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Abstract: In this paper, different models of the pressure buildup inside a hydraulic servo-
axis are compared. These models are obtained using RBF networks, local linear models
and support vector machines (SVMs), with a particular focus on the latter. For SVMs,
a reduction method is derived, which allows to reduce the number of support vectors
without losing the generalization abilities of the SVM. Experimental results obtained at
a hydraulic servo-axis and a comparison of the different modelling techniques conclude
this paper.Copyrightc©2005 IFAC.
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1. INTRODUCTION

At the beginning of the 20th century, hydraulic systems
became a feasible alternative to other actuation princi-
ples, which could mainly be attributed to the introduc-
tion of mineral oil as the energy transmitting medium.
After the end of the second world war, hydraulics were
employed on a large scale in aeronautical applications
and became subject to intense research, especially in
the area of servo-hydraulics, i.e. hydraulic control.

Today, hydraulics are used in manifold applications,
ranging from industrial processes, road vehicles, ship-
building, aviation to construction machinery and so
forth. As for example in the area of aircrafts and
ships, hydraulics are often employed in safety critical
applications. Due to this, it is necessary to reduce
malfunctions of the hydraulic system as much as pos-
sible and to detect the onset of remaining unavoidable
malfunctions as early as possible so to allow for time

to initiate countermeasures or shut down the system in
a safe way.

The ongoing trend towards mechatronic systems,
which integrate mechanic, electronic and information
processing components (Isermann, 2003), allows to
implement many new functions into these intelligent
components, such as more sophisticated control algo-
rithms, fault detection and fault management systems.

Model-basedfault detection employs analytical re-
dundancy between different standard sensor signals to
detect faults without the need for additional sensors
and is currently under intense research in the area of
hydraulic systems. Muenchhof and Isermann (2004)
show, how the geometry of the control edges can be
monitored, which allows to detect damages of the
valve spool such as control edge wear and grooving.

In (Ramdén, 1998), the predominant topic is fault de-
tection of hydraulic pumps. However, fault detection



of an entire hydraulic servo axis comprising of a pres-
sure supply, three valves and three cylinders was also
described. Here, a neural net was used to detect valves,
which were stuck close or open.

As part of the Eurofighter project, a fault tolerant
rudder actuator was developed (Kubbatet al., 2000).
For this rudder actuator, different model-based fault
detection methods, mainly based on Kalman filtering,
have been developed, see e.g. (Kreß, 2002).

As is evident, model-based fault detection approaches
make use of mathematical process models. There are
two main requirements that these models have to meet.
First, they have to mimic the behavior of the process
precisely and secondly they may not be computation-
ally expensive, since they have to be evaluated in real-
time. The latter requires that these models have a lean
structure.

In Section 2, the overall setup of the hydraulic lin-
ear servo axis will be described. A physics-based
theoretical model of the pressure buildup inside the
cylinder chamber will be presented. The process will
then be modelled by three different methods: RBF
networks, local linear models and support vector ma-
chines (SVMs). These different regression methods
will be highlighted in Section 3. Next, the steps for
solving the SVM regression problem are explained.
SVMs tend to be more complex than models com-
puted by other methods. In order to compensate this
disadvantage, a reduction method for SVMs is pro-
posed in Section 4.2. Experimental results conclude
this paper and compare the different modelling tech-
niques.

2. THE HYDRAULIC SERVO-AXIS

The system scrutineered consists of a swash-plate
piston pump, a proportional valve and a differential
piston. A photo of the testbed is shown in Fig. 1.

Fig. 1. Photo of the testbed

The behavior of the system is highly nonlinear. The
modelling equations can e.g. be found in (Muenchhof
and Isermann, 2004) and will be shortly summarized
in the following: The pressure buildup in chamber A
of the hydraulic cylinder is given by

ṗA =
E(pA)(V̇A −AA ẋ−GAB(pA −pB))

V0A +AA x
. (1)

In this equation,E denotes the pressure dependent
bulk modulus.V̇A is the flow into chamber A,AA

the cross-sectional area andV0A the residual volume,
i.e. the volume at displacementx = 0. pA and pB

denote the corresponding pressure levels andGAB

is the coefficient of laminar leakage flow between
chamber A and B,̇VAB.

