

TRANSFER LINE BALANCING BY A COMBINED APPROACH

Alexandre Dolgui 1, Nikolai Guschinsky1,2, Genrikh Levin2

1Ecole des Mines de Saint Etienne
158,Cours Fauriel 42033 Saint Etienne Cedex2 France

e-mail:{dolgui,guschinsky}@emse.fr
2United Institute of Informatics Problems
Surganov Str, 6, 220012 Minsk Belarus

e-mail:{gyshin,levin}@newman.bas-net.by

Abstract: A balancing problem for transfer lines with workstations in series and
simultaneously executed blocks of operations is considered. Inclusion constraints
related to operations and exclusion constraints with regard to blocks as well as
precedence constraints are given. The problem is to choose blocks from a given set
and to assign them to workstations while minimizing the line cost and satisfying the
above constraints. A combined heuristic approach is proposed. It is based on
decomposition of the initial problem into several sub-problems and solving them by
an exact algorithm. Results of computational experiments are presented. Copyright
© 2005 IFAC

Keywords: Computer-aided design, machining, optimization, graph theory, integer
programming, heuristics.

1. INTRODUCTION

Transfer lines are widely used in mechanical industry
for mass production of a single type of product
(Hitomi, 1996). The line is equipped with a common
transfer mechanism and a common control system.
All stations of the line perform their operations
simultaneously, and failure of one station (or the
necessity to change tools) results in stoppage of the
line. Operations that are executed in the same
workstation are grouped into blocks. All operations
of the same block are performed simultaneously by
one spindle head which is equipped by
corresponding tools.

Dolgui et al. (2003a, 2005) consider the balancing
problem for transfer lines with sequential execution
of blocks at workstations. In this paper, this problem
is investigated for the case when all blocks (spindle

heads) of the same workstation are executed
simultaneously. The workstation time is the maximal
value among operation times of its spindle heads
(block times) and the line cycle time is the maximum
of workstation times.

It is supposed that a set B of all blocks, which can be
used for the execution of a set N of operations, is
known. For each block from B, its cost and execution
time are given. The problem is to choose blocks from
B and to assign them to workstations in such a way
that:
i) the total line cost is as small as possible,
ii) a given productivity is reached (the line cycle

time does not exceed a given value),
iii) all operations from N are assigned and a partial

order relation on the set N (e.g., because of the
presence of roughing, semi-finishing and
finishing operations) is satisfied,

iv) inclusion constraints (some operations must be
performed at the same workstation due to
tolerance requirements) are respected;

v) exclusion constraints (some blocks cannot be
allocated in the same workstation because of
technological incompatibility of operations or
constructional incompatibility of corresponding
spindle heads) are not violated.

The problem is close to Simple Assembly Line
Balancing Problem (Scholl, 1999). For Simple
Assembly Line Balancing Problem (SALBP), two
basic approaches are developed: branch and bound
algorithms (Scholl and Klein, 1998) as well as
heuristics and meta-heuristics (Helgenson and Birnie,
1961; Arcus, 1966; Rekiek et al., 2000). Surveys of
main publications on SALBP are given in (Erel and
Sarin, 1998; Scholl, 1999; Rekiek et al., 2002).

The SALBP methods cannot be directly used for
solving the studied problem for the following
reasons:
• several blocks from B can include the same

operation from the set N and it is necessary to
choose only one block;

• the workstation time is not the sum of block
times;

• the objective function is not only the number of
workstations but depends also on the number
and the cost of blocks.

For this problem, two exact methods were
developed. One of them (Dolgui et al., 2004a) uses a
mixed integer programming (MIP) approach. The
second method (Dolgui et al., 2003b) is based on
transformation the initial problem into a constrained
shortest path problem. Some dominance rules are
used to reduce the size of the obtained graph. The
results of computational experiments with heuristic
relaxations of these rules are reported in (Dolgui et
al., 2003c). In this paper another heuristic approach
is proposed.

The rest of the paper is organized as follows. Section
2 deals with the problem statement. In Section 3,
graph and MIP models are described. Section 4
presents a combined heuristic approach. Section 5 is
dedicated to experimental results.

2. PROBLEM STATEMENT

The following notation is used for modeling the
design problem considered:
N is the set of all operations;
B is the set of blocks (spindle heads) which can be
used for the line design;
m is the number of workstations in a design decision;
nk is the number of blocks of workstation k;
C1 is the basic cost of one workstation;
Nkl is the set of operations of block l of workstation
k;

Pred(Nkl) is the set of operations which must be
executed before any operation from Nkl;
C2(Nkl) is the cost of the block Nkl;
Nk={Nk1,…,

kknN } is the set of blocks from B which

are executed at the workstation k;
P=<N1,…,Nm> is a design decision.

