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Abstract: A convex formulation is derived for optimizing dynamic feedback laws for
constrained linear systems with polytopic uncertainty. Weshow that, when it exists,
the maximal invariant ellipsoidal set for the plant state under a dynamic feedback law
incorporating any chosen static feedback gain is equal to the maximal invariant ellipsoidal
set under any linear feedback law. The dynamic controller and its associated invariant set
define a computationally efficient robust MPC law with prediction dynamics belonging to
a polytopic uncertainty set.Copyright c©2005 IFAC
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1. INTRODUCTION

The computational burden of model predictive control
(MPC) is a key factor limiting the range of its appli-
cations. MPC algorithms for the linearly constrained
linear-quadratic optimal control problem require the
online solution of a quadratic program (QP), and the
online computational requirement can be very much
higher for MPC algorithms incorporating robustness
to model uncertainty (Mayneet al., 2000). In particu-
lar, the robust min-max MPC approach of (Kothareet
al., 1996) uses an ellipsoidal constraint approximation
to formulate the online optimization as a semidefi-
nite program (SDP) with a computational load that
is prohibitive for fast sampling applications. The ex-
plicit solution of linear min-max MPC (Bemporadet
al., 2003) is a piecewise affine feedback law which can
be computed offline using multiparametric quadratic
programming, however the prohibitive online storage
requirement of this approach limits its application to
simple low-order systems (Imslandet al., 2004).

Ellipsoidal constraint approximations are the basis of
the MPC law of (Kouvaritakiset al., 2000; Kouvari-
takiset al., 2002), which provides robustness to poly-
topic parametric uncertainty but requires a fraction of
the online computation of QP-based MPC for linear
systems with no model uncertainty. The approximate
constraints are computed offline by optimizing an in-
variant ellipsoidal set for a dynamic state feedback
law, and the online computation is therefore reduced
to the optimization of the controller state subject to
an ellipsoidal constraint. The approach was extended
in (Dragesetet al., 2003; Imslandet al., 2004) by
allowing the parameters of the dynamic feedback law

to be variables in the offline optimization. As a re-
sult the suboptimality in the size of the stabilizable
set associated with the MPC law of (Kouvaritakiset
al., 2000; Kouvaritakiset al., 2002) can be reduced,
but the formulation of (Dragesetet al., 2003; Imsland
et al., 2004) leads to a nonconvex optimization with
no guarantee of convergence to a solution.

This paper provides a convex formulation for the op-
timization of prediction dynamics and shows that the
resulting maximal invariant ellipsoidal set is equal to
the maximal invariant ellipsoidal set under any linear
feedback law. The formulation employs a nonlinear
transformation of variables similar to that used in dy-
namic output feedback design problems (Schereret
al., 1997; Skeltonet al., 1998), modified to allow for
polytopic uncertainty in model parameters and linear
input/state constraints. Our approach suggests a gener-
alization of the prediction dynamics of (Kouvaritakis
et al., 2000; Kouvaritakiset al., 2002) that enables
the dynamics governing the evolution of the predicted
controller state to vary depending on the predicted
plant state. Despite significant improvements in the
size of the associated stabilizable set, this generaliza-
tion does not increase online computational load.

2. PROBLEM STATEMENT

Consider the discrete-time uncertain linear system

x(k+1) = A(k)x(k)+B(k)u(k), y(k) = Cx(k) (1)

with constraints on the statex∈R
nx and inputu∈R

nu:

Fx(k)+Gu(k) ≤ f . (2)

The values ofA(k),B(k) are unknown but belong to
a polytopic uncertainty classΩ at each instantk, i.e.



[A(k) B(k)] ∈ Ω = Co
{

[A j B j ], j = 0, . . . ,m
}

where
A j ,B j , j = 0, . . . ,m are known constant matrices. The
statex(k) is assumed measurable at timek.

