
1 INTRODUCTION 

Continuous Petri nets are useful for the study of 
hybrid dynamical systems (HDS) (Zaytoon et al., 
1998) because they combine discrete and structural 
aspects (Diaz et al., 2001; Murata, 1989) with 
continuous evolution (David et al., 1992). A lot of 
results based on continuous Petri nets have been 
established for the control design of HDS (Silva et 
al., 2003). The motivation to use continuous Petri 
nets is either to model the continuous part of HDS, or 
to work out a continuous approximation of the 
discrete part in order to avoid the complexity 
associated to the exponential growth of states. Flow 
control design has been developed with different 
classes of controllers: constrained state feedback 
(Amrah et al., 1996; Krogh et al., 1996; Lefebvre, 
1999), linear programming (Hanzalek, 2003), 
optimal control (Egilmez et al., 1994) and also 

gradient based control (Lefebvre et al., 2003; 2004). 
The obtained results show that the continuous 
approach is an interesting alternative to the 
supervisory control (Giua et al., 1994; 2004; 
Ramadge et al., 1987; Uzam et al., 1999) and to the 
max plus algebra (Cohen et al., 1999) developed in 
the context of discrete event systems theory. 

This paper focuses on the design of flow controllers 
suitable to drive the continuous part of HDS. 
Properties of gradient based controllers (Lefebvre et 
al., 2003; 2004) are further investigated. The main 
contribution is to discuss the equilibriums and 
stability of the controlled system according to the 
controller parameters. For this purpose, HDS are 
totally or partially modelled with continuous Petri 
nets with variable speeds (VCPN) (David et al., 
1992) described as a set of bilinear state space 
representations. The marking vector is considered as 
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a state space vector. Outputs are defined by the 
marking of places subsets, and inputs correspond to 
the maximal firing frequencies of the controllable 
transitions. The controllers are based on the 
minimisation of the instantaneous quadratic error 
between desired and measured outputs (Thomas, 
1997; Widrow et al., 1990) and calculate on line the 
maximal firing frequencies of the controllable 
transitions.  

The paper is divided into 6 sections. Section 2 is 
about Petri nets, VCPN and the modelling and 
control of HDS. Section 3 concerns the gradient 
based flow control of VCPN. Equilibriums of the 
controlled system are investigated in section 4. 
Stability issues are discussed in section 5. A 
manufacturing line example is studied throughout the 
paper. 

2 PETRI NETS 

A Petri net (PN) with n places and p transitions is 
defined as < P , T, Pre, Post, M0 > where 
P={Pi}i=1,…,n is a not empty finite set of places, 
T={Tj}j=1,…,p is a not empty finite set of transitions, 
such that P ∩ T = ∅ (David et al., 1992; Murata, 
1989). IN is defined as the set of integer numbers. 
Pre : P × T → IN is the pre-incidence application: Pre 
(Pi, Tj) is the weight of the arc from place Pi to 
transition Tj and WPR = (wPR

ij ) i=1,…,n, j=1,…,p ∈ IN n × p 
with wPR

ij = Pre (Pi, Tj) is the pre-incidence matrix. 
Post : P × T → IN is the post-incidence application: 
Post (Pi, Tj) is the weight of the arc from transition Tj 
to the place Pi and WPO = ( wPO

ij ) i=1,…,n, j=1,…,p ∈ 
IN n × p with wPO

ij = Post (Pi, Tj) is the post-incidence 
matrix. The PN incidence matrix W is defined as W = 
WPO – WPR ∈ IN n × p. Let us also defined 
M(t) = (mi(t))i=1,…,n ∈ IN n as the marking vector at 
time t and M0 ∈ IN n as the initial marking vector. °Tj 
(resp. Tj° ) stands for the preset (resp. post-set) places 
of Tj. A firing sequence is defined as an ordered 
series of transitions that are successively fired from 
marking M to marking M’. Such a sequence is 
represented by its characteristic vector X = (xj)j=1,…,p 
∈ IN p where xj stands for the number of Tj firings. 