It is assumed also that the line cannot involve more
than m0 workstations and each workstation cannot
include more than n0 blocks.

The line cost for design decision P can be estimated

as: C(P)=C1m+ ∑ ∑
= =

m

k

n

l
kl

k
NC

1 1
2)(.

The constraints introduced in Section 1 can be
represented in the following way:

i) An order relation over the set N is represented by
the acyclic digraph GOR=(N,DOR). An arc (i,j)∈N×N
belongs to the set DOR if and only if the operation j
must be executed after the operation i.

ii) Since all blocks of the same workstation are
executed simultaneously, the blocks with block time
over the required line cycle time can be excluded
from B before optimization. Therefore this constraint
can be omitted after such transformation.

iii) Exclusion conditions for the blocks of the same
workstation can be represented by the graph
GDS=(B,EDS) in which a pair (N′, N″)∈B×B belongs
to the set EDS if and only if blocks N′ and N″ cannot
be allocated to the same workstation.

iv) Inclusion conditions for the operations of the
same workstation can be represented by the graph
GSS=(N,ESS) such that a pair (i,j)∈N×Ν belongs to
the set ESS if and only if operation i and j must be
allocated to the same workstation.

So, the design problem can be reduced to finding a
collection P=<{N11,…,

11nN }, …, {Nm1,…,

mmnN }>, Nkl∈B, satisfying the conditions:

 C(P)=C1m+ ∑ ∑
= =

m

k

n

l
kl

k
NC

1 1
2)(→ min; (1)

 =
= =
U U
m

k

n

l
kl

k
N

1 1
N; (2)

 ∅=∩ ""'' lklk NN , k'l'≠k"l", k', k"=1,…,m,
 l'=1,…,nk' , l"=1,…,nk" ; (3)

 Pred(Nkl)⊆ UU
rn

q
rq

k

r
N

1

1

1 =

−

=
, k=1,…,m, l=1,…,nk; (4)

 U
kn

l
klN

1=
∩e∈{∅,e}, e∈ESS, k=1,…,m; (5)

 (Nkl′, Nkl″)∉EDS, k=1,…,m, l',l"=1,…,nk; (6)

 nk ≤ n0, k=1,…,m; (7)

 m ≤ m0. (8)

The objective function (1) is the line cost; constraints
(2)-(3) provide assigning all the operations from N
and choosing only one block for each operation; (4)
define the precedence constraints over the set N;
(5) – (6) are the inclusion and exclusion constraints,
respectively; (7) – (8) limit the number of
workstations at the line and the number of blocks for
each workstation.

3. EXACT METHODS

In this section, two exact methods are described
which can be used in a combined heuristic algorithm.
The first approach is based on transformation of the
problem (1)-(8) into a problem of finding a
constrained shortest path in a special digraph. The
second approach reformulates the problem (1) – (8)
in terms of MIP model.

3.1 Graph approach

Let P be a set of collections P= <N1, …, Nk,…, Nm>,
satisfying the constraints (2)-(7). The set
vk= U Uk

r
n
l rlr N1 1= = can be considered as a state of the

part after machining it at the k-th workstation. Let V
be the set of all states for all P∈P, including the
initial state v0=∅ and the final state vN=N. A new
acyclic directed multi-graph G=(V,D) can be
constructed, in which an arc d from vertex v′ to
vertex v″ belongs to D if and only if v′⊂v″, and there
exists a collection P that contains (Nk1, …,

kknN)

such that U U1
1 1

−
= =

k
r

n
l rl

r N =v′ and U kn
l klN1= =v″ \v′ (see

Fig. 1). The cost Θ(d)=)(
1

2∑
=

kn

l
klNC +C1 is assigned

to the arc d∈D as well as a set
Q(d)={q1(d),…,

knq (d)} of block indices where

Nkl=)(dqlB for l=1, ...,nk. It is assumed that the set B

is arbitrarily enumerated and Bq is a block from B
with index q from the set Q.

 (Nk1, Nk2,…,Nknk)
 v′ v″

 (Nk′1, Nk′2,…,Nk′nk′)
 v0=∅ vN=N

Fig. 1. Multigraph G.