We consider a quadratic performance index evaluated
for nominal or worst-case predicted performance. Let
{u(k+ i|k), i ≥ 0} denote a control sequence predicted
at timek, then the worst-case cost index is defined

J̃(k) = max
[A(k+i) B(k+i)]∈Ω

i=0,1,...

∞

∑
i=0

[

xT(k+ i|k)CTCx(k+ i|k)

+uT(k+ i|k)Ru(k+ i|k)
]

(3)

where{x(k+ i|k), i ≥ 0} is a predicted trajectory of (1)
with x(k|k) = x(k). Alternatively, the nominal perfor-
mance index corresponding to[A0 B0] (e.g. the centre
of Ω or expected value of[A(k) B(k)]) is defined

J0(k) =
∞

∑
i=0

[

xT
0 (k+ i|k)CTCx0(k+ i|k)

+uT(k+ i|k)Ru(k+ i|k)
]

(4)

where{x0(k+ i|k), i ≥ 0} is the predicted trajectory of

x0(k+ i +1|k) = A0x0(k+ i|k)+B0u(k+ i|k) (5)

with x0(k|k) = x(k).

To ensure closed-loop stability, constraints (2) must be
satisfied along predicted trajectories corresponding to
all future realizations of model uncertainty. i.e.∀i ≥ 0:

max
[A(k+ j) B(k+ j)]∈Ω

j=0,1,...,i−1

Fx(k+ i|k)+Gu(k+ i|k) ≤ f . (6)

Applying these constraints to open-loop predicted tra-
jectories leads to highly conservative MPC strategies,
and it is therefore preferable to use closed-loop pre-
dictions which take into account the mitigating ef-
fects of future state measurements. However closed-
loop MPC strategies incorporating the robust con-
straints (6) through either online (Lee and Yu, 1997) or
offline (Bemporadet al., 2003) optimization impose a
very high computational load. Computational burden
can be reduced by approximating the feasible set for
the constraints (6). For example (Kothareet al., 1996)
optimizes a linear state feedback lawu(k+ i|k) =
H(k)x(k+ i|k) online subject to ellipsoidal state con-
straints that can be formulated as LMI conditions.

The ellipsoidal constraint approximation is constructed
online in (Kothareet al., 1996), but very significant
reductions in online computational load are obtained
if the feasible set approximation is computed offline.
This is done in (Kouvaritakiset al., 2000; Kouvari-
takis et al., 2002) by expressing the degrees of free-
dom in predicted inputs as a perturbation sequence
{v(i|k), i = 0,1, . . .} on a fixed linear feedback law:

u(k+ i|k) = Hx(k+ i|k)+v(i|k), (7)

and then constructing an ellipsoidal approximation of
the feasible set for the plant state and optimization
variables{v(i|k)} through an offline optimization sub-
ject to LMI constraints. The gainH is required to
stabilize the uncertainty classΩ in the absence of con-
straints, and should also be optimal when constraints
are inactive (e.g. LQ-optimal for the nominal model).

Although the offline constraint approximation enables
extremely efficient online optimization (Kouvaritakis
et al., 2002), it has the effect of limiting the stabiliz-
able set of the MPC law to an ellipsoidal set which is
suboptimal relative to the actual feasible set for (6).
Moreover the degree of suboptimality depends on the
choice ofH, the number of free variables, and their
parameterization in the sequence{v(i|k)}. To over-
come this problem, this paper optimizes the evolution
of the perturbation sequence{v(i|k)} in (7) so as to
maximize the associated ellipsoidal stabilizable set.