 M’ = M + W.X. (1) 

2.1 Continuous Petri nets 

Continuous Petri nets have been developed in order 
to provide a continuous approximation of the discrete 
behaviours of discrete event systems (DES) (David et 
al., 1992). A continuous Petri net with n places and p 
transitions is defined as < PN, Xmax > where PN is a 
Petri nets and Xmax = (xmax j)j=1,…,p ∈ IR+p is the vector 
of maximal firing frequencies (IR+ is the set of non-
negative real numbers). The marking mi(t) ∈ IR+ of 
each place Pi, i = 1,…,n, has a non-negative real 
value and each transition firing is a flow of marks in 
continuous PN. Let us define X(t) = (xj(t))j=1,…,p ∈ 
IR+p as the firing frequencies vector at time t. The 
marking evolution is given by (2): 

 ( ) . ( )M t W X t= . (2) 

Among the existing models of continuous PN, 
continuous PN with variable speeds (VCPN) are well 
known approximations of timed PN (David et al., 
1992) where vector X(t) depends continuously on the 
marking of the places according to (3) : 

)t(.x=(t)x jjmaxj µ , (t))(m
jTiP

min=(t) ij
∈

µ  (3) 

A self loop is usually attached to each transition Tj in 
order to limit the effective firing frequencies xj(t). 
Other specifications of the firing frequencies can also 
be considered as in the next example. 

2.2 HDS modelling and control 

Continuous PN are suitable to model the continuous 
part of HDS in a very intuitive way thanks to the 
underlying digraph structure. Combined with TPN 
they are useful to describe HDS with a single 
formalism (Balduzzi et al., 2000; Zaytoon et al., 
1998) as illustrated with the example in figure 1, 
modelled with the hybrid PN in figure 2.  

The places P1 and P2 are continuous and the 
markings m1 and m2 stand respectively for the height 
of liquid in tank 1 and tank 2 given by (4): 

 1 1 1 2 3 2 2 2 3 4. , .S m x x x S m x x x= − − = + −  (4) 

where S1 and S2 stand for the sections of tank 1 and 
tank 2. The transitions T1 to T4 are also continuous 
whose firing represents respectively the input flow 
(T1), the output flow (T4) and the flows through the 
pipes A (T2) and B (T3) according to (5): 

1 3 3 1 2

2 2 1 2 4 4 2

. sup( , ) sup( , )

. .

x D x m h m h

x m m x m

α

α α

= = −

= − =
 (5) 

where D, α2, α3 and α4 are related to the system 
specifications and it is assumed that m1 ≥ m2. 
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Figure 1: Two tanks system 

The discrete part of the PN (places P3 and P4 and 
transitions T5 and T6) stands for the controller. A 
mark in P3 means that valve V1 is open and V2 is 
closed. On the contrary a mark in P4 means that valve 
V2 is open and V1 is closed. The arcs from P1 to T5 
and from P2 to P6 are test arcs (the value of the places 
P1 and P2 is not changed by firing the transitions T5 
and T6). The goal of the controller is to open V1 and 
close V2 when m2 < N2 and to open V2 and close V1 
when m1 > N1. 
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Figure 2: Hybrid PN of the two tanks system 

Another example to motivate the use of continuous 
PN to model and control HDS will be considered in 
the next section (figure 3). But, instead of using  
discrete PN as controllers, flows are controlled with 
gradient–based algorithms. 

2.3 State space representation 

Equation (3) has commutations and shows products 
between state space and inputs vectors. So, VCPN 
are piecewise linear models that will be described 
with a set of bilinear state space representations. The 
set T is divided into 2 disjoint subsets TC, and TNC 
such that T = TC ∪ TNC. TC is the subset of the 
controllable transitions, and TNC is the uncontrollable 
transitions subset. Let us define XC(t) =(xj(t))Tj∈TC ∈ 
IR+d and XNC(t)=(xj(t))Tj ∈ TNC ∈ IR+p-d : 

 1 ( )
. ( )

( )
C

NC

X t
D X t

X t
−  

=  
 

, (6) 

with D ∈ IR p x p. The controllable inputs vector 
U(t) = Xmax C (t) ∈ IR+d corresponds to the maximal 
firing frequencies to be controlled. The input vector 
is constrained 0 ≤ U(t) ≤ Umax in order to limit the 
firing frequencies in a non negative bounded interval. 
The uncontrollable maximal firing frequencies  
Xmax NC are supposed to be constant according to the 
VCPN models. The output vector Y(t) = Q.M(t) ∈ 
IR+e is composed of a selection of subnets marking 
that are observable, with Q = (qki) ∈ IR e × n. The goal 
of the controller is to drive Y(t) according to some 
reference trajectories in the output space. Equation 
(2) can be rewritten as: 

 
( ) . ( ) . ( )

( ) . ( )
C C NC NCM t W X t W X t

Y t Q M t
= +
=

 (7) 

with WC = (wC ij) ∈ IR n × d and WNC = (wNC ij) ∈  
IR n × (p-d) such that (WC | WNC) = W.D.  