The flow into chamber A is determined by the dis-
placement of the valve spool and the subsequent open-
ing of the control edges. The flow into chamber A is
given by

V̇A =BV1(xV)
√
|pP−pA |sign(pP−pA)

−BV2(xV)
√
|pA −pT|sign(pA −pT) ,

(2)

whereBV1 andBV2 are the spool-displacement depen-
dent coefficients of turbulent flow across the control
edges. The spool displacement is calledxV , pP is the
pressure supplied by the pump andpT is the pres-
sure in the return line, whose influence is neglected
(pT = 0). A cross-sectional drawing of the cylinder is
depicted in Fig. 2.
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Fig. 2. Schematic view of a double acting cylinder

Equations (1) and (2) show which input signals must
be supplied to a model. It is

ṗA = f (pA , V̇A , x, ẋ, pB) (3)

with
V̇A = f (pA , pP, xV) (4)

3. REGRESSION METHODS

The process described in Sec. 2 will be modelled by
three different methods: RBF networks, local linear
models and support vector machines (SVMs), with
particular interest on SVMs. Thisregressionproblem
can be considered as a data set{(xi ,yi)}N

i=1 where
the goal is to estimate the output valuesyi from the
regressorsxi respecting a given optimality criterion.

RBF networks are well-established model structures
having an input/output behavior of the form

f (x) =
q∑

i=1
aiK(ci ,x) (5)

where

K(ci ,x) = exp
(
− ‖x−ci‖2

2σ2

)
(6)

is the Gaussian transfer function of a single neuron.
The coefficientsai are determined by least-squares
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Fig. 3. Linear support vector machine regression

estimation. To allow a direct comparison with SVMs,
the Gaussians’ widthσ is kept fixed and their centers
ci are located on data pointsxi . This network can
also be seen as the optimalregularization network
for a certain smoothness measure (Nelles, 2000). To
ensure a good generalization performance, the number
of neurons has to be limited. To find the optimal set of
neurons for a given model complexity, theorthogonal
least squares(OLS) method selects those neurons that
maximally reduce the output error (Chenet al., 1991).

Based on the RBF network, two enhancements can be
made:

(1) to use local linear models as a more appropriate
model structure while retaining the least-squares
optimality criterion.

(2) to use SVMs having a different optimality crite-
rion while keeping the model structure fixed.

As local linear structure thelocal linear model tree
(LOLIMOT) is employed (Nelles, 2000) having the
input/output behavior

f (x) =
q∑

i=1
(wi0 +wi1x1 + . . .+winxn)ϕi(x) . (7)

Compared to RBF networks, the coefficientsai are
augmented to linear submodels, and the Gaussians
K(ci ,x) have been normalized:

ϕi(x) = K(ci ,x)
/ q∑

j=1
K(cj ,x) (8)

LOLIMOT does not use the data points as the
Gaussians’ centers. Instead, it iteratively determines
an axis-orthogonal partitioning of the input space
and places a (normalized) Gaussian in each hyper-
rectangle. The weightswij are determined by local
least-squares estimation.

Support vector machines improve the generalization
performance by an alternative optimality criterion re-
sulting from thestatistical learning theory(Vapnik,
1995): Linear regression SVMs try to find aflat func-
tion

f (x) = wTx+b , (9)

so that all data lie within aninsensitivity zoneof size
ε around the function, see Fig. 3. Outliers are treated
by two sets of slack variablesξi and ξ∗i measuring
the distance above and below the insensitivity zone,

respectively. This results in the followingprimal opti-
mization problem (Schölkopf and Smola, 2002):

min
w,ξ,ξ∗

Jp(w,ξ,ξ∗) =
1

2
wTw+C

N∑
i=1

(ξi + ξ∗i ) (10a)

s.t. yi −wTxi −b≤ ε+ ξi (10b)

wTxi +b−yi ≤ ε+ ξ∗i (10c)

ξi ,ξ∗i ≥ 0, i = 1,. . . ,N. (10d)

To solve this problem, its (primal) Lagrangian

Lp(w,b,ξ,ξ∗,α,α∗,β,β∗) =
1

2
wTw+C

N∑
i=1

(ξi + ξ∗i )−
N∑

i=1
(βiξi +β∗i ξ∗i )

−
N∑

i=1
αi(ε+ ξi −yi +wTxi +b)

−
N∑

i=1
α∗i (ε+ ξ∗i +yi −wTxi −b)

(11)

is needed. Thedual variablesα, α∗, β and β∗ are
the Lagrange multipliers of the primal constraints.
According to the Karush-Kuhn-Tucker (KKT) condi-
tions, the derivatives with respect to theprimal vari-
ables must vanish in the optimum:

∂Lp

∂w
= 0 ⇒ w =

N∑
i=1

(αi −α∗i )xi (12a)

∂Lp

∂b
= 0 ⇒

N∑
i=1

(αi −α∗i ) = 0 (12b)

∂Lp

∂ξi
= 0 ⇒ αi +βi = C, i = 1,. . . ,N (12c)

∂Lp

∂ξ∗i
= 0 ⇒ α∗i +β∗i = C, i = 1,. . . ,N

(12d)

This yields a dual objective function that is solely
dependent on the dual variablesα andα∗:

Jd(α,α∗) =
1

2

N∑
i=1

N∑
j=1

(αi −α∗i )(αj −α∗j )x
T
i xj

−
N∑

i=1
(αi −α∗i )yi + ε

N∑
i=1

(αi +α∗i )
(13)

To solve nonlinear regression problems, the input
space is mapped into afeature spaceby a nonlinear
mappingΦ. The linear SVM is then applied to the
featuresΦ(x) instead of the original regressorsx.
Since the regressors occur in Eq. (13) only as scalar
productxT

i xj , we define akernel function

K(x,x′) = ΦT(x)Φ(x′) . (14)

Consequently, the only difference between linear and
nonlinear SVMs is the choice of kernel functions in-
stead of scalar products. Among the variety of possible
kernel function (Schölkopf and Smola, 2002), only the
Gauss kernelis considered in the following since it is
identical to an RBF neuron’s activation function (6).
Furthermore, the dual variablesα andα∗ are substi-
tuted by the SVMcoefficientsa because they are not
independent (due toαiα∗i = 0):



ai = αi −α∗i (15a)

|ai |= αi +α∗i (15b)

This modification reduces the number of variables
from 2N to N, accelerates the optimization method
described in Sec. 4 and leads to an optimization
problem very similar to that of SVMclassification
(Vapnik, 1995):

min
a

Jd =
1

2

N∑
i=1

N∑
j=1

aiajKij −
N∑

i=1
aiyi + ε

N∑
i=1
|ai | (16a)

s.t. −C≤ ai ≤ C , i = 1,. . . ,N (16b)
N∑

i=1
ai = 0 (16c)

whereKij = K(xi ,xj). The SVM output is computed
as

f (x) =
∑

ai 6=0
aiK(xi ,x)+b (17)

with thebias term bwhich provides an constant offset
to f and is computed from the KKT conditions, see
(Vapnik, 1995) and Fig. 3. Vectorsxi with ai 6= 0 are
calledsupport vectors(SVs); Eq. (17) is thesupport
vector expansionand is (except for the bias term)
identical to Eq. (5). Usually only a small fraction of
the data set are support vectors, typically about 10%.

For positive definitekernel functions, the bias termb
can be kept fixed or even omitted (Poggioet al., 2002).
The missing equality constraint (12b) leads to an
alternative formulation of the dual problem:

min
a

Jd(a) =
1

2

N∑
i=1

N∑
j=1

aiaiKij −
N∑

i=1
aiyi

+ ε
N∑

i=1
|ai |+b

N∑
i=1

ai

(18a)

s.t. −C≤ ai ≤ C , i = 1,. . . ,N (18b)

Since Eq. (18) contains onlybox constraints, it is one
of the most convenient QP cases leading to a simpler
optimization algorithm. If the bias term is omitted
(“no-bias SVM”, b = 0), the last term in Eq. (18a)
vanishes.

4. SOLVING THE SVM REGRESSION PROBLEM

4.1 Optimization algorithm

To solve the optimization problem (16) a method
based on theSequential Minimal Optimization(SMO)
algorithm (Platt, 1999) is used. According to Osuna’s
theorem (Osunaet al., 1997) the sequential solution of
subproblems leads to the minimization of the original
problem. Using this to an extreme, SMO reduces the
optimization problem to smallest possible subprob-
lems in order to perform an analytical update step. In
case of a variable bias termb two variables are needed.
A detailed derivation of the update step for regression
problems can be found in (Flake and Lawrence, 2002).
Without loss of generality the following assumes that

a1 anda2 are updated. All variables not involved in the
current step remain unchanged

ai = aold
i , i = 3,. . . ,N . (19)

The two variables needed to perform the step are
isolated in the cost function (16a) from variables
a3, . . . ,aN combined in the constantc.