3. OPTIMIZATION OF PREDICTION DYNAMICS

Predicted trajectories of (1) corresponding to (7) can
be generated by a dynamic state feedback law:

z(k+ i +1|k) = A (k+ i|k)z(k+ i|k) (8a)

A (k+ i|k) ∈ Co{A j , j = 0, . . . ,m} (8b)

A j =

[

Φ j B jCc

0 Ac

]

, Φ j = A j +B jH (8c)

z(k|k) =

[

x(k)
c(k)

]

,
x(k+ i|k) =

[

I 0
]

z(k+ i|k)

u(k+ i|k) =
[

H Cc
]

z(k+ i|k)
(8d)

where the controller statec(k) ∈ R
nc is the optimiza-

tion variable to be determined online andv(i|k) =
CcAi

cc(k) in (7). In (Kouvaritakiset al., 2000) for ex-
ample, the degrees of freedom in (7) are the perturba-
tionsv(i|k) for i = 0, . . . ,N−1, with v(i|k) = 0 for all
i ≥ N, so thatc(k) and the controller parametersCc,
Ac are given (non-uniquely) by:

c(k) =











v(0|k)
v(1|k)

...
v(N−1|k)











,

Cc =
[

Inu 0 · · · 0
]

Ac =











0 Inu
...

. ..
0 Inu

0 0 · · · 0











(9)

Since predictions are governed by the autonomous
dynamics (8), an inner bound on the feasible region
for (6) in (x,c)-space is given by any invariant set
for the state of (8a-c) on which constraints (2) are
instantaneously satisfied. For the ellipsoidal setE =
{z : zTPz ≤ 1}, it is easy to show (e.g. (Boydet
al., 1994)) that invariance under (8a-c) and feasibility
w.r.t. (2) are equivalent to the following conditions:

P −A
T
j PA j > 0, j = 0, . . . ,m (10a)

[

W
[

F +GH GCc
]

∗ P

]

> 0, Wii ≤ f 2
i (10b)

(∗ indicates an off-diagonal block of a symmetric
matrix). Clearly (10a,b) are LMIs inP, and if the
controller parametersAc,Cc are fixed,P can therefore
be computed offline via a convex optimization with a
suitable objective (such as maximization of the projec-
tion of E onto thex-subspace, which is an inner bound
on the stabilizable set forx).

Use of fixedAc andCc in (9) allow the predictions cor-
responding to any finite length perturbation sequence
{v(i|k)} to be realized by (8) with sufficiently largenc.



In practice,nc is restricted by limits on the number of
free variables inP that can be handled in the offline
optimization problem (the online optimization ofc(k)
is univariate and its computational load increases only
linearly withnc (Kouvaritakiset al., 2002)). Moreover
for any given value ofnc, it is clear that a larger
feasible set could be obtained ifAc andCc were also
variables in the optimization ofE .

This is the motivation behind the optimization ofE

over variablesAc, Cc andP considered in (Drageset
et al., 2003; Imslandet al., 2004). Since (10a) is
nonconvex inAc,Cc,P, a sequential semi-definite
programming approach is proposed in (Dragesetet
al., 2003) for handling nonconvex constraints that en-
force (10a,b). However, by defining a transformation
of variables similar to that used in dynamic output
feedback design problems (Schereret al., 1997; Skel-
ton et al., 1998), the offline optimization ofAc,Cc,P
can be reformulated as a convex LMI problem, thus
eliminating the problems of convergence, feasibility
and computational complexity caused by nonconvex
constraints in the optimization ofE . To show this, let
U,V ∈R

nx×nc, K ∈R
nx×nx, M ∈R

nu×nx and symmetric
X,Y ∈ R

nx×nx be defined by

P=

[

X−1 X−1U
UTX−1 ∗

]

, P
−1=

[

Y V
VT ∗

]

,
K = UAcV

T

M = CcV
T

(11)
so thatPP−1 = I implies

UVT = X−Y. (12)

The following theorem derives conditions equivalent
to (10a,b) that are convex inX,Y,K,M.

Theorem 1.There existAc,Cc,P,W satisfying (10a,b)
only if the LMIs in X,Y,K,M,W below are feasible.








[

Y X
X X

] [

Φ jY +B jM Φ jX
K +Φ jY +B jM Φ jX

]

∗

[

Y X
X X

]









> 0 j = 0, . . . ,m

(13a)




W
[

(F +GH)Y +GM (F +GH)X
]

∗

[

Y X
X X

]



> 0, Wii ≤ f 2
i

(13b)

Furthermore feasibility of (13a,b) is necessary and
sufficient for feasibility of (10a,b) ifnc ≥ nx.