Several phases occur in the VCPN behaviour. Each 
phase ϕ is active between two successive 
commutations of the “min” operators in (3) and 
corresponds to a particular configuration of these 
operators characterised by the p functions of 
classification fj: 

 ∀ Tj  ∈ T : fj :  IR+n → {1,…,n}  

   M(t) → mfj(t) =  fj(M(t))  (8) 

such that mfj(t) = µj(t). Each function fj specifies the 
place in the preset of Tj which has the minimal 
marking. During each phase ϕ, a constant relation 
between the components of vectors XC(t) and M(t) 
and also between XNC(t) and M(t) occurs. This 
relation can be expressed with a vectorial form by 
using the set of vectors Aj(ϕ )∈ {0,1} 1 × n

  and  
Bj(ϕ )∈ {0,1} 1 × n which are constant during each 
phase but which may varied from one phase to 
another: 
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max
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Equation (7) can be rewritten as (10): 

max
1 1

( ) ( ). . ( ) . . ( ) . ( )

( ) . ( ),

p dd

j Cj j NC j NCj j
j j

M t u t W A x W B M t

Y t QM t

ϕ ϕ
−

= =

 
= + 
 

=

∑ ∑  (10) 

where WCj denote the jth column of matrix WC and 
WNCj denote the jth column of matrix WNC.  

3 FLOW CONTROL FOR VCPN 

Flow control for VCPN was investigated by several 
authors (Amrah et al., 1996; Hanzalek, 2003; 
Egilmez et al., 1994; Krogh et al., 1996; Lefebvre, 
1999; Silva et al. 2003). Such methods have provided 
interesting but local results attached to a specific 
phase in the VCPN behaviour. Moreover, they 
require strong conditions concerning the transitions 
to control and the places to observe. This paper 
focuses on another approach that takes advantage of 
the gradient propagation through the PN nodes. Our 
previous works have shown that they are also 
suitable to control the continuous part of HDS using 
VCPN models (Lefebvre et al., 2003).  

3.1 Gradient – based controllers  

For simplicity, let us consider single iteration 
controllers in discrete time and focus on single output 
case. The instantaneous error is defined by ε(k) = 
yd(k) - y(k), where yd(k) stands for the desired output 
at time t = k.∆t, and y(k) stands for the measured 
output of the VCPN at same time. By using a first 
order numerical integration method: 

1

max
1

( ) ( 1) .( ( 1). . . ( )

. . . ( )). ( 1)

d

j Cj j
j

p d

NC j NCj j
j

y k y k t u k QW A

x QW B M k

ϕ

ϕ

=

−

=

= − + ∆ −

+ −

∑

∑
 (11) 

The updating to each new pattern of the input vector 
U(k) is performed by writing a Taylor series 
expansion of the cost function v(k) = 1/2.ε2(k) ∈ IR. 
The second order terms are usually neglected in the 
evaluation of the Hessian matrix but a small positive 



term λ.I is added to avoid ill conditioned matrices 
(Hagan et al., 1995). The actualisation of controllable 
inputs is given by (12): 

 1( ) ( ( ). ( ) . ) . ( ). ( ),TU k S k S k I S k kδ λ ε−= − +  (12) 

with δU(k) = U(k) - U(k-1). S(k) = (sγ (k)) ∈ IRd  is 
the gradient of the output with respect to the input 
variation δU(k) = (δuγ(k)) performed at time t = k.∆t. 
The gradient sγ (k) is computed with a first order 
method by using the functions fβ  defined by (8): 

max
1 1

( ) . . ( ) . . ( ) .
pn

i i ij j fj
i j

j

s k q w k w x s k tγ γ γ γ

γ

δ µ
= =

≠

 
 = + ∆  
 

∑ ∑  (13) 

with δsγ(k) = sγ(k) - sγ(k-1) and sγ(0) = 0. 

The previous control algorithm can be extended to 
the multi output case, and to multi iterations updating 
(Lefebvre et al., 2004).  

3.2 Example 

The VCPN with the marking vector M(t) = (m’’0(t), 
m’’1(t), m’’2(t), m1(t), m2(t), m’1(t), m’2(t))T shown in 
figure 3 is the model of a manufacturing process with 
2 machines M1 and M2 corresponding to the 2 
transitions T1 and T2 and 2 buffers with limited 
capacities corresponding to the subsets of places {P1, 
P’1} and {P2, P’2} (Amrah et al., 1996). The 
maximal capacities C1 and C2 of the places P1 and P2 
correspond to the initial marking m1(0) + m’1(0) = C1 
and m2(0) + m’2(0) = C2. Pieces enter in the system 
by firing T0. The firing frequencies are bounded by 
the marking of the places P’’0, P’’1, and P’’2. In the 
sequel, M0 = (1,1,1,0,0,3,3)T, λ = 1 and ∆t = 0.06. 
When the system is not controlled, it evolves freely 
as expressed in (14). For example, with a vector of 
maximal firing frequencies Xmax = (5, 4, 3)T, the 
system reaches a stationary point after 3s and the 
marking tends to (m1, m2) = (12/5, 9/4). 