The path x(P)=(d1(x(P)),...,dm(x(P))(x(P))) from the set
X of all paths x=(d1(x),...,dk(x),...,dm(x)(x)) in the
digraph G from v0 to vN can be associated with each

design decision P∈P. On the other hand, each path
x∈X corresponding to a collection P(x)=
<N(d1(x)),…,N(dk(x)),…,N(dm(x)(x))> where N(dk(x))
={N(j1(dk(x))),…,N(

knj (dk(x)))} satisfies constraints

(2)-(7) but may violate constraint (8).

Thus the initial problem (1)-(8) can be transformed to
a problem of finding the shortest path in multi-graph
G with at most m0 arcs. This problem is stated as
follows:

 Θ(x)=))((
)(

1
xdk

xm

k
Θ∑

=
→min, (9)

 x∈X, (10)

 m(x)≤ m0. (11)

3.2 MIP model

To formulate the problem (1) – (8) as a MIP
problem, the following variables and additional
parameters are introduced:
- binary variables xqk, where xqk=1 if the block Bq∈B
is assigned to the station k and xqk=0 otherwise,
k=1,…,m0;
- a set of indices Q(i)={q∈Q|i∈Bq} of blocks from B
that include the operation i∈N;
- a segment KB(q)=[kbmin(q),kbmax(q)] of the station
indices where the block Bq∈B can be assigned;
- a segment KO(j)= [komin(j),komax(j)] of the station
indices where the operation j∈N can be assigned;
- a lower bound m* of the number of stations;

- variables Yk∈[0,1], k= m*+1,…,m0, which indicate
if the station k exists or not.

The objective function (12) provides the line cost
minimization:

 min)(2
11*

1
00

→+ ∑∑∑
∈=+=

qkq
q

m

k
k

m

mk
xBCYC

Q
 (12)

The following constraints ensure the execution of all
the operations from N and each operation from N in
one station only:

 ,1
)()(

=∑ ∑
∈ ∈iQq

qk
qKBk

x i∈N (13)

The precedence constraints are not violated if:

 qk
jQqiQr

rl
rkk

rkl
xx ∑∑ ≥∑

∈∈

−

=)()(

))(,1min(

)(

max

min

,

 (i,j)∈DOR, k∈KO(j) (14)

The inclusion constraints for operations are satisfied
if:

 ∑∑
∈∈

=
)()(jQq
qk

iQr
rk xx , (i,j)∈ESS, k∈KO(j) (15)

The exclusion constraints for blocks are respected if:

 xrk+xqk≤1, (Br,Bq)∈EDS, k∈KB(r)∩KB(q) (16)

The number of blocks at each station is lower than n0
if:

 ∑
∈∈∈)}(|{ qKBkqr Q

xrk ≤ n0, k=1,…,m0 (17)

The following constraints define the existence of
stations:

 Yk ≥ xrk, k ≥ m*+1, r∈{q∈Q|k∈KB(q)} (18)

 ∑
∈∈∈)}(|{ qKBkqr Q

xrk ≥ 1, k=1,…, m* (19)

Station k can be created if the station (k-1) exists at
the line:

 Yk-1-Yk≥0, k=m*+2,…,m0. (20)

Segments KB(q) for each block Bq∈B and segments
KO(j) for each operation j∈N as well as m* can be
calculated by the following algorithm. In this
algorithm, Pred(j) and Succ(j) are the sets of
immediate predecessors and successors for the
operation j∈N; imp calculates the number of
improved bounds at the current iteration of the
algorithm.

Algorithm 1.
Step 1. Set imp=0, komin(j) =1 and komax(j)= m0 for
all j∈N.

Step 2. For each j∈N
a) compute lj = max{komin(i)+1|i∈Pred(j)} and uj=
min{komax(i)-1| i∈Succ(j)};
b) if lj > m0 or uj < 1 then stop (the problem has no
feasible solutions);
c) If lj>komin(j) then set komin(j)=lj and imp= imp+1;
d) If uj<komax(j) then set komax(j)=uj and imp=imp+1.

Step 4. For each (i,j)∈ESS compute lm=max[komin(i),
komin(j)], um=min[komax(i), komax(j)] and set komin(i)=
komin(j)=lm, komax(i)=komax(j)=um.

Step 4. If imp_b > 0 then set imp=0 and go to Step 2.

Step 5. Set m*=max{komin(j)|j∈N}, kbmin(q)=
max{komin(j)|j∈Bq} and kbmax(q) =min{komax(j)|j∈Bq}
for each Bq∈B.

