
 

 

 

 

 

DIAGNOSIS WITH CAUSALITY RELATIONSHIPS AND DIRECTED PATHS IN PN MODELS 
 
 

Dimitri Lefebvre, Catherine Delherm 
 
 

Université Le Havre – GREAH, 25 rue P. Lebon, 76063 Le Havre, France 
{dimitri.lefebvre;catherine.delherm}@univ-lehavre.fr 

 
 
 
 

Abstract: Petri nets are a suitable tool for the diagnosis of discrete event systems. For 
this purpose, faulty behaviours are modelled by the firing of failure transitions. This 
paper is about structural sensitivity in Petri net with respect to the firing of the failure 
transitions. Algebraic results are provided to characterise the influence and dependence 
areas of the failure transitions and diagnosability of the systems is obtained as a 
consequence. The main advantage of our approach is to investigate the diagnosability 
without working out the marking tree of the diagnoser. Copyright ©2005 IFAC 
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1. INTRODUCTION 
 
Fault detection and isolation are important issues for 
discrete event systems (DES) (Cassandras, 1993). 
Pioneer applications of the Petri nets (PN) 
supervisory control in fault detection have been 
developed that consider faults as forbidden states 
(Krogh, et al.,1991). The observation of the state was 
further investigated in order to design controllers 
with forbidden marking specifications (Giua, et al,. 
2002). Another approach to study DES with faulty 
behaviours concerns PN models with “failure” 
transitions (Ushio, et al., 1998). In that case, faults 
are represented with “failure” transitions and faulty 
behaviours are modelled as firing sequences 
including some “failure” transitions. The problem 
consists to detect and isolate the firing of the 
“failure” transitions that cannot be directly measured. 
This article focuses on the second approach. The 
main contribution is to provide some tools useful to 
decide if a set of observable places and transitions is 
necessary or sufficient to detect and isolate the firing 
of “failure” transitions in unobservable firing 

sequences. For that purpose, influence and 
dependence areas of the “failure” transitions are 
investigated according to the directed paths and 
causality relationships in PN models. Our study is 
based on the structural sensitivity analysis and result 
from the algebraic properties of the incidence 
matrices (Lefebvre, 2003, Lefebvre, et al., 2003). As 
a consequence, the resulting diagnosers provide 
delayed alarms, in the sense that they may require the 
occurrence of intermediate events in order to detect 
and isolate the firing of “failure” transitions. Another 
article is proposed by the authors to IFAC 05 that 
concerns “immediate” diagnosers that detect and 
isolate the firing of “failure” transitions immediately 
after the occurrence of the faults (Lefebvre, 2004). 
 
The paper is divided into 5 sections. The section 2 
gives an overview of the relevant literature. The 
section 3 concerns the use of PN models for 
diagnosability of DES. The section 4 is about the 
structural sensitivity. The section 5 is devoted to the 
diagnosability characterisation.  
 



2. RELEVANT LITERATURE 
 
The objective of the diagnosis problem is to identify 
the occurrence and type of faults based on the 
observable traces generated by the system. Faults 
diagnosis in the context of DES was first formulated 
with automata (Sampath, et al., 1995). The 
diagnosability of the system is based on the study of 
the undetermined cycles of the associated diagnoser. 
The previous results have been extended to PN 
(Ushio, et al.,1998). For the PN under consideration, 
it is assumed that some places are observable, other 
places are not, whereas all the transitions are not 
observable in the sense that their occurrences are not 
known. Moreover the PN are live and safe, and there 
does not exist any unobservable cycle. The firing of 
the transitions is estimated by the changes of marking 
at observable places. In (Chung, et al. 2003) some 
transitions are assumed to be observable in the sense 
that their firings can be measured. Asynchronous 
diagnosis by means of hidden state history 
reconstruction obtained from alarm observations was 
also investigated (Benveniste, et al., 2003). This 
approach relies on PN unfoldings and event 
structures that are related via some causality 
relationships. As a consequence, diagnosis is 
performed by a distributed architecture of 
supervisors. At last, let us mention that the problem 
of diagnosis is related to the problem of sensor 
selection that was investigated for discrete event 
systems as an optimisation problem (Debouk, et al., 
1999) with NP complexity (Yoo, et al., 2002). 
 
Our approach is based neither on marking trees nor 
on PN unfolding. In fact, marking is not concerned 
and we focus on causality relationships and directed 
paths provided by the digraph structure of PN. 
 