 

1 max 0 0 1

max 1 1 1 2

2 max 1 1 1 2

max 2 2 2

( ) .min( '' ( ), ' ( ))

.min( '' ( ), ( ), ' ( ))

( ) .min( '' ( ), ( ), ' ( ))

.min( '' ( ), ( ))
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x m t m t m t

m t x m t m t m t

x m t m t

=

−

=

−

 

 
' ( ) ( ) 3 ( ) 1,2
'' ( ) '' (0) 1 1, 2,3
i i i i

j j

m t C m t m t i
m t m j

= − = − =
= = =

 (14) 

Equation (14) is a piecewise bilinear model with 
constrained inputs 0 ≤ U(t) ≤ 10. The set of 
controllable transitions is TC = {T0}, TC = {T1}, TC = 
{T2}, TC = {T0, T1}, TC = {T1, T2}, TC = {T0, T2} or TC 
= {T0, T1, T2} depending on the system 
specifications. For example, if the manufacturing 
system is considered as a single input, multi outputs 
system, with TC = {T0} and Q = ((0 0 0 1 0 0 0)T; (0 0 
0 0 1 0 0)T)T, then U(t) = xmax 0(t), y1(t) = m1(t), and 
y2(t) = m2(t). The controller should adapt the 
maximal firing frequency of the input transition T0 in 
order to drive buffers level to some desired values 

(for example yd1 = 1/2 and yd2 = 2/3). A vectorial 
form of (14) is given by (15): 

 

1 1 max 1 1 1

max 2 2 2

( ) ( ( ). . ( ) . . ( )

. . ( )). ( ),

0 0 0 1 0 0 0
( ) . ( )

0 0 0 0 1 0 0

C NC

NC

M t u t W A x W B

x W B M t

Y t M t

ϕ ϕ

ϕ

= +

+

 
=  
   (15) 

with WC1.= (0, 0, 0, 1, 0, -1, 0)T, WNC1.= (0, 0, 0, -1, 1, 
1, -1)T, WNC2.= (0, 0, 0, 0, -1, 0, 1)T. The row vectors 
A1(ϕ) , B1(ϕ), and B2(ϕ) depend of the current phase. 
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Figure 3: VCPN model of a manufacturing process 

The single iteration and also multi-iterations 
controllers reach both the goal (figure 4) because the 
desired marking is included in the set of the 
reachable equilibriums for controller u(t) = xmax 0(t). 
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Figure 4: Single input - multi output system 

4 SET OF EQUILIBRIUMS 

According bilinear state space representation of 
VCPN (2), the set of equilibriums for the system 
under control is given by (16):- 

 
max

1 1

. ( ). ( ) . . ( ) 0
j j

p dd

C ij j f NC ij NC j f
j j

w u t m t w x m t
−

= =

+ =∑ ∑
 (16) 

Let us define the matrices A(M) = (aij(M))i=1,…,n, j=1,…,d 
∈ IR+ n x d, and B(M) = (bi(M))i=1,…,n ∈ IR+ n, with 
aij(M) = wCij.mfj(t) and bij(M) = wNCij.xmax NCj.mfj(t). 
Thus, (17) can be rewritten as A(M(t)).U(t) = 
B(M(t)). A marking vector Me is an equilibrium for a 
constant control vector U if A(Me).U = B(Me) holds. 
In order to describe the set of solutions of this 
equation in terms of control vector U, let us introduce 
also the following notations r = rank(A(Me)) and h = 
rank(A(Me) | B(Me)). If r = h, there exists at least one 
constant control vector U such that Me is an 
equilibrium. The set of admissible constant control 



vectors is given by table 1, according to the Moore-
Penrose inverse of matrix A. For constrained control 
vectors, one has to verify that the resulting control 
vectors satisfy the constraints. In case r < h, no 
constant control vector exists. 

Table 1 : Set of admissible constant control vector 

Parameters r A+ Solutions 
r=n A -1 Unique 

d=n 
r<n Max. rank fact. Several  
r=d (AT A)-1 A T Unique 

d<n 
r<d Max. rank fact. Several 
r=n AT(A.A T)-1 Several 

r=h 

n<d 
r<n Max. rank fact. Several 

 

A systematic investigation of the set of equilibriums 
for the VCPN in figure 3 results in figures 5 to 7 (in 
black: without control, in light grey: with constant 
control, in dark grey: reachable points from the origin 
with constant control). 