4. COMBINED HEURISTIC APPROACH

The above exact algorithms are applicable for small
and medium size. In this paper, a combined heuristic
approach is proposed, which tries to improve a
feasible solution obtained by an heuristics. It is based
on decomposition of the initial problem into several
sub-problems in accordance with a heuristic solution
and solving the sub-problems by an exact method.

Let TRtot be the current number of trials, TRnimp be the
number of trials that do not improve the current best
solution, Cmin be the cost of the best solution, Cheur be
the cost of the current heuristic solution, max_st_sub
and max_op_sub be the maximal allowable number
of stations and operations in a sub-problem,
respectively.

 Algorithm 2.
Step 1. Set Cmin = ∝, TRtot = 0, TRnimp = 0.

Step 2. A current solution Pheur of the initial problem
with the cost Cheur is generated by an heuristics. If
Cheur < Cmin then set Cmin = Cheur and Pmin= Pheur.

Step 3. A series of sub-problems is generated based
on the solution Pheur= >< heurmk NNN ,,, ,1 LL . The

r-th sub-problem is to assign a set of operations Nr
using a set of blocks Br. The set Nr includes the
operations from mr stations of Pheur beginning from

the station ∑ −
=

1
1

r
i im and the set Br consist of blocks B

from B that involve operations from Nr only. Value
mr is chosen at random within [1, max_st_sub] and
then can be modified so that the total number of
operations in a sub-problem does not exceed
max_op_sub and the total sum of mr is not greater
than mheur. For each sub-problem, constraints (2) –
(6) are transformed by replacing the sets N and B
with the subsets Nr and Br, and then removing those
constraints which include operations from N\Nr or
blocks from B\Br.

Step 4. A solution Pcomb is composed by combining
the solutions of sub-problems. If the cost Ccomb of the
obtained solution is less than Cmin then set Cmin=
Ccomb, Pmin= Pcomb, TRnimp = 0 and keep the current
solution as the best, set TRnimp = TRnimp + 1 otherwise.

Step 5. Set TRtot = TRtot + 1.

Step 6. Stop if one of the following conditions holds:
• a given solution time is exceeded;
• TRtot is greater than the maximum number of

iterations authorized;
• TRnimp is greater than a given value;
• Cmin is lower than a given cost value.

Go to Step 2 otherwise.

Algorithm 2 can be modified in such a way that
several attempts of decomposition for a heuristic

solution can be done; not all sub-problems are to be
solved by an exact algorithm (an heuristic solution
can be used); the type of the exact method can be
chosen for each sub-problem in dependence of its
parameters (number of operations, number of blocks,
the order strength of precedence constraints). The
order strength (Scholl, 1999) is defined as the density
of the transitive closure of the precedence graph.

5. EXPERIMENTAL STUDY OF ALGORITHM

The purpose of this study is to compare the proposed
algorithm on the quality of obtained solutions and
running time with the exact methods and heuristics.
The studied modifications of Algorithm 2 use the
graph algorithm for solving sub-problems and differ
in the number of decomposition attempts. Heuristic
solutions were generated by the algorithm (Dolgui et
al., 2004b). Experiments were carried out on HP
Omnibook x86 Family 6 Model 8. The results are
presented in Tables 1 - 4. They correspond to 12
series of 10 test instances which were generated in
random way for different values of |N|, |B| and
p(GOR), p(GDS), p(GSS), where p(G′) is the ratio
between the number of generated edges (arcs) in G′
and the number of edges (arcs) in the complete graph
(digraph) with the same number of vertices. In all
examples p(GSS)= 0.01. Choosing p(GSS)= 0.01 is
justified since the graph GSS should be coordinated
with graphs GOR and GDS to provide feasible
solutions. So, edges from the graph Gs are removed if
they contradict graph GDS or belong to a path in GOR.

In these tables, the following abbreviations are used:
• TC (parameters p(GOR), order strength, p(GDS) of

test instances);
• GA (exact graph algorithm);
• HA (heuristic algorithm);
• CHA1 (combined heuristic algorithm with one

attempt for decomposition);
• CHA2 (combined heuristic algorithm with two

attempts for decomposition);
• CHA3 (combined heuristic algorithm with three

attempts for decomposition);
• PM (performance measures);
• RT (running time in seconds);
• SD (solution deviation of the obtained cost from

the best known solution in percents).

Indices min, max, av for RT and SD mean the
minimal, maximal and average values, respectively.