 

3. PN MODELS FOR THE DIAGNOSIS OF DES 
 
3.1. Background notions on Petri nets 
 
A Petri net (PN) with n places and p transitions is 
defined as <P, T, Pre, Post, M0> where P={Pi}i=1,…,n 
is a not empty finite set of places, T={Tj}j=1,…,p is a 
not empty finite set of transitions, such that P∩T=∅ 
(David, et al., 1992, Murata, 1989). IN is defined as 
the set of integer numbers. Pre: P×T→IN is the pre-
incidence application: Pre (Pi, Tj) is the weight of the 
arc from place Pi to transition Tj and WPR=( wPR

ij ) 

i=1,…,n, j=1,…,p ∈ IN n × p with wPR
ij = Pre (Pi, Tj) is the 

pre-incidence matrix. Post: P×T→IN is the post-
incidence application: Post (Pi, Tj) is the weight of 
the arc from transition Tj to place Pi and WPO=(wPO

ij) 

i=1,…,n, j=1,…,p ∈ IN n × p with wPO
ij = Post (Pi, Tj) is the 

post-incidence matrix. The PN incidence matrix W is 
defined as W = WPO – WPR ∈ IN n × p. Let us also 
define M=(mi)i=1,…,n ∈ IN n as the marking vector and 
M0 ∈ IN n as the initial marking vector. °Tj (resp Tj° ) 

stands for the pre-set (resp. post-set) places of Tj. A 
firing sequence is defined as an ordered serie of 
transitions that are successively fired from marking 
M to marking M’. Such a sequence is represented by 
its characteristic vector X = (xj)j=1,…,p ∈ IN p where xj 
stands for the number of Tj firings. The marking M' 
is related to the marking M and to the firing sequence 
X according to (1): 
 

XWMM .' +=  (1) 
 
3.2 Subnets and conflicts 
 
A subnet PN’ of PN with n’ places and p’ transitions 
is defined as <P’, T’, Pre’, Post’, M’0> where P’⊂P 
is a subset of P and T’ ⊂ T is a subset of T. Pre’: 
P’×T’→IN and Post’:P’×T’→ IN are respectively the 
restrictions of the pre and post-incidence applications 
limited to the sets P’ and T’. M’0 ∈ IN n’ is the initial 
marking vector of PN’. In that sense, a subnet is 
defined for any subset of places P’={P’i}i=1,…,n’ and 
transitions T’={T’j}j=1,…,p’. The marking vector 
M’=(m’i)i=1,…,n’∈IN n’ of PN’ is defined as the 
projection M’=D’.M of the vector M over the set P’ 
with D’∈{0, 1}n’×n. The same holds for the firing 
sequences vector X’= (x’j)j=1,…,p’ ∈ IN p’ of PN’ that 
is defined as the projection X’ = Q’.X of the vector X 
over the set T’ with Q’ ∈ {0, 1} p’×p. The incidence 
matrix W’ of PN’ is defined in the same way as W. 
When two transitions Tj and Tj’ have a common place 
Pi in the pre-set, the PN has a structural conflict. 
Such a conflict can be considered as a subnet PN’ 
with P’={Pi} and T’={Pi°}.  
 
 
3.3 Diagnosability with PN 
 
In order to decide the diagnosability of a given 
system as well as to perform on line diagnosis with 
PN models, some additional notations are introduced. 
A label L ∈ ∆ = {N}∪∆F is associated to each 
transition. L = N is interpreted as a normal behaviour 
and ∆F = {Fk}, k = 1,…m is the set of failure labels (i.e. 
L = Fk means that a failure of type k occurs). The set 
T of PN transitions is divided into two parts : 
“normal” transitions and “failure” transitions: T = TN 

∪ TF, where TF = TF1 ∪ …∪ TFm is the set of 
different types of failures. “Normal” transitions and 
“failure” transitions appear usually in structural 
conflicts: considering a given normal state, the 
system may evolve according to a “normal” 
behaviour by firing a “normal” transition or 
according to a faulty behaviour by firing a “failure” 
transition. At the same time, T is also divided into 
observable transitions and unobservable ones T=TO 

∪TU, and failures transitions are assumed to be 
unobservable: TF ∩ TO = ∅. At last, the set P of PN 
places is also divided into observable places and 
unobservable ones P=PO∪PU. The state of a PN 
model-based diagnoser (Ushio, et al.,1998, Chung, et 



al., 2003) consists of pairs of marking and label. 
When some places and some transitions are 
unobservable, undetermined cycles may occur. The 
determination of these cycles requires the 
construction of the observable marking tree. This 
approach is behavioural in the sense that it is based 
on the analysis of the state evolution. On the 
contrary, our approach takes into consideration the 
digraph structure of PN to provide structural 
information not depending on the state evolution. To 
work out the marking tree is not necessary. One can 
also notice that CR and DP investigation is not 
depending on the initial marking. No assumption is 
required concerning the safety and liveness of the PN 
models. 
 
