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Abstract: A balancing problem for transfer lines with workstations in series and 
simultaneously executed blocks of operations is considered. Inclusion constraints 
related to operations and exclusion constraints with regard to blocks as well as 
precedence constraints are given. The problem is to choose blocks from a given set 
and to assign them to workstations while minimizing the line cost and satisfying the 
above constraints. A combined heuristic approach is proposed. It is based on 
decomposition of the initial problem into several sub-problems and solving them by 
an exact algorithm. Results of computational experiments are presented. Copyright 
© 2005 IFAC 
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1. INTRODUCTION 

 
Transfer lines are widely used in mechanical industry 
for mass production of a single type of product 
(Hitomi, 1996). The line is equipped with a common 
transfer mechanism and a common control system. 
All stations of the line perform their operations 
simultaneously, and failure of one station (or the 
necessity to change tools) results in stoppage of the 
line. Operations that are executed in the same 
workstation are grouped into blocks. All operations 
of the same block are performed simultaneously by 
one spindle head which is equipped by 
corresponding tools. 
 
Dolgui et al. (2003a, 2005) consider the balancing 
problem for transfer lines with sequential execution 
of blocks at workstations. In this paper, this problem 
is investigated for the case when all blocks (spindle 

heads) of the same workstation are executed 
simultaneously. The workstation time is the maximal 
value among operation times of its spindle heads 
(block times) and the line cycle time is the maximum 
of workstation times. 
 
It is supposed that a set B of all blocks, which can be 
used for the execution of a set N of operations, is 
known. For each block from B, its cost and execution 
time are given. The problem is to choose blocks from 
B and to assign them to workstations in such a way 
that: 
i) the total line cost is as small as possible, 
ii) a given productivity is reached (the line cycle 

time does not exceed a given value), 
iii) all operations from N are assigned and a partial 

order relation on the set N (e.g., because of the 
presence of roughing, semi-finishing and 
finishing operations) is satisfied, 



 

     

iv)  inclusion constraints (some operations must be 
performed at the same workstation due to 
tolerance requirements) are respected;  

v) exclusion constraints (some blocks cannot be 
allocated in the same workstation because of 
technological incompatibility of operations or 
constructional incompatibility of corresponding 
spindle heads) are not violated. 

 
The problem is close to Simple Assembly Line 
Balancing Problem (Scholl, 1999). For Simple 
Assembly Line Balancing Problem (SALBP), two 
basic approaches are developed: branch and bound 
algorithms (Scholl and Klein, 1998) as well as 
heuristics and meta-heuristics (Helgenson and Birnie, 
1961; Arcus, 1966; Rekiek et al., 2000). Surveys of 
main publications on SALBP are given in (Erel and 
Sarin, 1998; Scholl, 1999; Rekiek et al., 2002 ). 
 
The SALBP methods cannot be directly used for 
solving the studied problem for the following 
reasons: 
• several blocks from B can include the same 

operation from the set N and it is necessary to 
choose only one block; 

• the workstation time is not the sum of block 
times; 

• the objective function is not only the number of 
workstations but depends also on the number 
and the cost of blocks.  

 
For this problem, two exact methods were 
developed. One of them (Dolgui et al., 2004a) uses a 
mixed integer programming (MIP) approach. The 
second method (Dolgui et al., 2003b) is based on 
transformation the initial problem into a constrained 
shortest path problem. Some dominance rules are 
used to reduce the size of the obtained graph. The 
results of computational experiments with heuristic 
relaxations of these rules are reported in (Dolgui et 
al., 2003c). In this paper another heuristic approach 
is proposed.  
 
The rest of the paper is organized as follows. Section 
2 deals with the problem statement. In Section 3, 
graph and MIP models are described. Section 4 
presents a combined heuristic approach. Section 5 is 
dedicated to experimental results. 
 