Table 1 Results for |N|=25, |B|=75

TC PM GA HA CHA1 CHA2 CHA3
RTmin 0.86 1.88 10 10 10
RTmax 148.2 2.64 10 10 10
RTav 49.67 2.29 10 10 10
SDmin 0 0.01 0 0 0
SDmax 0 17.8 35.63 35.63 35.63

0.05,
0.06,
0.05

SDav 0 6.69 9.40 9.83 10.79

RTmin 0.1 1.91 4.27 7.17 6.97
RTmax 13.26 3.12 10 10 10
RTav 2.202 2.546 7.93 9.27 9.63
SDmin 0 0 0 0 0
SDmax 0 14.74 8.71 8.71 13.33

0.10,
0.18,
0.10

SDav 0 6.99 2.46 2.85 3.78

RTmin 0.05 2.32 1.66 3.14 4.60
RTmax 1.53 3.19 10 10 10
RTav 0.40 2.73 5.87 8.27 9.01
SDmin 0 0.01 0 0 0
SDmax 0 11.33 3.37 3.37 3.37

0.15,
0.34,
0.15

SDav 0 6.03 1.63 1.63 1.63

Table 2 Results for |N|=50, |B|=150

TC PM GA HA CHA1 CHA2 CHA3
RTmin 4.22 16.88 17.55 18.22
RTmax 5.92 20 20 20
RTav 5.35 19.42 19.63 19.77
SDmin 0 -11.51 -11.77 -11.77
SDmax 0 2.2 2.18 2.18

0.05,
0.12,
0.05

SDav 0 -5.32 -5.72 -5.48

RTmin 1.20 4.21 11.09 13.62 12.15
RTmax 68.66 8.32 20 20 20
RTav 17.25 6.33 16.70 18.74 19.044
SDmin 0 1.96 0 0 0
SDmax 0 19.19 10.57 10.57 10.57

0.10,
0.33,
0.10

SDav 0 8.87 3.09 3.09 3.29

RTmin 0.52 5.08 5.67 9.87 13.72
RTmax 24.97 11.33 20 20 20
RTav 5.915 7.24 17.24 18.24 19.19
SDmin 0 0 0 0 0
SDmax 0 18.8 13.92 13.92 13.92

0.15,
0.54,
0.15

SDav 0 8.42 3.34 3.34 3.68

Table 3 Results for |N|=75, |B|=225

TC PM GA HA CHA1 CHA2 CHA3
RTmin 6.69 22.53 25.30 28.14
RTmax 20.86 30 30 30
RTav 10.33 27.45 28.62 29.48
SDmin 0 -5.42 -5.42 -5.42
SDmax 0 0 0 0

0.05,
0.14,
0.05

SDav 0 -2.82 -2.82 -2.82

RTmin 3.45 5.69 16.99 17.22 17.46
RTmax 273.8 11.76 30 30 30
RTav 73.19 8.787 26.02 26.14 26.26
SDmin 0 4.1 0 0 0
SDmax 0 24.69 18.41 18.41 18.41

0.10,
0.45,
0.10

SDav 0 11.89 6.54 6.41 6.41

RTmin 1.17 6.36 12.74 19.00 19.10
RTmax 45.65 24.18 30 30 30
RTav 12.62 12.12 24.61 26.16 26.99
SDmin 0 3.99 1.39 1.39 1.39
SDmax 0 13.89 5.07 5.07 5.07

0.15,
0.63,
0.15

SDav 0 7.91 3.19 3.19 3.19

Table 4 Results for |N|=100, |B|=300

TC PM GA HA CHA1 CHA2 CHA3

RTmin 8.58 25.63 26.16 26.74
RTmax 327.3 40 40 40
RTav 48.16 36.28 36.77 37.26
SDmin 0 -16.95 -13.11 -13.11
SDmax 0 0 0 0

0.05,
0.22,
0.05

SDav 0 -4.49 -4.06 -4.06

RTmin 11.72 9.96 29.70 30.31 30.96
RTmax 595.6 24.50 40 40 40
RTav 150.4 16.17 38.29 38.40 38.51
SDmin 0 3.17 0 0 0
SDmax 0 15.11 8.84 8.84 8.84

0.10,
0.55,
0.10

SDav 0 10.11 5.15 5.15 5.15

RTmin 4.78 11.13 33.21 33.70 34.16
RTmax 20.40 28.78 40 40 40
RTav 11.75 17.41 38.91 38.99 39.07
SDmin 0 3.36 0.85 0.85 0.85
SDmax 0 17.02 11.26 11.26 11.26

0.15,
0.73,
0.15

SDav 0 11.06 6.40 6.65 6.65

The maximal available time for CHA1, CHA2 and
CHA3 was given as: 10 sec for test instances with
|N|=25, |B|=75; 20 sec for |N|=50, |B|=150; 30 sec for
|N|=75, |B|=225; 40 sec for |N|=100, |B|=300.

