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Abstract: A fuzzy rule base is proposed to navigate multi-agents from initial positions to 
target positions in unknown environments. The proposed fuzzy rule base determines the 
highest priority of nine possible heading directions. The fuzzy rule base has been 
developed employing genetic algorithms as an approach to dynamic path planning of 
autonomous multi-agents in unknown environments. Paths which satisfy some 
optimization criteria with respect to moving distance, smoothness, and clearance of 
obstacles was obtained from the fuzzy rule base. The fuzzy rule base was obtained from 
off-line navigation with precise sensor modeling and applied to various simulated on-line 
navigation. The performance of the fuzzy rule base in different unknown environments is 
acceptable and shown in simulation results. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
The mobile robot path planning problem is typically 
formulated as follows: given a robot and a 
description of an environment, plan a path between 
two specified locations which is collision-free and 
satisfies certain optimization criteria (Xiao, et al., 
1994). In multi-agent cases, other robots are 
considered as moving obstacles when there is no 
communication among robots. Path planning within 
moving obstacles is so complicated that a robot 
should predict other robots’ motions (Pratihar, et al., 
1999). In this case, it is not efficient to design paths 
themselves because an environment changes. 
Therefore, it is more attractive to design a knowledge 
base for path planning of multiple robots. Another 
problem in path planning is real-time navigation. 
Traditional off-line planners often assume that an 
environment is perfectly known and try to search for 
the optimal path based on some fixed criteria which 
are usually costly (Latombe, 1991; Yap, 1987). On-
line planners, on the other hand, are often purely 
reactive and do not try to optimize a path (Arkin, 
1989; Brooks, 1986).  

Over the years, researchers have found suitability to 
plan paths in using techniques such as Neural 
Networks (NNs) (Yang and Luo, 2004), Genetic 
Algorithms (GAs) (Xiao, et al., 1994), Fuzzy Logics 
(FLs), and hybrid methods (Juidette and Youlal, 
2000; Pratihar, et al., 1999). These methods have 
capabilities of handling imprecision and uncertainty 
with a reasonable amount of computational 
complexity. And domain-specific knowledge is used 
for path planning (Yu and Yang, 2004). There are a 
lot of works related to path planning of a single robot 
comparing to that of multi-agents. Path planning of 
multi-agents in an environment with obstacles was 
solved using graph optimization algorithms 
(Kolushev and Bogdanov, 2000). CAPD which 
performs path planning via checkpoint and dynamic 
priority assignment, using statistical estimates of the 
environment’s motion structure was proposed (Olive, 
et al., 2000). A Genetic-Fuzzy approach to path 
planning of multi-agents provides general, flexible, 
low computation complexity, and adaptive planners. 
The use of fuzzy logic techniques help in quickly 
determining imprecise yet obstacle-free paths, and 
the use of genetic algorithms help in learning a near 



     

optimal rule set that a robot should use while 
navigating in present of moving obstacles (Pratihar, 
et al., 1999). A fuzzy rule base for path planning of a 
single robot is developed using genetic algorithms 
(Juidette and Youlal, 2000). 
 
In this paper, a fuzzy rule base is developed for path 
planning of three robots when their initial and target 
positions are known. A rule in the fuzzy base 
consists of infrared sensor inputs, a direction from a 
robot’s direction to a target, and a priority of a 
heading direction. Only the fuzzy rules are evolved 
by genetic algorithms, and fuzzy membership 
functions are designed by an expert. For real-time 
autonomous navigation, each robot should be 
capable of sensing its environment, planning a real-
time route from the initial position to the target 
position without collision, and controlling direction 
and velocity. Many researchers developed path 
planners simplifying sensor modeling, which they 
were not adequate to apply to real environments 
(Berman, Edan, and Jamshidi, 2003). It is presented 
that infrared proximity sensors are modeled precisely 
based on the real sensor specification. After the 
fuzzy rule base is developed using genetic algorithms 
in off-line navigation, it is applied to simulated on-
line navigation. On-line navigation employing the 
obtained fuzzy rule base in various environments 
was successful. The results are shown in simulations. 
 