 

2. PROBLEM STATEMENT 
 
The following notation is used for modeling the 
design problem considered: 
N is the set of all operations; 
B is the set of blocks (spindle heads) which can be 
used for the line design; 
m is the number of workstations in a design decision;  
nk is the number of blocks of workstation k; 
C1 is the basic cost of one workstation; 
Nkl is the set of operations of block l of workstation 
k; 

Pred(Nkl) is the set of operations which must be 
executed before any operation from Nkl; 
C2(Nkl) is the cost of the block Nkl; 
Nk={Nk1,…,

kknN } is the set of blocks from B which 

are executed at the workstation k; 
P=<N1,…,Nm> is a design decision. 
 
It is assumed also that the line cannot involve more 
than m0 workstations and each workstation cannot 
include more than n0 blocks.  
 
The line cost for design decision P can be estimated 

as: C(P)=C1m+ ∑ ∑
= =
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The constraints introduced in Section 1 can be 
represented in the following way: 
 
i) An order relation over the set N is represented by 
the acyclic digraph GOR=(N,DOR). An arc (i,j)∈N×N 
belongs to the set DOR if and only if the operation j 
must be executed after the operation i.  
 
ii) Since all blocks of the same workstation are 
executed simultaneously, the blocks with block time 
over the required line cycle time can be excluded 
from B before optimization. Therefore this constraint 
can be omitted after such transformation. 
 
iii) Exclusion conditions for the blocks of the same 
workstation can be represented by the graph  
GDS=(B,EDS) in which a pair (N′, N″ )∈B×B belongs 
to the set EDS if and only if blocks N′ and N″ cannot 
be allocated to the same workstation.  
 
iv) Inclusion conditions for the operations of the 
same workstation can be represented by the graph 
GSS=(N,ESS) such that a pair (i,j)∈N×Ν  belongs to 
the set ESS if and only if operation i and j must be 
allocated to the same workstation.  
 
So, the design problem can be reduced to finding a 
collection P=<{N11,…, 

11nN }, …, {Nm1,…, 

mmnN }>, Nkl∈B, satisfying the conditions: 
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 (Nkl′, Nkl″)∉EDS,  k=1,…,m, l',l"=1,…,nk; (6) 

 nk ≤ n0,  k=1,…,m;  (7) 

 m ≤ m0. (8) 
 
The objective function (1) is the line cost; constraints 
(2)-(3) provide assigning all the operations from N 
and choosing only one block for each operation; (4) 
define the precedence constraints over the set N; 
(5) – (6) are the inclusion and exclusion constraints, 
respectively; (7) – (8) limit the number of 
workstations at the line and the number of blocks for 
each workstation. 
 
 

3. EXACT METHODS 
 
In this section, two exact methods are described 
which can be used in a combined heuristic algorithm.  
The first approach is based on transformation of the 
problem (1)-(8) into a problem of finding a 
constrained shortest path in a special digraph. The 
second approach reformulates the problem (1) – (8) 
in terms of MIP model.  
 
3.1 Graph approach 
 
Let P be a set of collections P= <N1, …, Nk,…, Nm>, 
satisfying the constraints (2)-(7). The set 
vk= U Uk

r
n
l rlr N1 1= =  can be considered as a state of the 

part after machining it at the k-th workstation. Let V 
be the set of all states for all P∈P, including the 
initial state v0=∅ and the final state vN=N. A new 
acyclic directed multi-graph G=(V,D) can be 
constructed, in which an arc d from vertex v′ to 
vertex v″ belongs to D if and only if v′⊂v″, and there 
exists a collection P that contains (Nk1, …, 

kknN ) 

such that U U1
1 1

−
= =

k
r
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r N =v′ and U kn
l klN1= =v″ \v′ (see 

Fig. 1). The cost Θ(d)= )(
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l
klNC +C1 is assigned 

to the arc d∈D as well as a set 
Q(d)={q1(d),…,

knq (d)} of block indices where 

Nkl= )(dqlB  for l=1, ...,nk. It is assumed that the set B 

is arbitrarily enumerated and Bq is a block from B 
with index q from the set Q. 
 

