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1. INTRODUCTION

A wide-spread technique to model non-linear
mappings is to use basis function expansions:

f(ϕ(t), θ) =
d∑
k=1

αkfk(ϕ(t), β), θ =
(
α
β

)
(1)

Here, ϕ(t) is the regression vector, α = (α1 . . . αd)T ,
β = (β1 . . . βl)T , and θ is the parameter vector.

A common case is that the basis functions fk(ϕ)
are a priori fixed, and do not depend on any
parameter β, i.e., (with θk = αk)

f(ϕ(t), θ) =
d∑
k=1

θkfk(ϕ(t)) = θTF (ϕ(t)) (2)

where we use the notation
F (ϕ) =

(
f1(ϕ) . . . fd(ϕ)

)T (3)
That makes the fitting of the model (1) to ob-
served data a linear regression problem, which
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has many advantages from an estimation point of
view. The drawback is that the basis functions are
not adapted to the data, which in general means
that more basis functions are required (larger d).
Still, this special case is very common (see, e.g.,
Harris et al. (2002), Suykens et al. (2002)).

Now, assume that the observed data, {ϕ(t), y(t)}Nt=1,
are generated from a system described by

y(t) = f0(ϕ(t)) + e(t) (4)
where f0 is an unknown function, f0 : D → R, and
e(t) are zero-mean, i.i.d. random variables with
known variance σ2, independent of ϕ(τ) for all
τ . Furthermore, suppose that we have reasons to
believe that the “true” function f0 can locally be
approximately described by a given basis function
expansion, and that we know a given bound on the
approximation error. How then would we go about
estimating f0? This is the problem considered in
the following. We will take a pointwise estimation
approach, where we estimate f0 for a given point
ϕ∗. This gives rise to a Model on Demand method-
ology (Stenman, 1999). Similar problems have also
been studied within local polynomial modelling



(Fan and Gijbels, 1996), although mostly based
on asymptotic arguments.

The direct weight optimization (DWO) approach
was first proposed in (Roll et al., 2002) and pre-
sented in detail in (Roll, 2003; Roll et al., 2005).
Those presentations mainly consider differentiable
functions f0, for which a Lipschitz bound on the
derivatives is given (see Examples 1 and 2 below).
This paper suggests an extension to a much more
general framework, which contains several inter-
esting special cases, including the ones mentioned
above. Another special case is given in Example 3
below. In Section 5, a general theorem about the
structure of the optimal solutions is also given.

2. MODEL AND FUNCTION CLASSES

We assume that we are given data {ϕ(t), y(t)}Nt=1

from a system described by (4). Also assume
that f0 belongs to a function class F which
can be “approximated” by a fixed basis function
expansion (2). More precisely, let F be defined as
follows:

Definition 1. Let F = F(D,Dθ, F,M) be the set
of all functions f , for which there, for each ϕ0 ∈ D,
exists a θ0(ϕ0) ∈ Dθ, such that∣∣∣f(ϕ)− θ0T (ϕ0)F (ϕ)

∣∣∣ ≤M(ϕ,ϕ0) ∀ϕ ∈ D (5)

We assume here that the domainD, the parameter
domain Dθ, the basis functions F and the non-
negative upper bound M are given a priori. We
can show the following lemma:

Lemma 1. Assume that M(ϕ,ϕ0) in (5) does not
depend on ϕ0, i.e., M(ϕ,ϕ0) ≡M(ϕ). Then there
is a θ0(ϕ0) ≡ θ0 that does not depend on ϕ0

either. Conversely, if θ0(ϕ0) does not depend on
ϕ0, there is an M̄(ϕ) that does not depend on ϕ0,
and that satisfies (5).

Proof: Given a function f ∈ F , and for a given
ϕ0, there is a θ0 satisfying (5) for all ϕ ∈ D. But
since M does not depend on ϕ0, we can choose
the same θ0 given any ϕ0, and it will still satisfy
(5). Hence, θ0 does not depend on ϕ0.