Figure1 shows the PN example we will use 
throughout this paper with P = {P1, P2, P3, P4, P5} 
and T = {T1, T2, T3, T4, T5, T6, T7} (Chung et al. 
2003). The transitions T1 and T5 represent failure 
events F1 and F5. The set of observable places is PO 
= {P1, P4, P5} the set of unobservable places is given 
by PU = {P2, P3} (grey circles in figure 1). The set of 
observable transitions is TO = {T2, T3, T4}, the set of 
unobservable ones is given by TU = {T1, T5, T6, T7}.  
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: PN example 

 
 

4. STRUCTURAL SENSITIVITY IN PN MODELS 
 
The structural sensitivity investigates the causality 
relationships (CR) and directed paths (DP) expressed 
by the pre and post incidence matrices (Lefebvre, 
2003, Lefebvre, et al,. 2003). The CR is helpful to 
decide if the marking of a given node (place or 
transition) depends or not on the firing of a Fk - 
transition (i.e. the occurrence of a failure of type k). 
The DP gives an additive information to decide if 
such a dependence is direct or not.  
 
Considering again the PN example given in figure 1, 
DP and CR can be intuitively introduced. A token in 
P1 can fire the transition T2 to move to place P3, and 
then fire the transition T4 or T5 to move respectively 
to place P5 or P4. Thus, there exists two DP of length 
1 place from T2 to P5 and from T2 to P4. There also 
exists two DP of length 1 place from T2 to T3 and 
from T2 to T4. In the same time, a token that fires T2, 
cannot move directly to P2, but can fire consecutively 
T3, T7 and T1 to move to P2. Thus, there exists a DP 

of length 3 places from T2 to P2. But the firing of T2 
will influence directly the marking of P1 and then the 
firing of T1. Thus two CR of length 1 place exists 
respectively from T2 to T1 and from T2 to P2.  
 
 
4.1 Causality relationships 
 
A CR exists from transition Tk to place Pi (resp. 
transition Tj) if the firing of Tk could yield a deviation 
of the Pi marking (resp. Tj firing) from its expected 
value. The minimal CR-rank from Tk to Pi, refereed 
as CR(Pi, Tk), and from Tk to Tj, refereed as CR(Tj, 
Tk), are obtained according to the pre and post 
incidence matrices (Lefebvre 2003): 
 

{ }r IN
( , ) min ( (( ).( ) ) .( ). 0)T T r

i k i PR PO PR PR PO kCRPT C W W W W W B
∈ ∪∞

= + + ≠  

 (2) 

{ }r IN
( , ) min ( (( ) .( )) . 0)T T r

j k j PR PR PO kCR T T B W W W B
∈ ∪∞

= + ≠  

with Bk = (bk
j )∈ {0, 1} p  such that bk

j =0 if k ≠ j and 
bk

k = 1 and Ci = (ci
j )∈ {0, 1} n  such that ci

j =0 if i ≠ 
j and ci

i = 1. The CR - rank can be understood as the 
minimal number of places in the causality 
relationship from Tk to Pi or Tj. When no causality 
relationship exists, the CR-rank equals infinity. 
 
Let us define CRPT = (CR(Pi, Tk))i = 1,…,n, k = 1,…,p∈ {IN 
∪∞ }nxpas the CR matrix of the places Pi ∈ P with 
respect to the transitions Tk ∈ T  and CRTT = (CR(Tj, 
Tk))j = 1,…,p, k = 1,…,n∈ {IN ∪ ∞ } p x n as the CR matrix of 
the transitions Tj ∈ T with respect to the transitions Tk 
∈ T. Let us notice that the CR can not be obtained 
using the usual incidence matrix W = WP0 – WPR 
instead of WP0 + WPR because selfloops are ignored 
with the incidence matrix in the CR calculation.  
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 (3) 

 
As an example, the CR matrix of the places for the 
PN in figure 1 is given by (3). Any place is sensitive 
with respect to all transitions. For example 
CRPT(P2,T2)=1 (the labelled CR is given by 
T2P1T1P2) and CRPT(P2,T5) = 3 (the labelled CR is 
given by T5P4T6P5T7P1T1P2). 
 
