the case of λ = 2.5, where it can
be observed that when p = 0.76, µ = 0.

Now, the bifurcating diagram of volume V (k) vs µ
in a small-world network is plotted. Set the small-
world probability p to be the typical value of 0.1.
By (13)-(15), it can be calculated to get µ0(0.1) =
0.825, µ1(0.1) = 1.368, and µ2(0.1) = 1.867.
Therefore, in this N-W small-world network: when
the gain 0 < µ < 0.825, the spreading volume
V (k) will finally reach a fixed point; when 0.825 <
µ < 1.368, there is a period-doubling cascade of
V (k); when 1.368 < µ < 1.867, the volume V (k)
is in a chaotic state.

To guarantee that V (k) > 0 in the spreading pro-
cess, the discrete spreading model (5) is slightly
modified to have a cutoff, as

V (k + 1) =
{

V ′(k + 1) if 0 ≤ V ′(k + 1)
0 if V ′(k + 1) < 0,

(16)

where

V ′(k + 1) = 1 + (1 + 2p)V (k)

−µ(1 + 2p)V 2(k). (17)

Figure 2 shows the bifurcating diagram of V (k)
vs µ, where blue dots represent the results of
the original spreading model (5) without cutoff,
and the red circles are the results of the modified
spreading model (16) with cutoff.

It can be observed that when µ ≤ µ1(0.1) = 1.368,
both of cases have the same spreading process of
approaching a fixed point and then having period-
doubling bifurcations. When µ > µ1(0.1) = 1.368,
the original model (5) enters the chaotic region,
while the modified model (16), with increasing µ,
further evolves from the chaotic region to period-
doubling bifurcations, and finally arrives at a
period-two state.

Denote µ3 as the nonlinear interaction gain at
which the period-two region occurs. Then,

V (k) = 0,

V (k + 1) = 1 + (1 + 2p) ∗ 0

−µ3 ∗ (1 + 2p) ∗ 0 = 1, (18)
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Fig. 1. The relations of µ vs p, with fixed λ = 2.5, 3, 3.5699, 4 shown by dash-dotted, dotted, dashed, and
solid lines, respectively. The left is for 0 ≤ p ≤ 1, and the right is for 0 ≤ p ≤ 0.4.

V (k + 2) = 1 + (1 + 2p) ∗ 1

−µ3 ∗ (1 + 2p) ∗ 1 = 0,

which gives

µ3 =
2 + 2p

1 + 2p
. (19)

Thus, when p = 0.1, one has µ3(0.1) ≈ 1.834
as in Fig. 2. For even bigger µ > µ3(0.1), the
spreading volume V (k) still maintains the period-
two behavior. It can be observed from Fig. 2 that,
for small-world networks, there exists such a µ3

satisfying µ1 < µ3 < µ2, such that the spreading
evolution is changing from non-chaotic to chaotic
and finally to non-chaotic periodic states.

4. CONCLUSIONS

In this paper, a new discrete spreading model
of the N-W small-world type has been proposed,
for which some typical dynamical behaviors such
as period-doubling bifurcations and chaos have
also been analyzed. It was found that the small-
world probability and the nonlinear interaction
gain constant have significant effects on the net-
work dynamics. As a prototype for modelling the
disease spreading phenomenon in various real-life
complex small-world networks, this investigation
indicates the importance of a suitable strategy
for controlling the spreading of diseases, viruses,
and disasters alike in various real networks of the
small-world type .
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