Conversely, if θ0 does not depend on ϕ0, we can
just let

M̄(ϕ) = inf
ϕ0
M(ϕ,ϕ0)

2

In (Sacks and Ylvisaker, 1978), a function class
given by Lemma 1 is called a class of approx-
imately linear models. For a function f0 of this
kind, there is a vector θ0 ∈ Dθ, such that∣∣∣f0(ϕ)− θ0TF (ϕ)

∣∣∣ ≤M(ϕ) ∀ϕ ∈ D (6)

Note that Definition 1 is an extension of this
function class, allowing for more natural function
classes such as in Example 1 below.

Example 1. Suppose that f0 : R → R is a once
differentiable function with Lipschitz continuous
derivative, with a Lipschitz constant L. In other
words, the derivative should satisfy

|f ′0(ϕ+ h)− f ′0(ϕ)| ≤ L|h| ∀ ϕ, h ∈ R (7)

This could be treated by choosing the fixed basis
functions as

f1(ϕ) ≡ 1, f2(ϕ) ≡ ϕ (8)

For each ϕ0, f0 satisfies (Dennis and Schnabel,
1983, Chapter 4)

|f0(ϕ)− f0(ϕ0)− f ′0(ϕ0)(ϕ− ϕ0)| ≤
L

2
(ϕ− ϕ0)2

for all ϕ ∈ R. In other words, (5) is satisfied with

θ0
1(ϕ0) = f0(ϕ0)− f ′0(ϕ0)ϕ0, θ0

2(ϕ0) = f ′0(ϕ0)

M(ϕ,ϕ0) =
L

2
(ϕ− ϕ0)2 (9)

3

Example 2. A multivariate extension of Exam-
ple 1 (with f0 : Rn → R) can be obtained by
assuming that

‖∇f0(ϕ+ h)−∇f0(ϕ)‖2 ≤ L‖h‖2 ∀ ϕ, h ∈ Rn

where ∇f0 is the gradient of f0 and ‖ · ‖2 is the
Euclidean norm. We get∣∣f0(ϕ)− f0(ϕ0)−∇T f0(ϕ0)(ϕ− ϕ0)

∣∣ ≤ L

2
‖ϕ−ϕ0‖22

for all ϕ ∈ Rn, and can choose the basis functions
as

f1(ϕ) ≡ 1, f1+k(ϕ) ≡ ϕk ∀ k = 1, . . . , n (10)

In accordance with (9), we now get

θ0(ϕ0) =
(
f0(ϕ0)−∇T f0(ϕ0)ϕ0

∇f0(ϕ0)

)
M(ϕ,ϕ0) =

L

2
‖ϕ− ϕ0‖22

3

Example 3. As in (6),M(ϕ,ϕ0) and θ0(ϕ0) do not
necessarily need to depend on ϕ0. For example,
we could assume that f0 is well described by a
certain basis function expansion, with a constant
upper bound on the approximation error, i.e.,∣∣∣f0(ϕ)− θ0TF (ϕ)

∣∣∣ ≤M(ϕ) ∀ ϕ ∈ D

where θ0 and M(ϕ) are both constant. If the
approximation error is known to vary with ϕ in
a certain way, this can be reflected by choosing
an appropriate function M(ϕ).

A specific example of this kind is given by a model
(linear in the parameters) with both unknown-
but-bounded and Gaussian noise. Suppose that

y(t) = θ0TF (ϕ(t)) + r(t) + e(t) (11)

where |r(t)| ≤M is a bounded noise term. We can
then treat this as if (slightly informally)

f0(ϕ(t)) = θ0TF (ϕ(t)) + r(t) (12)



i.e., f0 satisfies

|f0(ϕ(t))− θ0TF (ϕ(t))| ≤M (13)

This case is studied in (Nazin et al., 2003). Some
other examples are given in (Sacks and Ylvisaker,
1978). 3

