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Abstract: A path-following algorithm for industrial robots is presented in this paper. The
algorithm generates off-line a joint space point-to-point trajectory that, by exploiting
knowledge of the dynamic model, takes into account the actuators’ torque limits while
preserving the geometric path. Due to the software characteristic of the specific industrial
architecture, the trajectories adopt a trapezoidal velocity profile. The algorithm has been
designed, implemented and extensively tested on a Comau SMART H4 robot, a closed-
chain six-degree-of-freedom industrial manipulator. Copyright (©2005 IFAC
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1. INTRODUCTION

Minimization of the travelling time and preservation of
the geometric path are critic constraints when program-
ming the robot’s trajectory. In fact, in case of a too de-
manding trajectory, saturation of the torques generally
results in a path error that may cause serious damages.
On the other side, programming of a slow trajectory
is safe but does not exploit the machine at its max-
imum performance. These counteracting requirements
naturally pose a minimum-time path-following motion
control problem.

A wide literature on the minimum-time path-following
control problem exists. In off-line implementations the
trajectory is computed before the movement starts,
whereas in on-line implementations the trajectory is
modified during the robot motion based on the current
sensor readings.

Among the off-line methods, in Bobrow et al. (1985)
an iterative procedure is proposed. A substantially sim-
ilar solution is given by Shin and Mckay (1985). Slo-

tine and yang (1989) describe a more efficient algo-
rithm. The trajectory obtained from the previous algo-
rithm is the optimal one as it has been demonstrated
by Chen and Desrochers (1989). An on-line closed-loop
approach is devised in Dahl and Nielsen (1990) and
the experimental results are presented in Dahl (1994),
where a secondary controller modifies the nominal tra-
jectory during the motion to cope with uncertainties
about dynamic model and torque limits. The output
of these methods are bang-bang-like trajectories that
achieve the limit torque at least in one joint at every
time instant thus allowing to exploit the actuators at
their maximum performance.

One common drawback of both off-line and on-line
above methods is that the obtained velocity profile
of the optimal trajectory does not have a predictable
behavior, which is not always allowable in industrial
tasks, e.g., glue spreading or painting.

In this paper, with reference to the experimental setting
constituted by Comau Robotics manipulators, an off-



line path planning algorithm is developed that takes
into account the strict requirements of many industrial
applications. In particular, the trajectory has to be com-
posed of linear-parabolic polynomial sequences, i.e.,
constant speed and constant acceleration segments; this
approach combines simplicity of the reference signal
construction with sub-optimality of the trapezoidal ve-
locity profile. According to the guidelines in Holler-
bach (1980), the proposed algorithm does not guarantee
that one joint reaches its torque limit at every instant,
as in Dahl and Nielsen (1990); however, at least one
actuator reaches the torque limit during the trajectory.
The computational burden is kept limited by computing
the dynamic model only in a very small number of
significant points along the trajectory, moreover the so-
lution is not iterative. In Antonelli et al. (2004, 2004b)
the extension of the fly joint motion and the point-to-
point and fly Cartesian motion are proposed.

2. BACKGROUND
The joint vector is represented by
g=la - @l (D

where ¢ € R", being n the number of manipulator’s
joints. The rigid body dynamic model of the manipula-
tor in the joint space can be written as

B(q9)g + C(q,q)q+ Fvg+ Fssign(q) +g(q) =7, ()

where B(q) is the n X n inertia matrix, C(q, q)q is
the vector of Coriolis and centrifugal forces, F',q is the
vector of viscous friction, Fgsign(q) is the vector of
static friction, g(q) is the vector of gravitational forces
and T is the vector of joint torques, being all the vectors
of dimension n. In order to identify the dynamic param-
eters, different techniques can be implemented start-
ing, e.g., from the works of Guatier and Khalil (1988),
Presse and Gautier (1993), Swevers et al. (1997); for
the Comau’s robots a systematic procedure has recently
been implemented and validated in the industrial envi-
ronment by Antonelli ef al. (1999).

Starting from the well known results of dynamic scaling
of robot trajectories (see, e.g., Sciavicco and Siciliano
(2000)), in the following some useful equations are
computed including the viscous and static friction con-
tributions. Let define the vector g(r(t)) that verifies the
equation

q(t) =q(r(t)), 3)

where r(t) is a scalar strictly-increasing time function
that satisfies 7(0) = 0 and r(t;) = t;. Choosing
a linear scaling function r(t), it is 7(t) = ¢t with
c positive constant; it is worth noticing that ¢ > 1
implies a longer duration of the trajectory. Following
the guidelines in Sciavicco and Siciliano (2000), it can
be obtained that

ngt) N Tvc(t)

T(ct) = +g(q(t)), @)

where the vector 7 (¢) contains the inertia and Coriolis
contributions and the vector 7, (¢) the friction effects.