      (Nk1, Nk2,…,Nknk)            
 v′                               v″ 

                                        (Nk′1, Nk′2,…,Nk′nk′)        
   v0=∅                                                                                     vN=N 

                                                  

 
Fig. 1. Multigraph G. 
 
The path x(P)=(d1(x(P)),...,dm(x(P))(x(P))) from the set 
X of all paths x=(d1(x),...,dk(x),...,dm(x)(x)) in the 
digraph G from v0 to vN can be associated with each 

design decision P∈P. On the other hand, each path 
x∈X corresponding to a collection P(x)= 
<N(d1(x)),…,N(dk(x)),…,N(dm(x)(x))> where N(dk(x)) 
={N(j1(dk(x))),…,N(

knj (dk(x)))} satisfies constraints 

(2)-(7) but may violate constraint (8). 
 
Thus the initial problem (1)-(8) can be transformed to 
a problem of finding the shortest path in multi-graph 
G with at most m0 arcs. This problem is stated as 
follows: 
 

 Θ(x)= ))((
)(

1
xdk

xm

k
Θ∑

=
→min,  (9) 

 x∈X,  (10) 

 m(x)≤ m0.  (11) 
 
 
3.2 MIP model 
 
To formulate the problem (1) – (8) as a MIP 
problem, the following variables and additional 
parameters are introduced:  
- binary variables xqk, where xqk=1 if the block Bq∈B 
is assigned to the station k and xqk=0 otherwise, 
k=1,…,m0; 
- a set of indices Q(i)={q∈Q|i∈Bq} of blocks from B 
that include the operation i∈N; 
- a segment KB(q)=[kbmin(q),kbmax(q)] of the station 
indices where the block Bq∈B can be assigned; 
- a segment KO(j)= [komin(j),komax(j)] of the station 
indices where the operation j∈N can be assigned; 
- a lower bound m* of the number of stations; 

- variables Yk∈[0,1], k= m*+1,…,m0, which indicate 
if the station k exists or not. 
 
The objective function (12) provides the line cost 
minimization: 
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The following constraints ensure the execution of all 
the operations from N and each operation from N in 
one station only: 
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The precedence constraints are not violated if: 
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The inclusion constraints for operations are satisfied 
if: 

 ∑∑
∈∈

=
)()( jQq
qk

iQr
rk xx , (i,j)∈ESS, k∈KO(j) (15) 

 
The exclusion constraints for blocks are respected if: 

 xrk+xqk≤1, (Br,Bq )∈EDS, k∈KB(r)∩KB(q) (16) 

 
The number of blocks at each station is lower than n0 
if: 

 ∑
∈∈∈ )}(|{ qKBkqr Q

xrk ≤ n0, k=1,…,m0 (17) 

The following constraints define the existence of 
stations: 

 Yk ≥ xrk, k ≥ m*+1, r∈{q∈Q|k∈KB(q)} (18) 

 ∑
∈∈∈ )}(|{ qKBkqr Q

xrk ≥ 1, k=1,…, m* (19) 

Station k can be created if the station (k-1) exists at 
the line: 

 Yk-1-Yk≥0, k=m*+2,…,m0. (20) 

 
Segments KB(q) for each block Bq∈B and segments 
KO(j) for each operation j∈N as well as m* can be 
calculated by the following algorithm. In this 
algorithm, Pred(j) and Succ(j) are the sets of 
immediate predecessors and successors for the 
operation j∈N; imp calculates the number of 
improved bounds at the current iteration of the 
algorithm. 
 
Algorithm 1. 
Step 1.  Set imp=0, komin(j) =1 and komax(j)= m0 for 
all j∈N.  
 
Step 2. For each j∈N 
a) compute lj = max{komin(i)+1|i∈Pred(j)} and uj= 
min{komax(i)-1| i∈Succ(j)};  
b) if lj > m0 or uj < 1 then stop (the problem has no 
feasible solutions);  
c) If lj>komin(j) then set komin(j)=lj and imp= imp+1; 
d) If uj<komax(j) then set komax(j)=uj and imp=imp+1. 
 