5. CONCLUSION

A combined heuristic approach has been presented to
find a “good” design decision for balancing a transfer
line with simultaneously activated spindle heads at
workstations. It is supposed that spindle heads are to
be chosen from a given set. The algorithm uses
decomposition of the initial problem into several
sub-problems in accordance with a known solution
and tries to improve line balancing by composition of
exact solutions of sub-problems.

The proposed algorithm is relatively efficient. This
conclusion is based on its experimental comparison
with an exact graph approach and other heuristics.
For moderate size problems (less than 50 operations
and 150 blocks) or when their order strength is
relatively large, the exact graph approach is
acceptable in terms of computation time, and thus the
exact solutions have been obtained for this type of
tests. For test instances, the algorithm was capable to
improve the quality of obtained solutions in two
times with regard to initial heuristic solutions. The
experiments show that the heuristics performances
depend on the problem characteristics (order
strength, constraints of compatibility) as well on
control parameters and available time for solution.

ACKNOWLEDGMENT

This work is financially supported by ISTC project
B-986 and INTAS Project 03-51-5501.

REFERENCES

Arcus, A.L. (1966). COMSOAL: A computer
method of sequencing operations for assembly
lines. International Journal of Production
Research, 4, 259-277.

Dolgui, A., B. Finel, N. Guschinsky, G. Levin, and F.
Vernadat (2003a). Some optimization
approaches for transfer lines with blocks of
parallel operations. In: Preprints of the 7th
IFAC Symposium on Intelligent Manufacturing
Systems, (L. Monostori, B. Kadar, G. Morel
(Eds.)), Budapest, Hungary, pp. 261-266.

Dolgui, A., N. Guschinsky, N. and G. Levin (2003b).
Balancing production lines composed by series
of workstations with parallel operations blocks.
In: Proceedings of the 2003 IEEE International
Symposium on Assembly and Task Planning,
Besançon, France, pp. 122-127.

Dolgui, A., N. Guschinsky, N. and G. Levin (2003c).
Graph approach for transfer lines balancing:
exact and heuristic methods. In: Proceedings of
the 3rd International Conference Research and
Development in Mechanical Industry, Herceg
Novi, Serbia and Montenegro, CD-ROM, 9 p.

Dolgui, A., N. Guschinsky, G. Levin, M.-A. Louly
and S. Belmokhtar (2004a). Balancing of
transfer lines with simultaneously activated
spindles. In: Preprints proceedings of the 11th
IFAC Symposium in Information Control
Problem In Manufacturing, Salvador de Bahia,
Brazilia, CD-ROM, 6 p.

Dolgui, A., N. Guschinsky, N. and G. Levin (2004b).
Heuristic algorithms for balancing transfer lines
with simultaneously activated spindles. In:
Preprints proceedings of the IFAC Conference
on Manufacturing, Modelling, Management and
Control, Athens, Greece, CD-ROM, 6 p.

Dolgui, A., B. Finel, N. Guschinsky, G. Levin and F.
Vernadat (2005). A heuristic approach for
transfer lines balancing. Journal of Intelligent
Manufacturing, 16(2), 159-171.

Erel, E. and S.C. Sarin (1998). A survey of the
assembly line balancing procedures. Production
Planning and Control, 9(5), 414-34.

Helgenson, W.B. and D.P. Birnie (1961). Assembly
Line Balancing Using Ranked Positional
Weight Technique. Journal of Industrial
Engineering, 12, 394-398.

Hitomi, K. (1996). Manufacturing Systems
Engineering, Taylor & Francis.

Rekiek, B., A. Dolgui, A. Delchambre and A. Bratcu
(2002). State of art of assembly lines design
optimisation. Annual Reviews in Control, 26(2),
163-174.

Scholl, A. and R. Klein (1998). Balancing assembly
lines effectively: a computational comparison.
European Journal of Operational Research,
114, 51-60.

Scholl, A. (1999). Balancing and sequencing of
assembly lines. Physica-Verlag, Heidelberg.