 
4.2 Directed paths 
 
A DP exists from transition Tk to place Pi (resp. 
transition Tj) if a token is able to move from Tk to Pi 
(resp. Tj). A DP between two nodes is also a CR but 
a CR between two nodes is not necessary a DP. The 
minimal DP-rank from Tk to Pi is refereed as DP(Pi, 

P4 

P1 

P2 

P3 

P5 

T2 (N) 

T1(F1) T3 (N) 

T4 (N) 

T5 (F5) T6 (N) 

T7 (N) 



Tk) and the minimal DP-rank from Tk to transition Tj 
is refereed as DP(Tj, Tk). The following results hold 
(Lefebvre, 2003): 
 

{ }r IN
( , ) min ( ( .( ) ) . . 0)T T r

i k i PO PR PO kDP P T C W W W B
∈ ∪∞

= ≠  

{ }r IN
( , ) min ( (( ) . ) . 0)T T r

j k j PR PO kDPT T B W W B
∈ ∪∞

= ≠  (4) 

As previously, let us define DPPT=(DP(Pi, Tk))i=1,…,n, 

k=1,…,p∈ {IN∪∞}nxp as the DP matrix of the places Pi 
∈ T with respect to the transitions Tk ∈ T and DPTT = 
(DP(Tj, Tk))j = 1,…,p, k = 1,…,n∈{IN ∪ ∞ } pxn as the DP 
matrix of the transitions Tj ∈ T with respect to the 
transitions Tk ∈ T. Let us notice that the CR and DP 
matrices can be considered as an extension of the 
transitive matrix (Liu, et al., 1999). 
 
For the PN example in figure 1, DPPT(P2,T2)=3 (the 
labelled DP is given by T2P3T3P5T7P1T1P2), 
DPPT(P2,T5)=3 (the labelled DP is given by 
T5P4T6P5T7P1T1P2). 

1 2 3 4 5 6 7

1
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3
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2 2 1 1 2 1 0
0 3 2 2 3 2 1
3 0 2 2 3 2 1
4 1 3 3 0 3 2
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T T T T T T T
P
P

DP P
P
P
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 
 =
 
 
 
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 (5) 

 
4.3 Subnets sensitivity 
 
The structural sensitivity analysis can be extended to 
subnets. For this purpose, let us consider PN’ as a 
subnet of PN. There exists a CR (resp. DP) from 
transition Tk to PN’ if there exists a node N’∈PN’ 
with a CR (resp. DP) from Tk to N’. The causality 
relationships for PN’ is characterised by the 
projection of the matrices CRPT  and  CRTT  (resp. 
DPPT  and DPTT) over the subnet PN’: 
 

{ }( ' ')x' 0
( ') .

0 '
n p pPT

TT

CRD
CR PN IN

CRQ
+  

= ∈ ∪∞  
   

 

                    (6) 

{ }( ' ')x' 0
( ') .

0 '
n p pPT

TT

DPD
DP PN IN

DPQ
+  

= ∈ ∪∞  
   

 

 
 

5. DIAGNOSABILITY OF PN MODELS 
 
The structural sensitivity is helpful to decide the 
diagnosability of a system modeled by PN, in the 
sense that it provides in a systematic way the CR and 
DP between a “failure” transition and another node 
of PN. In the following, the influence and 
dependence areas of “failure” transitions are studied 
in order to evaluate the information provided by the 
set of observable places and transitions. 

5.1 Influence and dependence areas 
 
The set ICR(Tk) of nodes that are CR-sensitive with 
respect to the transition Tk is called the CR - 
influence area of Tk. This area is a subnet of PN 
defined as ICR(Tk) = <PICR(Tk), TICR(Tk), PreICR(Tk), 
PostICR(Tk)> where PICR(Tk) ⊂ P is the set of places Pi 
such that a CR exists from Tk to Pi (i.e. CR(Pi, Tk ) < 
∞), TICR(Tk) ⊂ T is the set of transitions Tj such that a 
CR exists from Tk to Tj (i.e. CR(Tj, Tk ) < ∞), 
PreICR(Tk) and PostICR(Tk) are the restrictions of the 
pre - incidence and post – incidence applications 
limited to the sets PICR(Tk) and TICR(Tk). The DP - 
influence area IDP(Tk) is defined in a similar way. 
 