 

2. DESIGN OF A FUZZY CONTROLLER 
 

2.1 Problem Statement 
 
The problems in this work are formulated as follows: 
How do three robots reach each target position of 
them when an environment is unknown? How can 
good paths which satisfy the shortest moving 
distance, smoothness, and clearance of obstacles be 
obtained?  To solve these problems, a fuzzy rule base 
is proposed in this work. It is assumed that 1) 
errorless localizations of robots, 2) initial and target 
position of each robot are known, 3) each robot 
doesn’t know other robots’ locations, and 4) a 
circular type robot has only infrared proximity 
sensors. A fuzzy controller as a knowledge base for 
path planning of multi-agents makes it helpful for 
robots to navigate in totally unknown environments. 
The objective of this paper is to develop the fuzzy 
controller to make multi-agents reach their target 
positions with the optimization criteria. Infrared 
proximity sensors and a direction from a robot’s 
direction to a target position are used as inputs to the 
fuzzy controller. Thus, it is required to model the 
sensor precisely in order to apply the fuzzy controller 
to on-line navigation. Each robot shares one fuzzy 
rule base, thus only one fuzzy rule base is required 
regardless of the number of robots. However, the 
more the number of robots is, the more complexity 
increases. Thus, if the number of robots increases it 
will be more difficult to find a proper fuzzy rule base, 

and it will take much longer time to obtain the fuzzy 
rule base. In this paper, the variation of the number 
of robots is not considered.  
 
 
2.2 Modeling of a Mobile Robot 
 
Realistic sensor modeling is a crucial matter when 
on-line navigation is performed, because infrared 
sensors have errors and own characteristics: narrow 
sensing range, specular reflection. Each robot has 9 
infrared proximity sensors which cover up 45° of 
frontal areas.  
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Fig. 1. Mobile robot model and definition of heading 
directions hi, i={1,2,…,9}.  

In Figure 1, the model of a mobile robot with 
infrared proximity sensors is shown. The output of 
the sensor is the distance from the sensor to an object. 
The sensing range is up to 80cm with a 5° aperture 
angle. Corresponding to the frontal areas, nine 
possible heading directions are defined in Figure 1.   
 
 
2.3 The Fuzzy Controller for Path Planning 
 

 
 

Fig. 2. Fuzzy linguistic variables di  which is the 
distance of the obstacle measured by ith sensor 
and ei which is the angle from hi to a target. 



     

Performance of a fuzzy controller highly depends on 
a choice of a fuzzy rule base. The proposed fuzzy 
controller has two input linguistic variables di which 
is the distance of the obstacle measured by ith sensor 
and ei which is the angle from hi to a target. The 
input linguistic variables are shown in Figure 2. The 
output linguistic variable pi is the priority of the input 
variable set (di, ei), i={1,…,9}. Each input linguistic 
variable has five linguistic values. The linguistic 
variable ei has five linguistic values because the 
orientation from a robot to its target position is very 
sensitive to make the robot reach its target position. 
Therefore, there are totally 25 fuzzy rules, which 
comprise a fuzzy rule base. The linguistic values and 
their meanings are presented in Table 1. 
 

Table 1 Linguistic values and their meanings 
 

di  (Distance) ei  (Orientation) 
VN Very Near VR Very Right 
N Near R Right 
M Medium F Front 
F Far L Left 

VF Very Far VL Very Left 
 
An example of a fuzzy rule base is as follows: 
 

1

2

10

 1:      C
 2:      C

                              
 25:      C

i i i

i i i

i i i

rule IF d VN and e VR THEN p
rule IF d N and e VR THEN p

rule IF d VF and e VL THEN p

= = =

= = =

= = =
#

 

 
where C1,C2, … , C10 are linguistic values of pi that 
satisfy 1 ≤ Cj ≤ 10, j={1,2,…,10}, and the number 10 
denotes the highest priority. The priority of each 
heading direction is obtained by the 25 fuzzy rules. 
Thus, the number of fuzzy rules is not dependent on 
the number of heading directions but on the input 
linguistic variables and values. The di, i={1,…,9}, is 
defined in the universe of discourse Ud= [0, 80] to 
represent the measured distance by ith sensor. A 
fuzzy set Di on di is defined as follows: 
 
                        ( ) /
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In the same way, the ei is defined in the universe of 
discourse Ue= [ / 2π− , / 2π ]. Fuzzy sets Ei on ei is 
defined as follows: 
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Likewise, the output linguistic variable pi is defined 
in the universe of discourse Up= [1, 10]. Fuzzy sets 
Pi on pi  is defined as follows: 
 

                      ( ) /
i
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U
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For assigning the priority of each input variable set 
(di, ei), i={1,…,9}, the center of  area method as a 
defuzzification is used. The membership functions of 
inputs and an output are all triangular forms, which 
are shown in Figure 3. The design of fuzzy sets is 
done by an expert. 
 

