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Abstract: A convex formulation is derived for optimizing riymic feedback laws for
constrained linear systems with polytopic uncertainty. $few that, when it exists,
the maximal invariant ellipsoidal set for the plant stat@lema dynamic feedback law
incorporating any chosen static feedback gain is equaktoidiximal invariant ellipsoidal
set under any linear feedback law. The dynamic controlldrismassociated invariant set
define a computationally efficient robust MPC law with préidic dynamics belonging to
a polytopic uncertainty se€Copyright(©2005 IFAC
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1. INTRODUCTION to be variables in the offline optimization. As a re-
sult the suboptimality in the size of the stabilizable
set associated with the MPC law of (Kouvaritakis
al., 2000; Kouvaritakiset al, 2002) can be reduced,
but the formulation of (Drageset al., 2003; Imsland
et al, 2004) leads to a nonconvex optimization with
no guarantee of convergence to a solution.

The computational burden of model predictive control
(MPC) is a key factor limiting the range of its appli-
cations. MPC algorithms for the linearly constrained
linear-quadratic optimal control problem require the
online solution of a quadratic program (QP), and the
online computational requirement can be very much
higher for MPC algorithms incorporating robustness This paper provides a convex formulation for the op-
to model uncertainty (Maynet al, 2000). In particu-  timization of prediction dynamics and shows that the
lar, the robust min-max MPC approach of (Kothate resulting maximal invariant ellipsoidal set is equal to
al., 1996) uses an ellipsoidal constraint approximation the maximal invariant ellipsoidal set under any linear
to formulate the online optimization as a semidefi- feedback law. The formulation employs a nonlinear
nite program (SDP) with a computational load that transformation of variables similar to that used in dy-
is prohibitive for fast sampling applications. The ex- namic output feedback design problems (Scheter
plicit solution of linear min-max MPC (Bemporaat al., 1997; Skeltoret al, 1998), modified to allow for

al., 2003) is a piecewise affine feedback law which can polytopic uncertainty in model parameters and linear
be computed offline using multiparametric quadratic input/state constraints. Our approach suggests a gener-
programming, however the prohibitive online storage alization of the prediction dynamics of (Kouvaritakis
requirement of this approach limits its application to et al, 2000; Kouvaritakiset al, 2002) that enables
simple low-order systems (Imslaed al., 2004). the dynamics governing the evolution of the predicted
controller state to vary depending on the predicted
plant state. Despite significant improvements in the
size of the associated stabilizable set, this generaliza-
tion does not increase online computational load.

Ellipsoidal constraint approximations are the basis of
the MPC law of (Kouvaritakigt al, 2000; Kouvari-
takiset al, 2002), which provides robustness to poly-
topic parametric uncertainty but requires a fraction of
the online _computation of QP-pased MPC for Iinear 2 PROBLEM STATEMENT

systems with no model uncertainty. The approximate . ] ) o

constraints are computed offline by optimizing an in- Consider the discrete-time uncertain linear system
variant ellipsoidal set for a dynamic state feedback x(k+ 1) = A(k)x(k) +B(k)u(k), y(k)=Cx(k) (1)
law, and the online computation is therefore reduced
to the optimization of the controller state subject to
an ellipsoidal constraint. The approach was extended Fx(k) +Gu(k) < f. @)
in (Dragesetet al, 2003; Imslandet al., 2004) by The values ofA(k),B(k) are unknown but belong to
allowing the parameters of the dynamic feedback law a polytopic uncertainty clas@ at each instank, i.e.

with constraints on the statec R™ and inputu € R™:



IAK) B(K)] € Q = Co{[Aj Bj], j=0,...,m} where  Although the offline constraint approximation enables
Aj,Bj,j=0,...,mare known constant matrices. The extremely efficient online optimization (Kouvaritakis
statex(k) is assumed measurable at titne et al, 2002), it has the effect of limiting the stabiliz-