Proof: Pre- and post-multiplying (10a) respectively by
[

ΠT 0
0 ΠT

]

,

[

Π 0
0 Π

]

, with Π =

[

Y X
VT 0

]

(14)

and using (12) yields (13a). Similarly, pre- and post-
multiplication of (10b) respectively by

[

I 0
0 ΠT

]

,

[

I 0
0 Π

]

(15)

gives (13b). Therefore (10a,b) can only be feasible
if (13a,b) are feasible. Note also thatU,V can be as-
sumed full-rank without loss of generality since the in-
equalities involvingP in (10a,b) are strict, and hence

the feasible set forP is open. From the definitions
of K,M in (11), solutions forAc,Cc therefore exist for
given K,M whenevernc ≥ nx, implying that (10a,b)
are feasible if and only if (13a,b) are feasible in this
case. For the case thatnc = nx, the solutions forAc,Cc:

Ac = U−1KV−T , Cc = MV−T

are unique. �

The projection ofE onto thex-subspace is given by
Ex = {x : xTY−1x ≤ 1}. Therefore the offline maxi-
mization ofEx over Ac,Cc,P subject to (10a,b) can
be performed by solving the SDP problem:

maximize logdetY subject to (13a,b) (16)

in variablesX,Y,K,M,W, then factorizingX −Y to
determineU,V satisfying (12), and finally using the
definitions ofK,M in (11) to solve forAc,Cc.

Corollary 2. The optimal value ofY in (16), and
hence also the maximal projectionEx, are independent
of the value ofnc if nc ≥ nx.

Remark 3.Nonconvex constraints (i.e. rank(X−Y) =
nc) would be needed in (16) ifnc < nx to ensure
that (12) admits solutions forU,V. Since there is also
no advantage to be gained through use ofnc > nx, we
assume thatnc = nx for the remainder of the paper.

It is possible to impose bounds on the predicted cost
along trajectories of (8) through LMIs in the variables
of (16). For any given boundγ, J̃(k) ≤ γ is ensured
for all initial conditionsz(k|k) of (8) in E if (10a) is
replaced by the strengthened invariance condition (see
e.g. (Kothareet al., 1996)):

P −A
T
j PA j >

1
γ

[

CT HT

0 CT
c

]

D

[

C 0
H Cc

]

j = 0, . . . ,m

(17)
(D = diag{I ,R}). Using a congruence transformation
similar to (14), this condition can be shown to be
equivalent to the following LMI inX,Y,K,M.
















γI 0 D
1/2

[

CY CX
HY +M HX

]

∗

[

Y X
X X

] [

Φ jY +B jM Φ jX
K +Φ jY +B jM Φ jX

]

∗ ∗

[

Y X
X X

]

















> 0 j = 0, . . . ,m

(18)
Therefore performance bounds can be imposed by
including (18) as a constraint in place of (13a) in the
offline optimization (16).

4. MAXIMAL STABILIZABLE SET

This section compares the maximal stabilizable setEx

subject to (13a,b) (or (18) and (13b)) with the maximal
invariant ellipsoidal set under any linear feedback law.
For the special case that (1) is time-invariant, we show
that (13a,b) have solutions iffEx is invariant under
some linear feedback law. Thus (16) recovers the max-
imal invariant ellipsoidal set under linear feedback



even though predictions (8) are centered on a feedback
law u = Hx which provides optimal performance in
the absence of constraints but is not designed to be
optimal in terms of size of the associated invariant set.
We show that the same result applies to LTV systems
if (8) is generalized to allowAc to vary depending on
the evolution ofA(k),B(k) over the prediction horizon.