3. DYNAMIC CONSIDERATIONS FOR
TRAPEZOIDAL JOINT VELOCITY PROFILE

Given an initial configuration g, and a final configu-
ration g in the joint space, the trajectory is obtained
by resorting to a parameter function s € [0,1] with a
trapezoidal velocity profile . The velocity profile has
three different phases, defined in the following start,
cruise, and arrival; it can have different acceleration
values in the start and in the arrival phase.

From s, the position vector for every joint is generated
as follows:

q=(q;—q;)s+aq;,

and the velocity and acceleration vectors are generated
correspondingly from §, 5.

It is possible to notice that, given the trapezoidal veloc-
ity profile, there are some points where the possibility
to reach the maximum joint torque is high. These points
are denoted in the following as significant points and
are represented in Figure 1.
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Fig. 1. Significant points for a trapezoidal velocity
profile in the joint space.

A first set of significant points are found in correspon-
dence of the changes of phase, where there is a dis-
continuity in the acceleration. These significant points,
marked by a x sign in Figure 1, are:

e Point I: immediately after the starting time in-
stant. Since the velocity of all the joints is close to
zero, the predominant dynamic contributions are
inertia and gravity, leading to:

T~ B(q)q+g(q). (5)

e Point 3: immediately before the switch between
the start and the cruise phases. At Point 3, ev-
ery dynamic contribution is significant in forming
the total torque; in particular, the viscous friction
reaches its maximum value. Since the velocity of
all the joints is close to the cruise value, the torque
can be approximated as:

TR B(q)q + C(qa QCT)qcr + Fﬂqcr
+ F,sign(q..) + 9(q) - (©)



e Point 4: immediately after the switch between
the start and the cruise phases. At Point 4, the
acceleration is zero and the velocity is at the cruise
value; then, the torque can be computed as:

TR C(Qv ch‘)qCT + F’Uqcr + FSSgn(i]cr) + g(q) N (7)

e Point 5: immediately before the switch between
the cruise and the arrival phases. At Point 5 the
inertial contribution is zero and the approxima-
tion (7) holds.

e Point 6: immediately after the switch between
the cruise and the arrival phases. At Point 6 the
approximation (6) holds.

e Point 8: immediately before the final time in-
stant. Since the robot is going to stop the motion,
the predominant dynamic contributions are inertia
and gravity, and the approximation (5) holds.

Another set of significant points are in the middle of
the start and the arrival phase, namely, Points 2 and 7,
marked by a o sign in Figure 1. In fact, very long
trajectories most described at maximum cruise veloc-
ity exhibit the highest torque demand at the relatively
short acceleration/deceleration transient. It must be re-
marked, however, that it is not common to ask for a
large movement at the maximum velocity with path
tracking requirement.

At Points 2 and 7 the joint velocity is half its cruise
value; then, the following approximation holds:

. QCT qCT qm"
~B =" F,
T~ B(q)§+Clq. ")+ Fu=
+F,sign(q,,) +9(q), ®)

Moreover, it must be noticed that each motor, together
with a torque limit, also has to respect a velocity limit.
The value of this limit usually allows the robot to
execute long movements at a cruise velocity without
exceeding the torque limit. For this reason there is no
need to add any significant point between Points 4
and 5.

The above concept of significant points can be ex-
ploited to reduce the computational burden of the plan-
ning algorithm by computing the dynamic model only
in a small set of points rather than along the whole
trajectory. As a matter of fact, intensive simulations
using the 6-dof Comau SMART H4 dynamic model and
experiments run on the real robot, confirm validity of
these intuitive dynamic observations.

4. PROPOSED PLANNING ALGORITHM

In accordance with the Comau’s control architecture
several constraints need to be satisfied, namely:

e off-line implementation: the algorithm has to gen-
erate the trajectory before the movement starts;

e Jow computational burden: to reduce the time that
lasts from the trajectory data input and the robot
motion; avoid iterative solutions;

e trapezoidal velocity profile.

4.1 Joint space point-to-point motion

The proposed algorithm is divided in two different scal-
ing techniques that output two different final times both
compatible with the torques limits, the smaller is then
used to compute the trajectory. The two techniques, de-
tailed in the following, share most of the computations,
thus avoiding to increase the computational burden. In
particular, they both need a trial trajectory computed as
detailed in the following.

Trial trajectory The trial trajectory is that used as
input for the two algorithms detailed in the next Sub-
sections. Since its accuracy can affect the maximum
velocity scaling technique, the trial trajectory needs to
be carefully designed. Without entering in the details,
the trial trajectory has a trapezoidal velocity profile
whose initial and final accelerations are computed by
resorting to the equations:

1 1
qz = diag sy Tmazx _g(Qi) )
{Bl,l(%‘) Bn,n(q;) } ( )

. . 1 1
q = dia, yeeny Tmaz — g4 )
s g{Bl,mqf) Bn,n(qf>} (7rnas~alay)

where Bj ;(-) is the j-th diagonal element of the inertia
matrix; therefore, these expressions are a cost-effective
approximation of the inversion of the whole matrix
B(.).