. ) . able set of the MPC law to an ellipsoidal set which is
We consider a quadratic performance index evaluatedg, o ntimal relative to the actual feasible set for (6).
for nominal or worst-case predicted performance. Let \;qraqver the degree of suboptimality depends on the
{u(k-+ilk),i > O} denote a control sequence predicted ¢ nice ofH, the number of free variables, and their
at timek, then the worst-case cost index is defined parameterization in the sequengeli|k)}. To over-

j(k) — max S xT(k+i|k)CTCx(k+i|k) come this problem, this paper optimizes the evolution
i DleQiS of the perturbation sequende(i in (7) so as to
[A<k+|lcl)3(1k+ ) on fth bati ilk)} in (7)
o +uT(k+i|k)Ru(k+i\k)} (3)  maximize the associated ellipsoidal stabilizable set.

where{x(k+i|k),i > O} is a predicted trajectory of (1)
with x(k|k) = x(k). Alternatively, the nominal perfor- 3. OPTIMIZATION OF PREDICTION DYNAMICS
mance index corresponding & Bo] (e.g. the centre

of Q or expected value dA(k) B(K)]) is defined Predicted trajectories of (1) corresponding to (7) can

be generated by a dynamic state feedback law:
T . T .
Jo(k) :I;[Xo<k+'|k)c Cxofk+ilk) 2k+i+ 1K) = o (k+iKzk+ik)  (8a)
+uT<k+i|k)RL(k+i\k>} 4) o/ (k+ilk) € Co{e#, j=0,...,m}  (8b)
where{xo-(k+||k),| >0} is the predicted tr-ajectory of o= {dg, BASC:| | @ — A+ B;H (8¢)
Xo(K+141|k) = Agxo(k+i|K) +Bou(k+ilk) (5) . .
with xo(K|K) = x(K). 2(KK) = [é(k)} X(K+ilk) = [I 0] z(k+i[k) (&d)

. . (K)] " u(k+ilk) = [H Cc] z(k+ilk)
To ensure closed-loop stability, constraints (2) must be
satisfied along predicted trajectories corresponding towhere the controller state(k) € R™ is the optimiza-
all future realizations of model uncertainty. i% > 0: EIZSX'C v(zli(r)@bl(e?)tol b?Kdeterr):n:(r_ed t0n||'”290 éio'“')@f\ k) =
. _ c(k) in (7). In (Kouvaritakiset al., or ex-
[A(k+j>ng;?éj>]€QFx(k+'|k) +Guk+ilk) <. (6) ample, the degrees of freedom in (7) are the perturba-

j=01,..i-1 tionsv(ilk) fori =0,...,N—1, with v(i|k) = O for all
Applying these constraints to open-loop predicted tra- i > N, so thatc(k) and the controller paramete@s,
jectories leads to highly conservative MPC strategies, Ac are given (non-uniquely) by:

and it is therefore preferable to use closed-loop pre- Ce=[ln, 0 - 0]
dictions which take into account the mitigating ef- v(0Olk) !

fects of future state measurements. However closed- v(1]k) 0 In,

loop MPC strategies incorporating the robust con- c(k) = . " A= : 9)
straints (6) through either online (Lee and Yu, 1997) or V(N - 1K) o In,
offline (Bemporackt al,, 2003) optimization impose a 00 ---0

very high computational load. Computational burden
can be reduced by approximating the feasible set for
the constraints (6). For example (Kothateal.,, 1996)
optimizes a linear state feedback lavik+i|k) =

H (k)x(k+i|k) online subject to ellipsoidal state con-
straints that can be formulated as LMI conditions.