We can also define the CR - dependence area of the 
node N. The set TDCR(N) of transitions that are likely 
to influence the node N through a causality 
relationship is called the CR - dependence area of N. 
The DP - dependence area TDDP(N) is defined in a 
similar way. The characterisation of the sets ICR(Tk), 
IDP(Tk), TDCR(N) and TDDP(N), results from the CR 
and DP matrices according to table 1 (Lefebvre et al., 
2003).  
 

Table 1 : Influence and dependence areas 
 

 CR DP 

PI..(Tk) 
position of the finite 
entries of the kth 
column of CRPT 

position of the finite 
entries of the kth 
column of DPPT 

TI..(Tk) 
position of the finite 
entries of the kth 
column of CRTT 

position of the finite 
entries of the kth 
column of DPTT 

TD..(Pi) 
position of the finite 
entries of the ith row 
of CRPT 

position of the finite  
entries of the ith row 
of  DPPT 

TD..(Tj) 
position of the finite 
entries of the jth row 
of CRTT 

position of the finite 
entries of the jth row 
of DPTT 

 
Let us consider again the PN in figure 1. From the 
matrices CRPT and DPPT given by (3) and (5) one can 
first notice that CRPT(P,T1)= (0 0 1 2 1)T and 
DPPT(P,T1)= (2 0 3 4 1)T. Similarly, CRPT(P2,T)= (0 
1 0 2 3 2 1)T and DPPT(P2,T)= (0 3 2 2 3 2 1)T. Thus 
PICR(T1) = PIDP(T1) = {P1, P2, P3, P4, P5} and 
TDCR(P2) = PDDP(P2) = {T1, T2, T3, T4, T5, T6, T7}. 
 
 
5.2 Diagnosability based on DP and CR 
 
According to the PN models described in section 3, 
faults are represented by specific transitions in 
structural conflicts. In order to study the potential 
influence of the failure Fk, let us consider the subnet 
PN’ = {°Tk, (°Tk)°} that contains all Tk upstream 
places and all transitions in conflict with Tk, The 
following propositions hold: 



 
Proposition 1 : Let N ∈ PO ∪ TO. A necessary 
condition such that the observation of node N 
contributes to the diagnosis of Fk is N ∈ ICR(Tk). 
Proof : If N ∉ ICR(Tk), then the firing of Tk does not 
influence the variable attached to the node N, and the 
measurement of this variable is not of interest for 
detection and isolation of failure Fk.. 
More results are obtained with the investigation of 
the sensitivity in the subnet PN/Tk where the 
transition Tk has been removed.  
 
Proposition 2: Let N ∈ PO ∪ TO. A sufficient 
condition to detect and isolate the firing of the 
failure transition Tk with the observation of node N is 
N ∈ IDP(Tk) and TDDPk (N) = ∅ if N is a place or 
TDDPk (N) = {N} if N is a transition in PN/Tk.. 
Proof : If N ∈ ICR(Tk), then the firing of the failure 
transition Tk influences the variable attached to the 
node N (marking variable if N is a place or firing 
variable if N is a transition). Moreover, if N is a place 
and TDDPk (N) = ∅, then the variable attached to the 
node N depends only on the firing of Tk. Then the 
measurement of this variable is sufficient for 
detection and isolation of failure Fk. Similarly, if N is 
a transition and TDDPk (N) = {N}, then the variable 
attached to the node N depends only on the firings of 
itself and Tk. Then the measurement of this variable 
is also sufficient for detection and isolation of Fk. 
 
In cases where propositions 1 and 2 cannot be 
applied, (i.e. if N ∈ IDP(Tk) and TDDPk (N) ≠ ∅ or 
TDDPk (N) ≠ {N} in PN/Tk) then the observation of N 
contributes but is not sufficient for the diagnosis of 
Fk. In this case the nodes that have to be observed at 
first correspond to the nodes with the smaller 
dependence areas. This study must be further 
investigated in order to combine the information 
obtained with the investigation of several 
dependence areas in order to provide minimal 
admissible sets of observable places as the ones 
resulting from immediate diagnosis.  
 