 
                 (a)                                      (b) 

 
          (c)                                       

Fig. 3 Membership functions of measured distance di 
(a), orientation from a heading direction to a 
target (b), and the priority of each heading 
direction (c) 

 
The fuzzy rule base iR  for ith heading direction can 
be represented as union as follows: 
 

1 1
( )

N N
i

n i i i
n n

R R D E P
= =

⎧ ⎫ ⎧ ⎫
= = × →⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
∪ ∪         (4)       

 
where N is the number of rules. The highest priority 
among all input sets (di, ei), i={1,…,9} can be 
obtained after all priorities of heading directions are 
computed by the fuzzy rule base. But for the 
robustness of the rule base, especially for avoiding 
collisions, a heading direction should consider its 
adjacent priorities. The state of a heading direction is 
evaluated by the following equation: 
 

5

3
1

_ ,   1, 2,...,9i j i j
j

state h W p i+ −
=

= ∑ =i            (5) 

 
Where W is a weight coefficient vector which is 
predefined as W={0.5, 0.7, 1.0, 0.7, 0.5}, and Wj is 
the jth element of W. The heading direction which 
has the largest state value is selected for the next 
robot’s heading direction. The linear velocity of the 
robot is scaled by the sparseness of the environment 
in a time step. 
 
 

3.  EVOLUTION OF THE FUZZY RULE BASE 

A genetic-fuzzy approach is proposed to create the 
proper fuzzy rule base. Genetic algorithms are used 



     

here to refine fuzzy rule bases which are randomly 
created. Steady-state genetic algorithms are used 
because they usually make chromosomes converge 
fast. Also, elitism is used to protect the best fuzzy 
rule base from removing in a population. In this 
section, the genetic algorithms and the way how to 
apply the knowledge base resulted from the genetic 
operations to simulated on-line navigation are 
described. Simulated off-line navigation and on-line 
navigation are depicted in Figure 4. 
 

 
 
Fig. 4 Proposed off-line and on-line processes 
 
 
3.1 Design of a Chromosome 
 
Representation of a chromosome is a key issue in the 
work of GAs. In this work, only fuzzy rules are 
encoded in a chromosome. There are two inputs 
which have five linguistic values for each. Thus, the 
total number of rules is 25, and there is an output 
which has ten linguistic values, thus the total number 
of consequents is 10. All input cases are considered 
to get a precise fuzzy controller which can handle 
complex situations. One chromosome represents one 
fuzzy rule base. All robots share one fuzzy rule base, 
thus only one fuzzy rule base is needed for three 
robots. The consequent in this work represents the 
priority of an input set. All consequents are assigned 
to an integer from 1 to 10. An example of a 
chromosome is shown in Figure 5. 
 
index:      1      2      3      4      5      6      7      …   25    

2 3 1 7 1 10 8 … 5

Fig. 5 An example of a chromosome 

The site of a gene represents inputs of a fuzzy rule, 
and the value in the gene represents a priority. For 
instance, the fuzzy rule base in Figure 5 is like this: 
 

 1: ( )  ( )   2
 2: ( )  ( )   3
 3: ( )  ( )   1

                                 
 25: ( )  ( )   5

i i i

i i i

i i i

i i i

rule IF d VN and e VR THEN p
rule IF d N and e VR THEN p
rule IF d M and e VR THEN p

rule IF d VF and e VL THEN p

= = =

= = =

= = =

= = =
#

 

 

3.2 Genetic Operators 
 
Chromosomes are selected by roulette wheel 
selection in a population. Two selected chromosomes 
are processed by three genetic operators: crossover, 
mutation, and elitism. The one point crossover 
operator is used. The mutation operator selects a 
random site and changes its value to the nearest value. 
In case a robot falls into a local minimum while 
navigating an environment, the control system makes 
the robot avoid the stuck situation by changing the 
robot’s heading direction. It is easy to know when 
collisions occur, but it is difficult when local minima 
occur. To know when local minima occur, a simple 
technique, which is shown in Figure 6, is proposed. 
In Figure 6, the value of each cell represents how 
many times it is occupied. For example, ‘0’ means 
never occupied and ‘15’ means occupied 15 times. If 
a robot falls into a local minimum, it will occupy the 
same position many times. If the number of 
occupation of a place is bigger than a threshold 
which is decided by lots of experiments, then it is a 
local minimum case.  
 