3. CRITERION AND ESTIMATOR

Now, the problem to solve is to find an estimator
f̂N to estimate f0(ϕ∗) in a certain point ϕ∗, under
the assumption f0 ∈ F from Definition 1. A
common criterion for evaluating the quality of the
estimate is the mean squared error (MSE) given
by

MSE (f0, f̂N , ϕ
∗) (14)

= E

[(
f0(ϕ∗)− f̂N (ϕ∗)

)2 ∣∣∣ {ϕ(t)}Nt=1

]
However, since the true function value f0(ϕ∗) is
unknown, we cannot compute the MSE. Instead
we will use a minimax approach, in which we aim
at minimizing the maximum MSE

max
f0∈F

MSE (f0, f̂N , ϕ
∗) (15)

It is common to use a linear estimator in the form

f̂N (ϕ∗) =
N∑
t=1

wty(t) (16)

Not surprisingly, it can be shown that when
M(ϕ,ϕ∗) ≡ 0, the estimator obtained by minimiz-
ing the maximum MSE equals what one gets from
the corresponding linear least-squares regression
(see Roll et al. (2005)).

As we will see, sometimes when having some more
prior knowledge about the function around ϕ∗, it
will also be natural to consider an affine estimator

f̂N (ϕ∗) = w0 +
N∑
t=1

wty(t) (17)

instead of (16). This is the estimator that will be
considered in the sequel. We will use the notation
w = (w1 . . . wN )T .

Under assumptions (4), the MSE can be written

MSE (f0, f̂N , ϕ
∗)

= E

(w0 +
N∑
t=1

wt(f0(ϕ(t)) + e(t))− f0(ϕ∗)

)2


=

(
w0 +

N∑
t=1

wt

(
f0(ϕ(t))− θ0T (ϕ∗)F (ϕ(t))

)
+ θ0T (ϕ∗)

(
N∑
t=1

wtF (ϕ(t))− F (ϕ∗)

)
(18)

+ θ0T (ϕ∗)F (ϕ∗)− f0(ϕ∗)

)2

+ σ2
N∑
t=1

w2
t

Instead of estimating f0(ϕ∗), one could also es-
timate a (any) linear combination BT θ0(ϕ∗) of
θ0(ϕ∗), e.g., θ0T (ϕ∗)F (ϕ∗) (cf. Definition 1).

Example 4. Consider the function class of Exam-
ple 1, and suppose that we would like to estimate
f ′0(ϕ

∗). From (9) we know that f ′0(ϕ
∗) = θ0

2(ϕ∗),
and so we can use B =

(
0 1
)T . 3

In the sequel, we will mostly assume that f0(ϕ∗)
is to be estimated, and hence that the MSE is
written according to (18). However, with minor
adjustments, all of the following computations
and results hold also for estimation of BT θ0(ϕ∗).

By using Definition 1, we get

MSE (f0, f̂N , ϕ
∗) ≤

(
N∑
t=1

|wt|M(ϕ(t), ϕ∗)

+

∣∣∣∣∣w0 + θ0T (ϕ∗)

(
N∑
t=1

wtF (ϕ(t))− F (ϕ∗)

)∣∣∣∣∣
+M(ϕ∗, ϕ∗)

)2

+ σ2
N∑
t=1

w2
t (19)

3.1 A general computable upper bound on the
maximum MSE

In general, the upper bound (19) is not com-
putable, since θ0T (ϕ∗) is unknown. However, as-
sume that we know a matrix A, a vector θ̄ ∈ Dθ
and a non-negative, convex 1 function G(w), such
that for

w ∈W ,
{
w

∣∣∣∣∣A
(

N∑
t=1

wtF (ϕ(t))− F (ϕ∗)

)
= 0

}
the following inequality holds:∣∣∣∣∣(θ0(ϕ∗)− θ̄)T

(
N∑
t=1

wtF (ϕ(t))− F (ϕ∗)

)∣∣∣∣∣ ≤ G(w)

Then we can get an upper bound on the maximum
MSE (for w ∈W )

MSE (f0, f̂N , ϕ
∗) ≤

(
N∑
t=1

|wt|M(ϕ(t), ϕ∗)