Since predictions are governed by the autonomous
dynamics (8), an inner bound on the feasible region
for (6) in (x,c)-space is given by any invariant set
for the state of (8a-c) on which constraints (2) are
instantaneously satisfied. For the ellipsoidal et
{z: 'z < 1}, it is easy to show (e.g. (Boyst
The ellipsoidal constraint approximation is constructed al., 1994)) that invariance under (8a-c) and feasibility
online in (Kothareet al, 1996), but very significant  w.r.t. (2) are equivalent to the following conditions:
reductions in online computational load are obtained T .
if the feasible set approximation is computed offline. Py P4 >0, j=0,....m (102)
This is done in (Kouvaritakigt al, 2000; Kouvari- W [F+GH GC] 0. W < f2 (10b)
takis et al, 2002) by expressing the degrees of free- * z ’ e
dom in predicted inputs as a perturbation S€Quence(y indicates an off-diagonal block of a symmetric
{v(ifk), i=0,1,...} on afixed linear feedback law:  matrix). Clearly (10a,b) are LMIs inZ, and if the
u(k+ilk) = Hx(k+i|k) 4 v(i|k), (7 controller parameter&,, C; are fixed,# can therefore
be computed offline via a convex optimization with a
suitable objective (such as maximization of the projec-
tion of & onto thex-subspace, which is an inner bound
on the stabilizable set fog).

and then constructing an ellipsoidal approximation of
the feasible set for the plant state and optimization
variables{v(i|k) } through an offline optimization sub-
ject to LMI constraints. The gaiid is required to
stabilize the uncertainty claskin the absence of con-  Use of fixedA. andC; in (9) allow the predictions cor-
straints, and should also be optimal when constraintsresponding to any finite length perturbation sequence
are inactive (e.g. LQ-optimal for the nominal model). {v(i|k)} to be realized by (8) with sufficiently large.



In practice,n; is restricted by limits on the number of
free variables inZ? that can be handled in the offline
optimization problem (the online optimization ofk)

the feasible set for” is open. From the definitions

of K,M in (11), solutions foA., C. therefore exist for
given K,M whenevem. > ny, implying that (10a,b)

is univariate and its computational load increases only are feasible if and only if (13a,b) are feasible in this

linearly with n. (Kouvaritakiset al, 2002)). Moreover
for any given value ofn, it is clear that a larger
feasible set could be obtainedAf andC; were also
variables in the optimization of.

This is the motivation behind the optimization &f

over variables?;, C. and & considered in (Drageset
et al, 2003; Imslandet al, 2004). Since (10a) is
nonconvex inA:,Cc, &, a sequential semi-definite
programming approach is proposed in (Dragestet

al., 2003) for handling nonconvex constraints that en-

force (10a,b). However, by defining a transformation
of variables similar to that used in dynamic output
feedback design problems (Schee¢rl, 1997; Skel-
ton et al, 1998), the offline optimization ok, C;, &

case. For the case that= ny, the solutions foA., C:
Ac=U"Kv T C.=mvT
O

The projection of6” onto thex-subspace is given by
& = {x: X'Y~Ix < 1}. Therefore the offline maxi-
mization of & over A¢,Cc, & subject to (10a,b) can
be performed by solving the SDP problem:

are unique.

maximize logdeY subjectto (13a,b) (16)

in variablesX,Y,K,M,W, then factorizingX —Y to
determineU,V satisfying (12), and finally using the
definitions ofK,M in (11) to solve forA¢, Ce.

Corollary 2. The optimal value ofY in (16), and

can be reformulated as a convex LMI pI’Oblem, thus hence also the maximal projectigh' are independent

eliminating the problems of convergence, feasibility

and computational complexity caused by nonconvex

constraints in the optimization &. To show this, let
U,V e R K e R™*™ M € RW*™ and symmetric
X,Y € R™*™ pe defined by

X1 xW] ., [Y V] K=UAVT
‘@_{UTxl * }“@ _[VT *}’Mzcch
(11)

so thatZ 21 = | implies
uvlh =Xx-vY. (12)

The following theorem derives conditions equivalent
to (10a,b) that are convex iX,Y,K, M.