Consider the problem of determiningY, H̃ such that
the ellipsoidal setEx = {x : xTY−1x≤ 1} is invariant
under linear feedbacku = H̃x. In terms of variables
Y andM̃ = H̃Y, conditions for invariance w.r.t. (1),(2)
can be expressed as LMIs (Boydet al., 1994):

[

Y AjY +B jM̃
∗ Y

]

> 0 j = 0, . . . ,m (19a)
[

W FY+GM̃
∗ Y

]

> 0, Wii ≤ f 2
i (19b)

Remark 4.The maximal ellipsoidal invariant set for (1)
cannot be enlarged by using dynamic rather than static
linear state feedback in the absence of constraints
(see e.g. (Boydet al., 1994)). The same is true when
linear input/state constraints (2) are present, i.e. the
feasible set forY in (19a,b) is identical to the set of
feasibleY such thatEx is invariant under a dynamic
feedback law of the formu(k) = H̃x(k)+Ccc(k) with
c(k + 1) = Acc(k) + Bcx(k), where H̃,Cc,Ac,Bc are
variables. Therefore all ellipsoidal setsEx that are in-
variant under linear feedback must satisfy (19a,b).

The following theorem shows that the feasible sets for
Y in (19a,b) and (13a,b) are identical for the LTI case.

Theorem 5.Let A(k) = A0, B(k) = B0 in (1) for all k.
Then there existX,Y,K,M,W satisfying (13a,b) if and
only if Y,W are solutions of (19a,b) for somẽM.

Proof: We first eliminateK in (13a,b) by showing
that (13a) is equivalent to the following conditions:





[

Y X
X X

] [

Φ0X
Φ0X

]

∗ X



> 0 (20a)





Y
[

Φ0Y +B0M Φ0X
]

∗

[

Y X
X X

]



> 0. (20b)

Necessity of (20a,b) follows directly from cancelling
the second or third block row/column in (13a). Suf-
ficiency is shown by writing equivalent conditions
for (13a) as:

[

Y Φ0X
∗ X

]

> 0 (21a)
[

X K+Φ0Y +B0M
∗ Y

]

−

[

X Φ0X
(Φ0Y +B0M)T X

]

.

[

Y Φ0X
∗ X

]−1[

X Φ0Y +B0M
XΦT

0 X

]

> 0 (21b)

so if K is chosen so as to make (21b) block-diagonal:

K =
[

X Φ0X
]

[

Y Φ0X
∗ X

]−1[Φ0Y +B0M
X

]

−Φ0Y−B0M,

(22)

then (21b) gives the conditions

X−
[

X Φ0X
]

[

Y Φ0X
∗ X

]−1[ X
XΦT

0

]

> 0,

Y−
[

(Φ0Y +B0M)T X
]

[

Y Φ0X
∗ X

]−1[Φ0Y +B0M
X

]

> 0,

which are the Schur complements of (21a) in (20a)
and (20b) respectively. Hence solutions of (20a,b) for
X,Y,M also satisfy (13a) ifK is given by (22).

Next we show that (20a,b),(13b) are feasible iff (19a,b)
are feasible forj = 0. Condition (20a) is equivalent to

[

X Φ0X
∗ X

]

> 0, Y−X > 0 (23)

whereas (20b) and (13b) can be written
[

Y Φ0Y +B0M
∗ Y

]

−

[

Φ0X
X

]

X−1[XΦT
0 X

]

> 0, X > 0

(24a)
[

W (F +GH)Y +GM
∗ Y

]

−

[

(F +GH)X
X

]

X−1

.
[

X(F +GH)T X
]

> 0, Wii ≤ f 2
i . (24b)

Therefore (19a,b) forj = 0 are implied by (24a,b)
with M̃ = M +HY. Alternatively, givenY,M̃,W satis-
fying (19a,b) for j = 0 and any solutionX0 of the first
LMI in (23), a solution of (24a,b) can be constructed
by settingM = M̃ −HY andX = εX0 for sufficiently
small ε > 0. Finally note that the first LMI in (23) is
necessarily feasible due to the assumption thatH is
stabilizing in the absence of constraints. �

For the case of LTI models, all solutions of (13a,b)
for Y are also valid solutions of (19a,b) becauseAc is
available to place eigenvalues ofA0 at the eigenvalues
of A0 + B0H̃, thus enabling (8a-c) to generate the
predictions that would be obtained with any given
static feedback gaiñH. However it is not possible to
generate all predicted trajectories of an uncertain LTV
model underu = H̃x with a single value ofAc (or
equivalently to satisfy (22) with a single value ofK
if Φ0,B0 are replaced byΦ j ,B j , j = 0, . . . ,m). Hence
the maximal stabilizable setEx subject to (13a,b)
is necessarily smaller than the maximal invariantEx

constrained by (19a,b) in the uncertain LTV case.

To extend Theorem 5 to the case of polytopic uncer-
tainty,Ac must be allowed to take any value in a poly-
topic set with as many vertices asΩ. This is achieved
by replacing (8b) with the modified prediction system:

A (k+ i|k) ∈ Co{A j , j = 0, . . . ,m},

A j =

[

Φ j B jCc

0 Ac, j

]

, Φ j = A j +B jH.
(25)

With A j as defined above, the invariance condi-
tions (10a,b) ensure that, for anyA(k),B(k) within the
uncertainty classΩ, there existsAc(k) ∈ Co{Ac, j , j =
0, . . . ,m} so thatE = {z : zTPz≤ 1} is invariant.

By defining transformed variablesU,V,X,Y,M as
in (11) andK j =UAc, jVT j = 0, . . . ,m, it can be shown



using congruence transformations (14) and (15) that
feasibility of (10a,b) is equivalent to feasibility of:








[

Y X
X X

] [

Φ jY +B jM Φ jX
K j +Φ jY +B jM Φ jX

]

∗

[

Y X
X X

]









> 0 j = 0, . . . ,m

(26)
and (13b). Hence the maximization ofEx can be
performed via a convex optimization of the form (16),
and the solutions forCc and Ac, j , j = 0, . . . ,m are
unique if nc = nx. The generalization of Theorem 5
for the LTV case is stated below.

Corollary 6. The feasible sets forY in (19a,b) and
(26),(13b) are identical.

Remark 7.Theorem 5 and Corollary 6 also apply
if bounds are imposed on performance by replac-
ing (10a) with (17). Thus for the LTI case the maximal
Ex subject to (18),(13b) is identical to the maximal
ellipsoidal invariant set under linear feedback satisfy-
ing the given cost bound. The same property holds for
LTV models if the modified prediction dynamics (25)
are used, andK is replaced byK j in (18).

5. PREDICTION COST AND CONTROL LAW

Although the use of a prediction system incorporat-
ing (25) introduces feedback into the perturbation se-
quence in (7) by letting{v(i|k)} vary depending on the
uncertain plant model, thus allowing a larger stabiliz-
able setEx than (8b), it does not require an increase
in online computation. This is because an MPC law
based on optimizingc(k) online can be implemented
without computing the implied sequenceA (k+ i|k).
Furthermore the predicted cost index is quadratic and
convex inc(k), and the online computational require-
ment is therefore the same as that of (Kouvaritakiset
al., 2000; Kouvaritakiset al., 2002).

For the prediction system (8a-c) with uniqueAc, the
nominal cost (4),(5) is given byJ0(k)= zT(k|k)Wz(k|k),
whereW is the solution of the Lyapunov equation:

W −A
T

0 WA0 =

[

CT HT

0 CT
c

]

D

[

C 0
H Cc

]

(27)

(D = diag{I ,R}). If H is unconstrained LQ-optimal
for J0, thenJ0(k) = xT(k)Wxx(k)+cT(k)Wcc(k),

Wx−ΦT
0WxΦ0 = CTC+HTRH (28a)

Wc−AT
c WcAc = CT

c (R+BT
0WxB0)Cc. (28b)

For a prediction system incorporating (25), whereAc

can take any value in a polytopic set, we defineJ0 as
the maximum predicted cost for the nominal model,

J0(k) = max
Ac(k+i)∈Co{Ac, j}

i=0,1,...