+

∣∣∣∣∣w0 + θ̄T

(
N∑
t=1

wtF (ϕ(t))− F (ϕ∗)

)∣∣∣∣∣ (20)

+G(w) +M(ϕ∗, ϕ∗)

)2

+ σ2
N∑
t=1

w2
t

Note that this upper bound just contains known
quantities, and thus is computable for any given

1 In fact, we do not really need G(w) to be convex; what
we need is that the upper bound in (20) is convex on W .



w0 and w. Note also that it is easily minimized
with respect to w0, giving

w0 = −θ̄T
(

N∑
t=1

wtF (ϕ(t))− F (ϕ∗)

)
(21)

and yielding the estimator

f̂N (ϕ∗) = θ̄TF (ϕ∗) +
N∑
t=1

wt
(
y(t)− θ̄TF (ϕ(t))

)
The upper bound on the maximum MSE thus
reduces to

MSE (f0, f̂N , ϕ
∗) ≤

(
N∑
t=1

|wt|M(ϕ(t), ϕ∗) (22)

+G(w) +M(ϕ∗, ϕ∗)

)2

+ σ2
N∑
t=1

w2
t , w ∈W

In the following, we will assume that w0 is chosen
according to (21).

Depending on the nature of Dθ, the upper bound
on the maximum MSE may take different forms.
Some examples are given in the following subsec-
tions.

3.2 The case Dθ = Rd

If nothing is known about θ0(ϕ∗), the MSE (18)
could be arbitrarily large, unless the middle sum
is eliminated. This is done by requiring that

N∑
t=1

wtF (ϕ(t))− F (ϕ∗) = 0 (23)

We then get the following upper bound:

MSE (f0, f̂N , ϕ
∗) ≤ (24)(

N∑
t=1

|wt|M(ϕ(t), ϕ∗) +M(ϕ∗, ϕ∗)

)2

+ σ2
N∑
t=1

w2
t

Comparing to the general case in Section 3.1, this
corresponds to A = I and G(w) = 0.

The upper bound (24) can now be minimized
with respect to w under the constraints (23).
By introducing slack variables we can formulate
the optimization problem as a convex quadratic
program (QP) (Boyd and Vandenberghe, 2004):

min
w,s

(
N∑
t=1

stM(ϕ(t), ϕ∗) +M(ϕ∗, ϕ∗)

)2

+ σ2
N∑
t=1

s2
t (25)

subj. to st ≥ ±wt
N∑
t=1

wtF (ϕ(t))− F (ϕ∗) = 0

Example 5. Let us continue with the function
class in Example 2. For this class, with Dθ = Rn+1

and with the notation ϕ̃ = ϕ − ϕ∗, we get the
following QP to minimize:

min
w,s

L2

4

(
N∑
t=1

st‖ϕ̃(t)‖22

)2

+ σ2
N∑
t=1

s2
t (26)

subj. to st ≥ ±wt
N∑
t=1

wt = 1

N∑
t=1

wtϕ̃(t) = 0

Note that, in this case, when the weights w are all
non-negative, the upper bound (24) is tight and
attained by a paraboloid. 3

Example 6. For the type of systems defined by
(11), with Dθ = Rd, we would probably like
to estimate θ0TF (ϕ∗) rather than the artificial
f0(ϕ∗). In this case, the QP becomes

min
w,s

M2

(
N∑
t=1

st

)2

+ σ2
N∑
t=1

s2
t (27)

subj. to st ≥ ±wt
N∑
t=1

wtF (ϕ(t))− F (ϕ∗) = 0

3

3.3 Dθ with p-norm bound

Now suppose we know that θ0(ϕ∗) is bounded by
‖θ0(ϕ∗)− θ̄‖p ≤ R (28)

where 1 ≤ p ≤ ∞. Using the Hölder inequality,
we can see that the MSE is bounded by

MSE (f0, f̂N , ϕ
∗) ≤

(
N∑
t=1

|wt|M(ϕ(t), ϕ∗)