Theorem 1.There exis®,C., #,W satisfying (10a,b)
only if the LMIs in X,Y,K,M,W below are feasible.
®;Y +BM  P;X

XX | |
X X K—‘rCDjYY—i—)B(jM CDJ'X ~0j=0,....m

*

X X
(13a)
W [(F+GH)Y+GM (F +GH)X]
[* [Y x} ]>O,W.i§fi2
X X
(13b)

Furthermore feasibility of (13a,b) is necessary and

sufficient for feasibility of (10a,b) ific > ny.

Proof: Pre- and post-multiplying (10a) respectively by

h
['_'O nOT}’ ['3 IE’J with 1 = NT (ﬂ (14)

and using (12) yields (13a). Similarly, pre- and post-

multiplication of (10b) respectively by

o] lon

(15)

of the value ofn¢ if n¢g > ny.

Remark 3.Nonconvex constraints (i.e. rafk—Y) =
nc) would be needed in (16) i < ny to ensure
that (12) admits solutions fay,V. Since there is also
no advantage to be gained through useof ny, we
assume that. = n for the remainder of the paper.

It is possible to impose bounds on the predicted cost

along trajectories of (8) through LMIs in the variables

of (16). For any given boung, J(k) < y is ensured

for all initial conditionsz(k|k) of (8) in & if (10a) is

replaced by the strengthened invariance condition (see

e.g. (Kothareet al., 1996)):

CTHT] [c 0] .

oS -0
17)

(2 = diag{l,R}). Using a congruence transformation

similar to (14), this condition can be shown to be

equivalent to the following LMI inX,Y, K, M.

CY CX
HY +M HX}
. |:Y X:| [ Y +BjM  ®;X
X X| |K+®;Y+B;M ®;X

Y X
i
(18)
Therefore performance bounds can be imposed by

including (18) as a constraint in place of (13a) in the
offline optimization (16).

@—%T9m>l{
y

yl 0 @1/2 |:

} >0j=0,....m

4. MAXIMAL STABILIZABLE SET

This section compares the maximal stabilizablef&et
subject to (13a,b) (or (18) and (13b)) with the maximal
invariant ellipsoidal set under any linear feedback law.

gives (13b). Therefore (10a,b) can only be feasible For the special case that (1) is time-invariant, we show

if (13a,b) are feasible. Note also tHatV can be as-
sumed full-rank without loss of generality since the in-
equalities involvingZ? in (10a,b) are strict, and hence

that (13a,b) have solutions iy is invariant under
some linear feedback law. Thus (16) recovers the max-
imal invariant ellipsoidal set under linear feedback



even though predictions (8) are centered on a feedbackhen (21b) gives the conditions

law u = Hx which provides optimal performance in

the absence of constraints but is not designed to be
optimal in terms of size of the associated invariant set.
We show that the same result applies to LTV systems

if (8) is generalized to allowA; to vary depending on
the evolution ofA(k), B(k) over the prediction horizon.

Consider the problem of determiningH such that

the ellipsoidal set, = {x: x"Y~1x < 1} is invariant

under linear feedback = Hx. In terms of variables
Y andM = HY, conditions for invariance w.r.t. (1),(2)
can be expressed as LMIs (Bogdal,, 1994):

[Y AY +BjM

. Y (19a)

FY+GM
Y

}>0 j=0,....m

*

{W }>o, Wi <f2 (190

Remark 4.The maximal ellipsoidal invariant set for (1)

cannot be enlarged by using dynamic rather than static W (
linear state feedback in the absence of constraints{

(see e.g. (Boyckt al, 1994)). The same is true when

linear input/state constraints (2) are present, i.e. the

feasible set foly in (19a,b) is identical to the set of
feasibleY such thatéy is invariant under a dynamic
feedback law of the formi(k) = Hx(k) +Ccc(k) with
c(k+ 1) = Acc(k) + Bex(k), where H,Ce, Ac, B. are
variables. Therefore all ellipsoidal sefg that are in-
variant under linear feedback must satisfy (19a,b).