When all transitions are controllable, the region of 
equilibriums fills the complete area [0, 3] x [0, 3]. 
Let us mention that the region of reachable points 
from the origin with constant control is always 
strictly included in the region of equilibriums.  

 

 
 
 
 
 
 
 
 
Figure 5: a) U = xmax0, b) U = xmax1 
 
 
 
 
 
 
 
 
 
 
Figure 6: a) U = xmax2, b) U = (xmax1, xmax2)T 
 
 
 
 
 
 
 
 
 
 
Figure 7: a) U = (xmax0,xmax1)T, b) U = (xmax0,xmax2)T 

5 STABILITY ISSUES 

Let us consider in this section the case of a single 
output VCPN in discrete time as given by (11). In 
order to study the stability of the closed loop system, 
v(k) is considered as a Lyapunov function and δε(k) = 
ε(k+1) - ε(k) can be rewritten as: 

2 2( ) 1/2.( ( 1) ( )) ( ).( ( ) 1/2. ( ))v k k k k k kδ ε ε δε ε δε= + − = +  (17) 

Let us rewrite δε(k) as : 

 
1

( ) . ( ) ( ). ( )
d

T
j

j j k

yk u k S k U k
u

δε δ δ
=

 ∂
= =  ∂ 
∑  (18) 

Thus (17) can be rewritten as : 

( ) ( ). ( ).( ( ) 1/ 2. ( ). ( ))T Tv k S k U k k S k U kδ δ ε δ= +  (19) 

When the term S(k).S(k)T is neglected in (12), the 
updating rule of the controller corresponds to the 
gradient method: δu(k) = η.S(k).ε(k) and (19) can be 
rewritten as : 

2( ) . ( ). ( ). ( ).(1 1/ 2. . ( ). ( ))T Tv k S k S k k S k S kδ η ε η= − − (20) 

Thus a sufficient condition for stability is: 

 0 2 /( ( ). ( ))TS k S kη< <  (21) 
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Figure 8: Stable control to reach Me = (3/4, 1)T 

 

0 5 10
0

0.5

1

1.5

2
Marking of P1

0 5 10
0 

0.5 
1 

1.5 
2 Marking of P2 

0 5 10
10 -2 
10 0 
10 2 
10 4 Stability criteria 

0 5 10
0

2

4

6

8

10
Control signal

η 

Figure 9 : Unstable control to reach Me = (3/4, 3/2)T 

 

Illustration of the stability criteria (21) on the 
example in figure 3 is shown in figures 8 and 9. Both 
simulations are obtained with a 50–iterations 
gradient–based controller of transition T0: U(t) =  
xmax 0(t) and the learning rate η  = 1. The outputs y1(t) 
= m1(t) and y2(t) = m2(t), the control signal U(t) and 
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the stability criteria 2 / (S(k)T.S(k)) are reported for 
each simulation. In figure 8, the equilibrium Me = 
(3/4, 1)T is reached according to a stable control 
design (the stability criteria is satisfied). Let us 
mention small amplitude variations around the 
equilibrium due to numerical instabilities. In figure 9, 
the controller cannot stabilize the trajectory around 
the desired output Me = (3/4, 3/2)T. One can also 
notice that the stability criteria is not satisfied.  

6 CONCLUSIONS 

In this paper, gradient-based controllers have been 
investigated for the flow control of HDS modelled by 
VCPN. The control inputs are the maximal firing 
frequencies of the controllable transitions, and the 
goal of the proposed controllers is to reach reference 
values in the outputs space. The existence and 
uniqueness of equilibriums was discussed in a 
systematic way. A sufficient condition for stability of 
the closed loop system was also provided. Let us 
notice that the discrete dynamics due to the phase 
commutations are implicitly taken into account with 
the iterative calculation of the gradient. Nevertheless, 
at this time, we have no result to analyse separately 
the implications of the discrete and continuous 
dynamics for stability purposes. Such a “two levels” 
analysis will be further investigated. The next 
questions will be also studied in future works. How 
to calculate and to locate the minimal number of 
controllable transitions depending on the PN model 
and the desired outputs? How to modify the proposed 
algorithm in order to use it with discrete Petri nets? 
The proposed method should be also efficient to 
track trajectories and also to learn complex 
behaviours. So the use of learning algorithms with 
PN models will be pursued in order to develop 
“learning PN” for the control design and diagnosis of 
HDS. 
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