Step 4. For each (i,j)∈ESS compute lm=max[komin(i), 
komin(j)], um=min[komax(i), komax(j)] and set komin(i)= 
komin(j)=lm, komax(i)=komax(j)=um. 
 
Step 4. If imp_b > 0 then set imp=0 and go to Step 2.  
 

Step 5. Set m*=max{komin(j)|j∈N}, kbmin(q)= 
max{komin(j)|j∈Bq} and kbmax(q) =min{komax(j)|j∈Bq} 
for each Bq∈B. 
 
 

4. COMBINED HEURISTIC APPROACH 
 
The above exact algorithms are applicable for small 
and medium size. In this paper, a combined heuristic 
approach is proposed, which tries to improve a 
feasible solution obtained by an heuristics. It is based 
on decomposition of the initial problem into several 
sub-problems in accordance with a heuristic solution 
and solving the sub-problems by an exact method.  
 
Let TRtot be the current number of trials, TRnimp be the 
number of trials that do not improve the current best 
solution, Cmin be the cost of the best solution, Cheur be 
the cost of the current heuristic solution, max_st_sub 
and max_op_sub be the maximal allowable number 
of stations and operations in a sub-problem, 
respectively. 
 
 Algorithm 2. 
Step 1. Set Cmin = ∝, TRtot = 0, TRnimp = 0. 
 

Step 2. A current solution Pheur of the initial problem 
with the cost Cheur is generated by an heuristics. If 
Cheur < Cmin then set Cmin = Cheur and Pmin= Pheur.  
 
Step 3. A series of sub-problems is generated based 
on the solution Pheur= >< heurmk NNN ,,, ,1 LL . The 

r-th sub-problem is to assign a set of operations Nr 
using a set of blocks Br. The set Nr includes the 
operations from mr stations of Pheur beginning from 

the station ∑ −
=

1
1

r
i im  and the set Br consist of blocks B 

from B that involve operations from Nr only. Value 
mr is chosen at random within [1, max_st_sub] and 
then can be modified so that the total number of 
operations in a sub-problem does not exceed 
max_op_sub and the total sum of mr is not greater 
than mheur. For each sub-problem, constraints (2) – 
(6) are transformed by replacing the sets N and B 
with the subsets Nr and Br, and then removing those 
constraints which include operations from N\Nr or 
blocks from B\Br. 
 
Step 4. A solution Pcomb is composed by combining 
the solutions of sub-problems. If the cost Ccomb of the 
obtained solution is less than Cmin then set Cmin= 
Ccomb, Pmin= Pcomb, TRnimp = 0 and keep the current 
solution as the best, set TRnimp = TRnimp + 1 otherwise. 
 
Step 5. Set TRtot = TRtot + 1. 
 
Step 6. Stop if one of the following conditions holds: 
• a given solution time is exceeded; 
• TRtot is greater than the maximum number of 

iterations authorized; 
• TRnimp is greater than a given value; 
• Cmin is lower than a given cost value.  
 
Go to Step 2 otherwise. 
 
Algorithm 2 can be modified in such a way that 
several attempts of decomposition for a heuristic 



 

     

solution can be done; not all sub-problems are to be 
solved by an exact algorithm (an heuristic solution 
can be used); the type of the exact method can be 
chosen for each sub-problem in dependence of its 
parameters (number of operations, number of blocks, 
the order strength of precedence constraints). The 
order strength (Scholl, 1999) is defined as the density 
of the transitive closure of the precedence graph. 
 