The following theorem shows that the feasible sets for
Y in (19a,b) and (13a,b) are identical for the LTI case.

Theorem 5.Let A(k) = Ag, B(k) = Bp in (1) for all k.
Then there exisK,Y,K, M, W satisfying (13a,b) if and
only if Y,W are solutions of (19a,b) for sonhé.

Proof: We first eliminateK in (13a,b) by showing
that (13a) is equivalent to the following conditions:

Y X| |®PoX
[X X] {CDOX} >0 (20a)
* X
Y [CDoYJrBOM ¢’0X]
Y X > 0. (20b)
-y

Necessity of (20a,b) follows directly from cancelling
the second or third block row/column in (13a). Suf-
ficiency is shown by writing equivalent conditions

for (13a) as:
Y dX
L o }> 0
[X K+¢0Y+Bo|\/|:| B l:
(

* Y
Y ®X] 1] X @Y +BoM
BEED X®) X
so if K is chosen so as to make (21b) block-diagonal:

)
K = [X dJoX]H q’;zx} {%Y;B"M}— ®oY—BoM,
(22)

(21a)

X DX
DoY + BoM)T X

} >0 (21b)

-1
Y dox] 7 X
X — [X cbox][* X} [chg}q
-1
Y ©oX] oY + BoM
Y — [(@oY +BoM)T X]L ;} { 0 ;: 0 }>0,

which are the Schur complements of (21a) in (20a)
and (20b) respectively. Hence solutions of (20a,b) for
X,Y,M also satisfy (13a) iK is given by (22).

Next we show that (20a,b),(13b) are feasible iff (19a,b)
are feasible foij = 0. Condition (20a) is equivalent to

X X
X

whereas (20b) and (13b) can be written

{: PoY + BOM}{q)Ox}x—l[ang X]>0,X >0

Y X
(24a)

}>O, Y-X>0 (23)

Y X
(X(F+GH)T X]>0, W < f2 (24b)

Therefore (19a,b) forj = 0 are implied by (24a,b)
with M = M + HY. Alternatively, giverl, M, W satis-
fying (19a,b) forj = 0 and any solutiorXy of the first
LMI in (23), a solution of (24a,b) can be constructed
by settingM = M — HY andX = Xy for sufficiently
smalle > 0. Finally note that the first LMI in (23) is
necessarily feasible due to the assumption thads
stabilizing in the absence of constraints. |

F +GH)Y+GM}{(F +GH)X}X_1

For the case of LTI models, all solutions of (13a,b)
for Y are also valid solutions of (19a,b) becadgds
available to place eigenvalues.gf at the eigenvalues
of Ag+ BoH, thus enabling (8a-c) to generate the
predictions that would be obtained with any given
static feedback gaifii. However it is not possible to
generate all predicted trajectories of an uncertain LTV
model underu = Hx with a single value ofA; (or
equivalently to satisfy (22) with a single value Kf

if ®g,Bp are replaced by;,Bj, j =0,...,m). Hence
the maximal stabilizable sefx subject to (13a,b)
is necessarily smaller than the maximal invaright
constrained by (19a,b) in the uncertain LTV case.

To extend Theorem 5 to the case of polytopic uncer-
tainty, Ac must be allowed to take any value in a poly-
topic set with as many vertices s This is achieved
by replacing (8b) with the modified prediction system:

</ (k+ilk) € Co{7}, j=0,...,m},
®; B;C;
o) = [OJ &7j}’¢j =Aj+BjH.

With <7, as defined above, the invariance condi-
tions (10a,b) ensure that, for aAyk), B(k) within the
uncertainty clas€, there exist\:(k) € Co{A¢j, j =
0,...,m} so that§ = {z: ' 2z < 1} is invariant.