 
 

Fig. 6 Technique for detecting a local minimum 
 
The elitism operator prevents the best chromosome 
in the previous generation from removing in the next 
generation. It generally makes chromosomes in a 
population converge quickly.  
 
 
3.3 Evaluation of a Chromosome 
 
Every chromosome doesn’t make all robots go to 
their target positions without collisions. Some 
chromosomes make robots collide with walls or other 
robots. Thus feasible paths which make robots reach 
their target positions with collision-free and 
infeasible paths which make collisions or 
unreachable situations should be evaluated 
differently. If paths are feasible each robot saves its 
position in each step, and the path of the robot is 
formed by line segments connecting positions. The 
evaluation function for a feasible path evalf is 
designed to accommodate three different 
optimization goals: 1) minimize distance travelled 
(dist), 2) maintain a smooth path (smooth), and 3) 
satisfy the clearance requirements (the robot should 
not approach obstacles too closely) (clear) (Xiao, et 



     

al., 1994). The evaluation function for a feasible path 
is as follows: 
 

( ) ( ) ( ) ( )f i d i s i c ieval T w dist T w smooth T w clear T= ⋅ + ⋅ + ⋅    (6) 
 
where the constants, wd, ws, wc represent the weights 
on the total cost of the path’s length, smooth, and 
clearance, respectively, and Ti is the path of ith robot, 
i={1,2,3}. The evaluation function of an infeasible 
path evalinf is designed to accommodate two criteria: 
1) minimize the number of collisions (nCollisions) 
and 2) minimize the number of travelling steps 
(nSteps). 
 

( ) ( ) ( )inf i col i step ieval T w nCollisions T w nSteps T= ⋅ + ⋅         (7) 
 
where the constants, wcol, wstep represent the weights 
on the cost of the path’s collisions and travelling 
steps, respectively. The wcol is determined by lots of 
experiments and has quite bigger value in 
comparison with other constants because 
chromosomes which make collisions are the worst. 
And there is a step-limit for some chromosomes 
which don’t make robots reach their target positions. 
The smaller value of fitness is, the better the 
chromosome is. The objective is to minimize fitness 
of both feasible and infeasible paths. The fitness of a 
chromosome is the average of all paths’ evaluations. 
The evaluation of an infeasible path is not always 
bigger than that of a feasible path.  This is because a 
chromosome which makes infeasible paths might 
become a good chromosome which makes feasible 
paths after certain genetic transformations. Besides, 
this different evaluation strategy allows some overlap 
between fitness of feasible and infeasible paths 
because a very poor feasible path is not necessarily 
better than a very good near-feasible paths in the 
sense of evolving solutions.  
 
 
3.4 On-line Navigation  
  
The best fuzzy rule base resulted from GA operations 
can be applied to simulated on-line navigation. All 
robots should know their initial and target positions. 
The fuzzy controller assumes that the localization of 
each robot is error-free. Thus, the localization 
problem should be considered when multi-agents 
navigate in real environments. In this paper, only 
simulated navigation is treated.  
 
 

4. SIMULATION RESULTS 

A grid map whose size is 256 x 256 cm was used. 
The radius of a robot is 4.5cm, and the radius of a 
target position is 6cm. Obstacles were placed various 
positions in the map. A robot in both off-line and on-
line navigation knows only where its target position 
is. Robots sense environments through infrared 
sensors modeled in Section 2.2.  