 

5. EXPERIMENTAL STUDY OF ALGORITHM 
 

The purpose of this study is to compare the proposed 
algorithm on the quality of obtained solutions and 
running time with the exact methods and heuristics. 
The studied modifications of Algorithm 2 use the 
graph algorithm for solving sub-problems and differ 
in the number of decomposition attempts. Heuristic 
solutions were generated by the algorithm (Dolgui et 
al., 2004b). Experiments were carried out on HP 
Omnibook x86 Family 6 Model 8. The results are 
presented in Tables 1 - 4. They correspond to 12 
series of 10 test instances which were generated in 
random way for different values of |N|, |B| and 
p(GOR), p(GDS), p(GSS), where p(G′) is the ratio 
between the number of generated edges (arcs) in G′ 
and the number of edges (arcs) in the complete graph 
(digraph) with the same number of vertices. In all 
examples p(GSS)= 0.01. Choosing p(GSS)= 0.01 is 
justified since the graph GSS should be coordinated 
with graphs GOR and GDS to provide feasible 
solutions. So, edges from the graph Gs are removed if 
they contradict graph GDS or belong to a path in GOR.  
 
In these tables, the following abbreviations are used:  
• TC (parameters p(GOR), order strength, p(GDS) of 

test instances); 
• GA (exact graph algorithm); 
• HA (heuristic algorithm); 
• CHA1 (combined heuristic algorithm with one 

attempt for decomposition); 
• CHA2 (combined heuristic algorithm with two 

attempts for decomposition); 
• CHA3 (combined heuristic algorithm with three 

attempts for decomposition); 
• PM (performance measures); 
• RT (running time in seconds); 
• SD (solution deviation of the obtained cost from 

the best known solution in percents). 
 
Indices min, max, av for RT and SD mean the 
minimal, maximal and average values, respectively.  
 

Table 1 Results for |N|=25, |B|=75 
 

TC PM GA HA CHA1 CHA2 CHA3 
RTmin 0.86 1.88 10 10 10 
RTmax 148.2 2.64 10 10 10 
RTav 49.67 2.29 10 10 10 
SDmin 0 0.01 0 0 0 
SDmax 0 17.8 35.63 35.63 35.63 

0.05, 
0.06, 
0.05 

SDav 0 6.69 9.40 9.83 10.79 

       
RTmin 0.1 1.91 4.27 7.17 6.97 
RTmax 13.26 3.12 10 10 10 
RTav 2.202 2.546 7.93 9.27 9.63 
SDmin 0 0 0 0 0 
SDmax 0 14.74 8.71 8.71 13.33 

0.10, 
0.18, 
0.10 

SDav 0 6.99 2.46 2.85 3.78 
       

RTmin 0.05 2.32 1.66 3.14 4.60 
RTmax 1.53 3.19 10 10 10 
RTav 0.40 2.73 5.87 8.27 9.01 
SDmin 0 0.01 0 0 0 
SDmax 0 11.33 3.37 3.37 3.37 

0.15, 
0.34, 
0.15 

SDav 0 6.03 1.63 1.63 1.63 
 

Table 2 Results for |N|=50, |B|=150 
 

TC PM GA HA CHA1 CHA2 CHA3 
RTmin  4.22 16.88 17.55 18.22 
RTmax  5.92 20 20 20 
RTav  5.35 19.42 19.63 19.77 
SDmin  0 -11.51 -11.77 -11.77 
SDmax  0 2.2 2.18 2.18 

0.05, 
0.12, 
0.05 

SDav  0 -5.32 -5.72 -5.48 
       

RTmin 1.20 4.21 11.09 13.62 12.15 
RTmax 68.66 8.32 20 20 20 
RTav 17.25 6.33 16.70 18.74 19.044 
SDmin 0 1.96 0 0 0 
SDmax 0 19.19 10.57 10.57 10.57 

0.10, 
0.33, 
0.10 

SDav 0 8.87 3.09 3.09 3.29 
       

RTmin 0.52 5.08 5.67 9.87 13.72 
RTmax 24.97 11.33 20 20 20 
RTav 5.915 7.24 17.24 18.24 19.19 
SDmin 0 0 0 0 0 
SDmax 0 18.8 13.92 13.92 13.92 