(25)

By defining transformed variabled,V,X,Y,M as
in (11) andK; =UA:;VT j=0,...,m, it can be shown



using congruence transformations (14) and (15) thatLemma 8.1f H is unconstrained LQ-optimal fadp,

feasibility of (10a,b) is equivalent to feasibility of: thenJo(k) < xT (K)Wix(K) 4 cT (k)\Wec(k) where
[Y x] [ ;Y +BjM cb,-x} We — AL WA > C{ (R+BJWBo)Ce j =0,...,m
X X KjJrCDjYYJrEjM P;X ~0j=0,....m (30)

. Furthermore solutions faf; exist if (10a) is feasible.

X X
(26) In either case of a uniqué. or A; chosen from a

and (13b). Hence the maximization & can be  polytopic set, the MPC law defined by the online
performed via a convex optimization of the form (16), minimization ofJy subject taz(k|k) € & has the form
anq the' solutions foC; and Acj, J =0,...,mare u(k) = Hx(k) +Cec(k), c(k) = argminc'Wic (31)
unique if nc = ny. The generalization of Theorem 5 ceéo(x(K))
for the LTV case is stated below. )

where &(x(k)) = {c: [x"(k) c]" € &} is the el-
Corollary 6. The feasible sets fo¥ in (19a,b) and |ipsoidal feasible set approximation corresponding to
(26),(13b) are identical. z(k|k) € &. The online optimization (31) can be for-

mulated as a univariate search with complexny)
Remark 7.Theorem 5 and Corollary 6 also apply it . and 2 are factorized offline (Kouvaritakist

if bounds are imposed on performance by replac- 5| 5002). The closed-loop stability properties of this
ing (10a) with (17). Thus for the LTI case the maximal - oo jaw follow from the finitd,-gain of the closed-

&x subject to (18),(13b) is identical to the maximal loop dynamics mapping the perturbation sequence
ellipsoidal invariant set under linear feedback satisfy- {Cec(K)} to {x(K)}, stated below.

ing the given cost bound. The same property holds for
LTV models if the modified prediction dynamics (25) Lemma 9.If & is a solution of (10a) or (17), then the
are used, anH{ is replaced byj in (18). closed-loop trajectories under (31) satisfy

ZOXT(k)(CTC+ HTRH)x(k) <
5. PREDICTION COST AND CONTROL LAW & oo
BY c'(KCICee(k) +yx' (0)X'x(0) (32)
k=0

Although the use of a prediction system incorporat-
ing (25) introduces feedback into the perturbation se- for someB,y > 0, whereX 1 is the 1,1-block of2.
quence in (7) by lettingv(i|k) } vary depending on the . . _

uncertain plant model, thus allowing a larger stabiliz- Theorem 10.The origin of (1) is asymptotically stable
able set& than (8b), it does not require an increase Under (31) for any initial condition(0) € &.

in online compu_t:_ation. This_ is becausg an MPC law pof- If x(0) € &, then &(x(0)) # 0, and the in-
based on optimizing(k) online can be implemented | 4jance of# ensures that (31) remains feasible at all

without computing the implied sequenceé(k +ik). future times. AlsoA(k)c(k) defines a feasible solu-
Furthermore the predicted cost index is quadratic andy;q for c(k+ 1) (whereAg(k) = A if @ uniqueA is

convex inc(k), and the online computational require- optimized offline, andc(k) € Co{Aj j = O0,...,m}
ment is therefore_ the_ same as that of (Kouvaritahis otherwise), so using (28b) or (30) and the bound (32),
al., 2000; Kouvaritakist al., 2002). and definingh = /\min(R+ B'(I)'V\&BO) > 0, we have

00

For the prediction system (8a-c) with unigde, the T T T
nominal cost (4),(5) is given hy(K) = /(K [K)#z(K k), k;’( (K)(C C+H BRH)X(") <
where? is the solution of the Lyapunov equation: B XCT(O)WCC(O) +yx" (0)Xx(0)

T T
W — T Wy = [C HT] 2 [ﬁ 0} (27)  which implies thafCx(k) RY2Hx(k)] — O uniformly
0 C Ce ask — oo, and therefore(k) converges asymptotically
(2 = diag{l,R}). If H is unconstrained LQ-optimal to zero under the usual observability assumptions.