+

∣∣∣∣∣(θ0(ϕ∗)− θ̄)T
(

N∑
t=1

wtF (ϕ(t))− F (ϕ∗)

)∣∣∣∣∣
+M(ϕ∗, ϕ∗)

)2

+ σ2
N∑
t=1

w2
t

≤
(

N∑
t=1

|wt|M(ϕ(t), ϕ∗) (29)

+R

∥∥∥∥∥
N∑
t=1

wtF (ϕ(t))− F (ϕ∗)

∥∥∥∥∥
q

+M(ϕ∗, ϕ∗)

)2

+ σ2
N∑
t=1

w2
t

where

q =


∞ p = 1
1 p =∞
1 +

1
p− 1

otherwise
(30)



The upper bound is convex in w and can efficiently
be minimized. In particular, we can note that
if p = 1 or p = ∞, the optimization problem
can be written as a QP. If p = 2, we can
instead transform the optimization problem into
a second-order cone program (SOCP) (Boyd and
Vandenberghe, 2004). Comparing to the general
case, we get A = 0 and

G(w) = R

∥∥∥∥∥
N∑
t=1

wtF (ϕ(t))− F (ϕ∗)

∥∥∥∥∥
q

A special case of interest is if we know some
bounds on θ0(ϕ∗), i.e.,

−θb 4 θ0(ϕ∗)− θ̄ 4 θb (31)

– where 4 denotes componentwise inequality –
which after a simple normalization can be written
in the form (28) with p =∞.

3.4 Polyhedral Dθ

In case Dθ can be described by a polyhedron,
we can make a relaxation to get a semidefinite
program (SDP). This can be done using the S-
procedure, but will not be considered further here.

3.5 Combinations of the above

The different shapes of Dθ can easily be combined.
For instance, a subset of the parameters θ0

k(ϕ
∗)

may be unbounded, while a few may be bounded
componentwise, and yet another subset would
be bounded in 2-norm. This case would give an
SOCP to minimize.

Example 7. Consider Example 2, and suppose
that ϕ∗ = 0. If we, e.g., would know that

|f0(0)− a| ≤ δ, ‖∇f0(0)− b‖2 ≤ ∆

this would mean that θ0
1 is bounded within an

interval, and that
(
θ0

2 . . . θ0
n+1

)
is bounded in 2-

norm. We could then find appropriate weights w
by solving an SOCP. See (Roll, 2003, Chapter 5)
for details. 3

4. MINIMIZING THE EXACT MAXIMUM
MSE

In the previous section, we have derived upper
bounds on the maximum MSE, which can be effi-
ciently computed and minimized. It would also be
interesting to investigate under what conditions
the exact maximum MSE can be minimized. In
these cases we get the exact, nonasymptotic min-
imax estimator.

First, note that the MSE (18) for a fixed function
f0 is actually convex in w0 and w (namely, a
quadratic positive semidefinite function; positive

definite if σ > 0). Furthermore, since the maxi-
mum MSE is the supremum (over F) of such con-
vex functions, the maximum MSE is also convex
in w0 and w!

However, the problem is to compute the supre-
mum over F for fixed w0 and w. This is often a
nontrivial problem, and we might have to resort
to the upper bounds given in the previous section.

In some cases, though, the maximum MSE is actu-
ally computable. One case is when considering the
function class in Example 1. It can be shown that
for each given weight vector w, there is a function
attaining the maximum MSE. This function can
be constructed explicitly, and hence, we can cal-
culate the maximum MSE. For more details and
simulation results, see (Roll, 2003, Section 6.2).

Another case is given by the following theorem.
The function classes in, e.g., (Legostaeva and
Shiryaev, 1971) and (Sacks and Ylvisaker, 1978)
fall into this category.