∞

∑
i=0

[

xT
0 (k+ i|k)CTCx0(k+ i|k)

+uT(k+ i|k)Ru(k+ i|k)
]

(29)

wherex0 satisfies (5). A quadratic bound for (29) is
stated below.

Lemma 8.If H is unconstrained LQ-optimal forJ0,
thenJ0(k) ≤ xT(k)Wxx(k)+cT(k)Wcc(k) where

Wc−AT
c, jWcAc, j ≥CT

c (R+BT
0WxB0)Cc j = 0, . . . ,m

(30)
Furthermore solutions forWc exist if (10a) is feasible.

In either case of a uniqueAc or Ac chosen from a
polytopic set, the MPC law defined by the online
minimization ofJ0 subject toz(k|k) ∈ E has the form

u(k) = Hx(k)+Ccc(k), c(k) = argmin
c∈Ec(x(k))

cTWcc (31)

whereEc(x(k)) = {c : [xT(k) cT ]T ∈ E } is the el-
lipsoidal feasible set approximation corresponding to
z(k|k) ∈ E . The online optimization (31) can be for-
mulated as a univariate search with complexityO(nx)
if Wc and P are factorized offline (Kouvaritakiset
al., 2002). The closed-loop stability properties of this
control law follow from the finitel2-gain of the closed-
loop dynamics mapping the perturbation sequence
{Ccc(k)} to {x(k)}, stated below.

Lemma 9.If P is a solution of (10a) or (17), then the
closed-loop trajectories under (31) satisfy

∞

∑
k=0

xT(k)(CTC+HTRH)x(k) ≤

β
∞

∑
k=0

cT(k)CT
c Ccc(k)+ γxT(0)X−1x(0) (32)

for someβ ,γ > 0, whereX−1 is the 1,1-block ofP.

Theorem 10.The origin of (1) is asymptotically stable
under (31) for any initial conditionx(0) ∈ Ex.

Proof: If x(0) ∈ Ex, then Ec(x(0)) 6= /0, and the in-
variance ofE ensures that (31) remains feasible at all
future times. AlsoAc(k)c(k) defines a feasible solu-
tion for c(k+ 1) (whereAc(k) = Ac if a uniqueAc is
optimized offline, andAc(k) ∈ Co{Ac, j j = 0, . . . ,m}
otherwise), so using (28b) or (30) and the bound (32),
and definingλ = λmin(R+BT

0WxB0) > 0, we have
∞

∑
k=0

xT(k)(CTC+HTRH)x(k) ≤
β
λ

cT(0)Wcc(0)+ γxT(0)X−1x(0)

which implies that[Cx(k) R1/2Hx(k)] → 0 uniformly
ask→ ∞, and thereforex(k) converges asymptotically
to zero under the usual observability assumptions.

Remark 11.The above approach can also be used to
construct a min-max MPC law if an upper bound on
the worst-case cost is computed asJ̃(k)≤ zT(k|k)Wz(k|k)
whereW is a solution of

W −A
T
j WA j ≥

[

CT HT

0 CT
c

]

D

[

C 0
H Cc

]

, j = 0, . . . ,m

with A j as defined in (8b) or (25). The online MPC
optimization: minz∈E zTW z retains the computational
advantages of (31), and closed-loop asymptotic stabil-
ity follows from the rate of decrease of the optimal
cost J̃(k) along closed-loop trajectories as in conven-
tional robust MPC (see e.g. (Mayneet al., 2000)).