T T

for Jo, thendo(k) = X" (k)Wex(k) + ¢ (k)\Wec(k), Remark 11.The above approach can also be used to
W — Wy = CTC+HTRH (28a)  construct a min-max MPC law if an upper bound on
We — ATWEA: = C7 (R+ BIW,Bo)Ce. (28Db) the worst-case cost is computediék) < z'(k|k)#z(k k)

. i ) where”# is a solution of
For a prediction system incorporating (25), whége

T T
can take any value in a polytopic set, we deflpeas W_%Tyﬂﬂj > [CO H 9 [g 0} , 1=0,....m
the maximum predicted cost for the nominal model, c Ce
® with 7 as defined in (8b) or (25). The online MPC
Jo(k) = omax {Xg(k+i|k)CTCXo(k+i\k) optimization: min.z' # z retains the computational
Aol T2§ i?{.AC" U= advantages of (31), and closed-loop asymptotic stabil-

+UT(k+i|k)RU(k+i|k)} (29) ity follows from the rate of decrease of the optimal

wherex satisfies (5). A quadratic bound for (29) is CostJ(k) along closed-loop trajectories as in conven-
stated below. tional robust MPC (see e.g. (Mayeeal,, 2000)).



6. IMPLEMENTATION AND EXAMPLES Bo=[06100-11]",B;=[0.102 -0.80Q]",C=
. , [0.8 0 0 0, and input constraints| < 1, the maximal

From the proof of Theorgm Sit follows that solutlons & subject to (13a,b) hslety)!/2 = 823, whereas in-
of (1.6) for X are non-unique in general. However, in cludingA¢,j j = 0,1 as d.o.f. through constraints (26),
the interest of good closgd-lo_op perform_ance under(13b) yields the maximal ellipsoidal invariant set un-
the MI:CJ?W (31), the ellipsoidal .se.t defln_éijx ~ _ der any linear feedback law, witldetY)/2 = 78500.
{x: x'X7*x < 1} should be maximized since this
is the region on which the unconstrained LQ-optimal This increase in the stabilizable set for (31) is obtained
feedback law is feasible in (31). To address this sec-for no increase in computational load and insignificant
ondary objective, the offline optimization of predic- performance degradation. For the example above with
tion dynamics can be split into two SDP problems: nominal cost, the average increase in closed-loop cost
(i). maximize logdeY  (ii). maximize logdeX over 100 randqm fea_S|bIe initial conditions relative to

subjectto (19a,b) subjectto (13a,b) the case o.f uniquéy is on_ly 073%. L_Jse_of a worst-

. case cost in (31) results in a reduction in closed-loop
whereY andM =M —HY inthe constraints of step (i)  cost (averaged over the same 100 initial conditions)
are fixed at the values computed in step (i). An alter- of 1250 relative to the min-max MPC of (Kothare
native approach (avoiding numerical ill-conditioning et al, 1996). This improvement in performance is ob-
in step (i) above) is to use a single optimization: tained despite a reduction of several orders of magni-
maximize(detY)l/“X +a(detx)1/”x s.t. (13a,b) (33) tude in online computation. Each simulation used the
same sequence of time-varying system matrices, with

for some small constaist > 0. This can be formulated A(K), B(K) uniformly distributed withing.

as an SDP problem (Nesterov and Nemirovskii, 1994).

Example 1 The constrained LTI double integrator AcknowledgmentsEPSRC support is acknawledged.

considered in (Imslandt al., 2004) has
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