Let us consider again the PN in figure 1, where 
transitions T2, T3, T7 are characterised with 
deterministic delays dmin 2 = 10 , dmin 3 = 20, dmin 7 = 
30 and T1, T4, T5, T6 are characterised with stochastic 
delays given by exponential distributions µ1 = 0.1 , 
µ4 = 0.1, µ5  = 0.2, µ6 = 0.2. 
 
All reachable markings belong to the set {s1 = (1 0 0 
0 0)T, s2 = (0 1 0 0 0)T, s3 = (0 0 1 0 0)T, s4 = (0 0 0 1 
0)T, s5 = (0 0 0 0 1)T} and all observable markings 
belong to {s0O = (0 0 0)T, s1O = (1 0 0)T, s4O = (0 1 
0)T, s5O = (0 0 1)T}. The figure 2a shows a possible 
trajectory in the marking space according to the 
given firing sequence X = T2 T4 T7 T1 T3 T7 T1 T3 T7 T1 
T3 T7 T1 T3 T7 T1 T3 T7 T2 T5 T6 where 5 F1 - failures 
and 1 F5 – failure occur consecutively (faults are 
underlined). The figure 2b shows the observable part 

of this marking trajectory according to the same 
firing sequence X. Let us notice that the observable 
part of the marking trajectory can result not only 
from the actual firing sequence X but also from 
another corrupted sequence: for instance,  X’ = T2 T4 
T7 T2 T3 T7 T2 T3 T7 T2 T3 T7 T2 T3 T7 T2 T3 T7 T2 T5 T6 
where only 1 F5 – failure occurs. As a consequence, 
the observation of the observable part of the marking 
trajectory does not provide enough information to 
detect and isolate directly the faults F1 and F5 and the 
diagnosis problem must be solved. 
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Fig. 2: a) Marking trajectory b) Observable part of 

the marking trajectory 
 
The sensitivity analysis is useful to provide efficient 
diagnosers without building the marking tree. By 
working out the matrix CRPT (equation 3) one can 
first notice that PICR(T1) = {P1, P2, P3, P4, P5} and 
TICR(T1) = {T1, T2, T3, T4, T5, T6, T7}. The observation 
of each place and each transition contributes to the 
diagnosability of the system.  
 
By working out the matrices DPPT and DPTT in PN/T1 
(equation 7) and PN/T5 one can also notice that 
TDDP1(P2) = TDDP5(P4) = ∅, TDDP1(T3) = {T3} and 
TDDP5(T6) = {T6}. A diagnoser of F1 and F5 can be 
obtained with the observation of the couples of nodes 
{T3, T6}, or {P2, P4} or {T3, P4} or {P2, T6}. 
According to the sets of unobservable nodes TU and 
PU, the unique admissible diagnoser is based on the 
observation of the nodes {T3, P4}. Such a diagnoser 
detects and isolates the faults according to the 
measurement and analysis of the observable firing 
sequences and observable markings. The delay 
between the occurrence of the failures F1 and the 
fault detection correspond to the duration dmin 1 = 10 
TU (figure 3a). The detection of the F5 fault is 
immediate (figure 3b). 
 
The proposed diagnoser has better performances 
(detection and isolation of faults F1 and F5) and 
require less information (observation of only 2 
nodes) in comparison with the one proposed by 
Chung et al. who suggest to use PO = {P1, P4, P5} 
and TO = {T3} in order to detect F1. Moreover, our 
approach does not require the construction of the 
marking tree.  
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Fig.3. a) Detection of fault F1 b) Detection of fault F2 

(measurements of the T6 or T3 firings in full 
line, faults occurrence in dotted line) 

 
 

6. CONCLUSIONS 
 
This paper has proposed some structural results 
concerning the sensitivity analysis of PN. CR and 
DP have been investigated in a systematic way. 
Influence and dependence areas of failure transitions 
were obtained for PN models of DES with faulty 
behaviours. The diagnosability of the considered 
systems has been obtained as a consequence. The 
main advantage of our approach is to decide in many 
cases the diagnosability without working out the 
observable marking tree. In some cases the 
diagnosability is not decidable, but in all cases our 
approach is helpful to build the minimal set of nodes 
to be observed. 
 
Our perspectives are to investigate further the CR 
and DP for diagnosis issues and to provide a 
structural solution when the observation of several 
nodes is required. Moreover this work takes part in 
our study about monitoring and safe control of DES 
and hybrid dynamical systems (Zaytoon, et al. 1998) 
modelled with PN. The use of CR and DP will also 
be developed for observability and controllability 
issues. 
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