Maximum acceleration scaling The basic idea of the
maximum acceleration scaling is to compute the max-
imum acceleration achievable in the start and arrival
phases. Since the overall joint displacement has been
fixed, the cruise velocity is also determined.

Firstly, the trial trajectory is planned. For the i-th joint,
at each time instant t; where a significant point is
attained, by computing the dynamic effects (see Sec-
tion 3) a scaling coefficient can be obtained as:

Ci o= — Tv,i(ts)
e z(gi(q(ts))_rmaw,i)
:t\/( T’u,i(ts) )2_ Ts,i(ts)
2(gi(q(ts))*7-ma:c,i) gi(q(ts’))*Tmax,i
for i=1,...,n, )

s=1,...,8,
where Ty, 1S the torque limit of the joint ¢; notice
that equation (9) represents two positive real solutions,
of which the smallest is considered. The overall scaling
factor c is selected by considering the most conserva-
tive ¢; ¢ among those obtained for all the joints at all
the significant points.

Remarkably, it is not necessary to re-plan the trajectory
since the time vector is only scaled by the c factor; the
new velocities are simply divided by the same factor.



Since the start phase is scaled independently from the
arrival phase the maximum torque is achieved in, at
least, two points of the trajectory. On the other side, the
cruise velocity is not optimized and it can result in too
conservative values (see, e.g., Figure 2). It is intuitively
clear that for very large movement this approach may
results in a slow overall movement.

Fig. 2. Maximum acceleration scaling; the acceleration
are optimized and the resulting cruise velocity is
thus obtained. The dashed line represents a case
with ¢ > 1.

Is it then possible to develop a scaling that preserves the
maximum cruise velocity by accepting in the start and
arrival phases an acceleration lower than the maximum.

Maximum velocity scaling The maximum velocity
scaling technique plans a trapezoidal velocity profile by
first imposing that the cruise velocity is the maximum
achievable by the motors at the joints and then finding
congruent acceleration values for the start and arrival
phases. Since the cruise phase satisfies the torque and
velocity limits by construction, only the start and ar-
rival phases must undergo proper time scaling to ensure
feasible torque values; remarkably, the two phases can
be independently scaled leading to different scaling co-
efficients. A graphical representation of this process is
given in Figure 3, while the mathematical development
is detailed in the following.

First, a trial trajectory is planned setting the cruise
velocity at the maximum achievable motor speed; to
find a proper start acceleration value then proceed as
follows.

Let define as g, the joint configuration at which the
peak torque value of the start phase of the trial trajec-
tory is attained. As by their definition, this is likely to be
in the neighborhood of one of the significant points 1—
3; therefore, we only need to compute the joint torques
at the three points by using the approximations (5), (8),
and (6), respectively, and select g, accordingly.

After the time scaling to be yet applied, the same
significant point corresponding to g, will correspond to
the different joint configuration g.. One problem to be
solved is that, in order to compute the scaling factor c*,
the value of g, is needed which in turn requires c* to
be known. To overcome this problem, it is suggested to
assume

q.~4q,., (10)
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Fig. 3. Maximum velocity scaling. The cruise velocity
is imposed and the acceleration/deceleration are
computed accordingly.

meaning that the time scaling will not affect much the
configuration at which the peak torque is attained. A
consequence of (10) is therefore that the trial trajectory
is assumed to be close to the final one, that results in
a valid c* being close to unity. Of course, the approxi-
mation (10) is very accurate in more general conditions
when the maximum torque is reached at the significant
point 1 (or Point 8 when dealing with the arrival phase).

Moreover, in view of the linear time scaling of the start
phase, a fixed cruise velocity results in

q.=4q,; (11)

in particular, this implies that the friction effects are
unchanged at corresponding configurations before and
after time scaling, i.e.,

T,(t) = To(c"t). (12)
From a practical point of view, the approximation (10)
can be considered valid as long as the resulting error in
computing the torque is sufficiently small. This in turn
depends on the validity of the following relationships:

||C(q('7q(')_c(amqr)“ %07 (15)

that relax the need for accurate holding of (10) in
the much frequent cases in which the dependence of
the dynamic terms from the configuration is somewhat
weak.