0.15, 
0.54, 
0.15 

SDav 0 8.42 3.34 3.34 3.68 
 

Table 3 Results for |N|=75, |B|=225 
 

TC PM GA HA CHA1 CHA2 CHA3 
RTmin  6.69 22.53 25.30 28.14 
RTmax  20.86 30 30 30 
RTav  10.33 27.45 28.62 29.48 
SDmin  0 -5.42 -5.42 -5.42 
SDmax  0 0 0 0 

0.05, 
0.14, 
0.05 

SDav  0 -2.82 -2.82 -2.82 
       

RTmin 3.45 5.69 16.99 17.22 17.46 
RTmax 273.8 11.76 30 30 30 
RTav 73.19 8.787 26.02 26.14 26.26 
SDmin 0 4.1 0 0 0 
SDmax 0 24.69 18.41 18.41 18.41 

0.10, 
0.45, 
0.10 

SDav 0 11.89 6.54 6.41 6.41 
       

RTmin 1.17 6.36 12.74 19.00 19.10 
RTmax 45.65 24.18 30 30 30 
RTav 12.62 12.12 24.61 26.16 26.99 
SDmin 0 3.99 1.39 1.39 1.39 
SDmax 0 13.89 5.07 5.07 5.07 

0.15, 
0.63, 
0.15 

SDav 0 7.91 3.19 3.19 3.19 
 



 

     

 
Table 4 Results for |N|=100, |B|=300 

 
TC PM GA HA CHA1 CHA2 CHA3 

RTmin  8.58 25.63 26.16 26.74 
RTmax  327.3 40 40 40 
RTav  48.16 36.28 36.77 37.26 
SDmin  0 -16.95 -13.11 -13.11 
SDmax  0 0 0 0 

0.05, 
0.22, 
0.05 

SDav  0 -4.49 -4.06 -4.06 
       

RTmin 11.72 9.96 29.70 30.31 30.96 
RTmax 595.6 24.50 40 40 40 
RTav 150.4 16.17 38.29 38.40 38.51 
SDmin 0 3.17 0 0 0 
SDmax 0 15.11 8.84 8.84 8.84 

0.10, 
0.55, 
0.10 

SDav 0 10.11 5.15 5.15 5.15 
       

RTmin 4.78 11.13 33.21 33.70 34.16 
RTmax 20.40 28.78 40 40 40 
RTav 11.75 17.41 38.91 38.99 39.07 
SDmin 0 3.36 0.85 0.85 0.85 
SDmax 0 17.02 11.26 11.26 11.26 

0.15, 
0.73, 
0.15 

SDav 0 11.06 6.40 6.65 6.65 
 
The maximal available time for CHA1, CHA2 and 
CHA3 was given as: 10 sec for test instances with 
|N|=25, |B|=75; 20 sec for |N|=50, |B|=150; 30 sec for 
|N|=75, |B|=225; 40 sec for |N|=100, |B|=300. 
 
 

5. CONCLUSION 
 
A combined heuristic approach has been presented to 
find a “good” design decision for balancing a transfer 
line with simultaneously activated spindle heads at 
workstations. It is supposed that spindle heads are to 
be chosen from a given set. The algorithm uses 
decomposition of the initial problem into several 
sub-problems in accordance with a known solution 
and tries to improve line balancing by composition of 
exact solutions of sub-problems.  
 
The proposed algorithm is relatively efficient. This 
conclusion is based on its experimental comparison 
with an exact graph approach and other heuristics. 
For moderate size problems (less than 50 operations 
and 150 blocks) or when their order strength is 
relatively large, the exact graph approach is 
acceptable in terms of computation time, and thus the 
exact solutions have been obtained for this type of 
tests. For test instances, the algorithm was capable to 
improve the quality of obtained solutions in two 
times with regard to initial heuristic solutions. The 
experiments show that the heuristics performances 
depend on the problem characteristics (order 
strength, constraints of compatibility) as well on 
control parameters and available time for solution. 
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