4.1 Off-line Navigation and Results 
 
Initial 100 chromosomes were randomly created and 
formed an initial population. The initial population 
was evolved for 100 generations. The crossover and 
mutation probabilities were set to 0.9, and 0.2, 
respectively. Because steady-state genetic algorithms 
were used, a produced offspring replaced the worst 
chromosome in a population. The map to evolve the 
fuzzy controller in off-line is described in Figure 7. 
Rectangular boxes represent obstacles. Also, there 
are three robots and their target positions which are 
presented by circles in the map. The experimental 
environment was made complex so that robots do a 
lot of works, which made all genes of a chromosome 
evolved. The objective of this paper is to make the 
robots reach their target positions with the suggested 
criteria and no collision. In Figure 7, ‘R1’ represents 
the first robot, and ‘T1’ represents the first robot’s 
target position. In the same way, ‘R2’, ‘R3’, ‘T2’, 
and ‘T3’ represent the second robot, the third robot, 
the second robot’s target position, and the third 
robot’s target position, respectively. A target position 
is not a point but areas. Initial and target positions 
were added 10% noise to fixed positions. 
 

 
Fig. 7 Environment for evolving the fuzzy rule base 

 
There were two bad cases when robots navigate: 1) 
colliding with walls, static obstacles, and other robots 
2) not reaching their target positions. For the first 
case, (7) was employed to evaluate them. To solve 
the second case, the limit of the traveling steps was 
set, and the chromosomes were evaluated by (7). In 
early generations, the best fitness has radically 
decreased because the chromosome which makes 
feasible paths was generated. After about 30th 
generation, the best fitness has not decreased 
significantly. The best fuzzy rule base is presented in 
Table 2. 
  

Table 2 The best fuzzy rule base by GAs 
 

 VN N M F VF
VR 4 3 9 5 8 
R 8 1 5 7 9 
F 1 4 5 6 9 
L 3 3 7 7 9 

VL 2 3 4 5 4 
 



     

 
Fig. 8 Robots’ paths by the best chromosome 
 
The average of the initial fitness was about 6169. 
Coefficients, wd, ws, wc, wcol, wstep in the evaluation 
functions are set to 1, 10, 5, 500, 10, respectively. 
Robots’ paths by the best chromosome are shown in 
Figure 8. The ‘R1’, ‘R2’, and ‘R3’ have reached their 
target positions with 41, 47, and 51 steps, 
respectively. The navigation took 8 seconds, and the 
fitness was 629.74. The dark parts in the 
environment present sensed areas by sensors. 
 
4.2 On-line Navigation and Results 
 
With the best chromosome resulted by off-line 
navigation, simulated on-line navigation was 
performed in many different unknown environments. 
All coefficients employed in off-line navigation were 
used in on-line navigation. All cases in Figure 9 were 
successful navigation without collisions. In Figure 
9(d), though the target positions were different than 
others, the navigation was successful. 
 

   
                 (a)                                    (b)                            

 
                   (c)                                    (d)  
Fig. 9 Various on-line navigation results. The target 
positions in (d) are different from (a), (b), and (c). 
 
Summary of navigation results is shown in Table 3. 
 

Table 3 Results of on-line navigation 
 

 Total 
steps 

Fitness Running 
time 

Collision

(a) 214 759.62 12.781 s No 
(b) 147 651.04 8.719 s No 
(c) 166 675.76 13.156 s No 
(d) 224 775.81 17.625 s No 

In Table 3,’Total steps’ means the sum of the number 
of steps of each robot moved, and ‘Running time’ 
means navigation time in simulations measured by a 
computer which has 2.4GHz CPU clock and 512MB 
RAM. All on-line experiments were collision-free. 
When robots navigated the environment in Figure 
9(c) for 100 times, the number of navigation without 
collision was 76. This is because of the added noise 
to the initial and target positions.  
 

4.  CONCLUSION 

In this paper, the fuzzy controller as a knowledge 
base for dynamic path planning of three robots was 
developed with precise sensor modeling. Robots 
have obtained the proper fuzzy rule base for several 
unknown environments. But, the fuzzy rule base 
caused collisions in some environments though the 
rate of successful navigation was high. It costs high 
to obtain the proper fuzzy rule base by off-line 
navigation, but once the proper fuzzy rule base 
obtains, there is no severe computational cost to 
navigate in on-line. In case the fuzzy rule base is 
applied to real environmental navigation with 
localizations of robots, all robots can reach their 
target positions which are known. As further research, 
the control system should have learning abilities in 
on-line navigation. The learning abilities can save 
time to obtain the better fuzzy rule base. 
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