At this point, the scaling factor ¢* for the start phase
can be derived. In fact, from the equation

* B c "(' . . .
7o't = 29 4 0, 000, + 700 + 9l



for each joint ¢ the torque limit is consistent with the
factor ¢ satisfying the relationship

+ (C(Qm qc)qc)l

Tmaz,i =

+Tv,i((jc) +g’b(qc) (16)
This easily gives
ot = (B(qc)qc)l
’ Tmaaj,i - Tv,i((:Ic) - (C(qc’ qc>qc)l - gl(qc)
for i=1,...,n. a7

Among the n factors computed, the value of c* is taken
as the most conservative c;.

The arrival phase can be handled following the same
guidelines by working instead on the significant points 6—
8.

Procedure The steps to be implemented are summa-
rized in the following:

(1) planning of the trial trajectory;

(2) computation of the dynamic contributions at the 8
significant points;

(3) implementation of the maximum acceleration tech-
nique;

(4) implementation of the maximum velocity tech-
nique;

(5) choice of the trajectory corresponding to the
smallest ¢ ; obtained.

It must be remarked that the computational load of the
two methods is not heavy since they share most of the
equations; in particular, the computation of the dynamic
model at the significant points is the same.

Notice that the maximum velocity method is suited
to large movements, while the maximum acceleration
method suits short ones.

There are different sources of approximations to be
taken into account when computing the scaled trajec-
tory: the accuracy of the dynamic model; the accuracy
of (10) and (13)—(15); and the presence of the feedback
motion control in the on-line implementation. These
inaccuracies are taken into account simply considering
a more conservative value for the torques’ limits. In-
tensive simulations and on-field tests have shown the
effectiveness of the above presented algorithm.

4.2 Comparison between the proposed and an on-line
algorithm

It is expected that on-line, full-model based motion
planners show better performance than the off-line pro-
posed method based on reduced model information.
In order to verify the differences with the proposed
approach, a comparison with the algorithm proposed
in Dahl and Nielsen (1990) has been implemented. In
the simulation of the latter the following hold:

e the input trajectories have trapezoidal velocity
profile and they are not obtained by means of
minimum time optimization in (s, ) space;

e the trajectories are planned in the joint space and
include the motor speed limits;

e the joint servos have not been considered.

The results of the simulations show that the travelling
times in joint space obtained from the on-line algorithm
are about 20% shorter than the ones obtained with the
proposed algorithm; however, the longer is the cruise
phase, the smaller is the percentage time improvement.
From a computational point of view, notice that, in
case of a 2ms sampling time, for a trajectory of 1s
duration the dynamic model is computed 500 times
by the on-line algorithm; remarkably, the proposed
approach requires computation of the dynamic model
only 8 times. Therefore, one main advantage of the
proposed algorithm relies in a significant computational
lightness; moreover, it can be easily included into the
preexisting planning algorithm.

5. CASE STUDIES

In this Section the implementation of the proposed
technique on the Comau Smart H4 robot is presented.
The algorithm is currently under implementation for all
the robots manufactured by Comau. The SMART H-
4 is a 6-dof robot manufactured by Comau shown in
Figures 4 and 5. It exhibits a closed-chain structure and
a non-spherical wrist that allows to insert the power
cables into the wrist link.

Fig. 4. Kinematic sketch of the Comau Smart H-4.

The motor torque limits, expressed in Nm, are given by

Tmae = [9844 9494 9494 3890 3890 2502]T.

The effectiveness of the proposed motion planner has
been verified in a large number of testing trajectories.
These have been selected so as to represent all the
possible working conditions in which the robot will op-
erate; in particular, some motions have been extracted
from a spot welding operation currently used during car



Fig. 5. The Comau Smart H4.

assembling. The full set of testing trajectories include
large and small movements, with and without a load of
180 kg, starting from different configurations that are
representative of the workspace. Notice that the pres-
ence of a payload does not represent an additional com-
putational charge; in fact, the structure of the dynamic
model is the same with and without load, the only
difference is in the use of a different set of identified
dynamic parameters. The overall performance of the
proposed algorithm always improved the previous plan-
ner; in particular, the improvement obtained in short
movements is significant (about 10-20%). This can be
explained by observing that, with respect to the previ-
ous planner, the proposed algorithm gives a good im-
provement on the start and arrival phases, whereas they
both achieve the maximum velocity in the cruise phase.
Figure 6 presents the time history of the velocities and
the torques of one planned motion.

6. CONCLUSIONS

A path-following algorithm for industrial robots has
been presented in this paper. Due to the given industrial
constraints, the algorithm is implemented off-line and
may use knowledge of the dynamic model under se-
vere computational limits. To comply with the software
characteristic of the specific industrial architecture, the
trajectories adopt a trapezoidal velocity profile. The
algorithm has been developed and extensively tested
on a Comau SMART H-4, a closed-chain six-degree-
of-freedom industrial manipulator. The obtained results
show improved performance with respect to the cur-
rently implemented planner.
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