6. IMPLEMENTATION AND EXAMPLES

From the proof of Theorem 5 it follows that solutions
of (16) for X are non-unique in general. However, in
the interest of good closed-loop performance under
the MPC law (31), the ellipsoidal set definedExx =
{x : xTX−1x ≤ 1} should be maximized since this
is the region on which the unconstrained LQ-optimal
feedback law is feasible in (31). To address this sec-
ondary objective, the offline optimization of predic-
tion dynamics can be split into two SDP problems:

(i). maximize logdetY
subject to (19a,b)

(ii). maximize logdetX
subject to (13a,b)

whereY andM = M̃−HY in the constraints of step (ii)
are fixed at the values computed in step (i). An alter-
native approach (avoiding numerical ill-conditioning
in step (ii) above) is to use a single optimization:

maximize(detY)1/nx +α(detX)1/nx s.t. (13a,b) (33)

for some small constantα > 0. This can be formulated
as an SDP problem (Nesterov and Nemirovskii, 1994).

Example 1 The constrained LTI double integrator
considered in (Imslandet al., 2004) has

A =

[

1 Ts

0 1

]

, B =

[

T2
s

Ts

]

, CT=

[

1
0

]

,
|u| ≤ 1
∣

∣

[

0 1
]

x
∣

∣ ≤ 1

with Ts = 0.05. The sizes of the maximal invariant
setsEx computed using the objective of (33) withα =
0.01 subject to constraints (18),(13b) are indicated in
Table 1. These are identical to the maximal invariant
sets for the same cost bounds under variable static
feedback. The sizes ofExx are comparable to the
maximal invariant ellipsoidal set fornc = 0 under LQ-
optimal feedbacku= Hx, for which det(Y)1/2 = 1.05.

Table 1. Invariant set size vs.γ
γ 102 104 106 108

det(Y)1/2 1.46 6.77 31.2 6573
det(X)1/2 1.02 1.01 0.97 0.99

Closed-loop costs under (31) are given in Table 2.
Improved performance is obtained by switching on-
line between ellipsoidal sets and optimized prediction
dynamics corresponding to successively lower perfor-
mance bounds. The switching criteria used here re-
quire the predicted cost to be lower and more rapidly
decreasing before switching to a candidate prediction
system. Further reductions in suboptimality are ob-
tained using scaling (Kouvaritakiset al., 2002).

Table 2. Closed-loop costs
initial (31) (31)+ (31)+ infinite horizon
condition switching switching & scaling MPC
(−4,0) 637.8 631.3 623.2 609.4
(−2,−0.6) 222.5 210.9 206.3 204.5

Example 2 For uncertain LTV systems, optimization
of a polytopic set rather than a unique value forAc

necessarily results in larger maximal invariant sets,
and can provide improvements of several orders of
magnitude in the volume ofEx. For example, with

A0 =

[

0.3 0 −0.5 −0.5
0 0 0.6 −0.4

−0.5 0.6 0.2 0.2
−0.5 −0.4 0.2 −0.7

]

, A1 =

[

0.4 0.3 0 0
0.3 0.3 0.1 0.2
0 0.1 0.7 −0.1
0 0.2 −0.1 0.6

]

,

B0 = [0.6 1.0 0 −1.1]T , B1 = [0.1 0.2 −0.8 0]T ,C =
[0.8 0 0 0], and input constraints|u| ≤ 1, the maximal
Ex subject to (13a,b) has(detY)1/2 = 823, whereas in-
cludingAc, j j = 0,1 as d.o.f. through constraints (26),
(13b) yields the maximal ellipsoidal invariant set un-
der any linear feedback law, with(detY)1/2 = 78500.

This increase in the stabilizable set for (31) is obtained
for no increase in computational load and insignificant
performance degradation. For the example above with
nominal cost, the average increase in closed-loop cost
over 100 random feasible initial conditions relative to
the case of uniqueAc is only 0.73%. Use of a worst-
case cost in (31) results in a reduction in closed-loop
cost (averaged over the same 100 initial conditions)
of 12.5% relative to the min-max MPC of (Kothare
et al., 1996). This improvement in performance is ob-
tained despite a reduction of several orders of magni-
tude in online computation. Each simulation used the
same sequence of time-varying system matrices, with
A(k),B(k) uniformly distributed withinΩ.
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