Theorem 1. Assume that M and θ0 in (5) do not
depend on ϕ0. Then, if ϕ∗ 6= ϕ(t), t = 1, . . . , N ,
and w is chosen such that ϕ(t) = ϕ(τ) ⇒
sgn(wt) = sgn(wτ ) for all t, τ = 1, . . . , N , the in-
equality (19) is tight and attained by any function
in F satisfying

f0(ϕ(t)) = θ0TF (ϕ(t)) + γ sgn(wt)M(ϕ(t)) (32)

and
f0(ϕ∗) = θ0TF (ϕ∗)− γM(ϕ∗) (33)

where

γ = sgn

(
w0 + θ0T

(
N∑
t=1

wtF (ϕ(t))− F (ϕ∗)

))
Here we define sgn(0) to be 1.

Proof: We first need to observe that there exist
functions in F satisfying (32) and (33). But this
follows, since plugging in (32) into (5) gives

M(ϕ(t)) ≤M(ϕ(t))

and similarly for (33), so (5) is satisfied for all
these points.

Replacing f0(ϕ(t)) and f0(ϕ∗) in (18) by the
expressions in (32) and (33), respectively, now
shows that the bound is tight. 2

In general, however, the bound (19) might not be
tight.

5. AN EXPRESSION FOR THE WEIGHTS

An interesting property of the solutions to the
DWO problems given in Section 3 is that where
the bound M(ϕ,ϕ0) on the approximation error
is large enough, the weights will become exactly
equal to zero. In fact, we can prove the following
theorem:



Theorem 2. Suppose that σ2 > 0. If the optimiza-
tion problem

min
w

(
N∑
t=1

|wt|M(ϕ(t), ϕ∗) +G(w) (34)

+M(ϕ∗, ϕ∗)

)2

+ σ2
N∑
t=1

w2
t

subj. to A

(
N∑
t=1

wtF (ϕ(t))− F (ϕ∗)

)
= 0

is feasible, there is a µ and a g ≥ 0 such that the
optimal solution w∗ is given by

w∗k =
(
µTAF (ϕ(k))− g (M(ϕ(k), ϕ∗) + νk)

)
+

−
(
−µTAF (ϕ(k)) + g (−M(ϕ(k), ϕ∗) + νk)

)
+

(35)

where (a)+ = max{a, 0} and ν is a subgradient of
G(w) (Rockafellar, 1970),

ν ∈ ∂G(w∗) , {v ∈ RN |
vT (w′ − w∗) +G(w∗) ≤ G(w′) ∀w′ ∈ RN}

Proof: The proof is based on a special version
of the Karush-Kuhn-Tucker (KKT) conditions
(Rockafellar, 1970, Cor. 28.3.1) and can be found
in (Roll and Ljung, 2004). 2

6. CONCLUSIONS

In this paper, we have given a rather general
framework, in which the DWO approach can be
used for function estimation at a given point. As
we have seen from Theorem 2, if the true function
can only locally be approximated well by the basis
F (i.e., if M is (enough) large far away from
ϕ∗), we get a finite bandwidth property, i.e., the
weights corresponding to data samples far away
will be zero.

The field is far from being completed. The follow-
ing list gives some suggestions for further research:

• Different special cases of the general function
class given here should be studied further.
• It would also be interesting to study the

asymptotic behavior of the estimators, as
N →∞. This has been done for special cases
in (Roll et al., 2002; Nazin et al., 2003).

• Another question is what properties f̂N (ϕ∗)
has as a function of ϕ∗. It is easy to see
that f̂N might not belong to F , due to the
noise. From this, two questions arise: What
happens on average, and is there a simple
(nonlinear) method to improve the estimate
in cases where f̂N (ϕ∗) /∈ F?

• In practice, we might not know the function
class or the noise variance, and estimation of
σ and some function class parameters (such
as the Lipschitz constant L in Example 1)
may become necessary. One idea on how

to do this is presented in (Juditsky et al.,
2004). Note that for a function class like
in Example 1, we only need to know (or
estimate) the ratio L/σ, not the parameters
themselves.

• In some cases, explicit expressions for the
weights could be given, as was done for the
function class in Example 1 in (Roll, 2003,
Section 3.2.2).
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