Jd =
1

2
a2

1 K11+a1 a2 K12+
1

2
a2

2 K22

+ ε |a1|+ ε |a2|
+a1(E1−b−aold

1 K11−aold
2 K21)

+a2(E2−b−aold
1 K12−aold

2 K22)+c ,

(20)

whereEj is the prediction error of the SVM in the
previous step

Ej = f (xj)−yj =
N∑

i=1
aold

i Kij +b−yj . (21)

The equality constraint (16c) forces the updated vari-
ables to fulfill

a1 +a2 = aold
1 +aold

2 =−
N∑

i=3
ai = γ . (22)

Using this equation,a2 can be eliminated from
Eq. (20) which leads to:

Jd =
1

2
ηa2

1 +(E1−E2−ηaold
1 )a1

+ ε(|a1|+ |γ−a1|)+c
(23)

with
η = K11−2K12+K22 . (24)

The derivative of Eq. (23) with respect toa1 has to be
0 at the optimum. The update rule fora1 can be found
to

a1 = aold
1 − 1

η
(E1−E2−ε(sign(a1)+sign(γ−a1))) .

(25)
The a1 found with this equation further has to fulfill
the inequality constraint which is easily achieved us-
ing a proper clipping step. The variablea2 is found
using Eq. (22)

For a fixed bias term only a single variablea1 is
affected in each update step. The belonging update
rule is received in an analogous way:

a1 = aold
1 − E1 + εsign(a1)

K11
. (26)

To perform an update step, SMO needs to chose ap-
propriate variables. Therefore a set of heuristics is
used, as described in (Platt, 1999). This leads to an
easy to implement algorithm.

However, a major source of inefficiency is included
in the original algorithm concerning the calculation of
the bias term. This is described in (Keerthiet al., 2001)
and (Shevadeet al., 1999). To overcome the inefficien-
cies of SMO, the LagrangianLd of the dual problem is
used in the algorithm together with two bounds for the
bias term. In the optimum, these two bounds equal the



bias termb, not during the iteration process. But, it is
not necessary to know the exact biasb to perform an
update step as can be seen from Eq. (25) together with
Eq. (21). Some of the heuristics used in the original
SMO are replaced by a proper method of choosing the
variables. These changes lead to a more reliable, exact
and significantly faster version of the SMO. These
modifications are used together with the formulation
of SVMs in coefficient form (16), (17) and (18).

A kernel cache can be used to decrease the runtime
of the algorithm as described in (Flake and Lawrence,
2002), where aleast recently usedpolicy is applied
to update the cache. This strategy is used as SMO
tends to access the kernel matrix in an unstructured
manner. However, here a different strategy is used as
it is possible to increase the regularity of the kernel
matrix using an index vector. A cache based on this
structured kernel matrix can focus on regions with a
higher repetition rate of kernel accesses. This index
vectori is structured concerning the type of a variable
ai j

i1, . . . , ip with 0 < |ai j |< C (27a)

ip+1, . . . , iq with |ai j |= C (27b)

iq+1, . . . , iN with ai j = 0 . (27c)

After rearranging the kernel matrix according toi
the first q columns represent a kernel computation
between a SV and any other vector. Experiments have
shown that this is the case for up to 99% of all kernel
computations. As in normal cases the fraction of SVs
is about 10% it is now possible, while storing just 10%
of the kernel matrix, providing space for up to 99% of
needed kernels. As the number of SVs is not known a-
priori, space is reserved for the firstm columns of the
kernel matrix. This method leads to a very simple but
efficient caching structure. Saving of time is achieved
due to the avoidance of kernel recalculations.

4.2 A reduction method for SVMs

SVMs tend to be more complex than models com-
puted by other methods, e.g., the OLS algorithm de-
scribed in Sec. 3. This applies in particular to large
data sets since the numberq of support vectors loosely
depends on the size of the data set. The following
describes a possible strategy to reduceq.

A method is needed to reduce the model complexity
without losing the generalization abilities of the SVM.
Therefore an additional reduction step is introduced
to shrink the size of a pre-computed SVM, which is
obtained out of the original data setD with

D = {(xi ,yi)}, i = 1,. . . ,N, xi ∈ Rn, yi ∈ R , (28)

a kernel functionK, a trade-off parameterC and the
width ε of the insensitive loss function. The solution
of the appropriate quadratic program leads to Eq. (17).

Now the elements of Eq. (28) can be divided in three
subsets.

A0 = {(xi ,yi) | ai = 0} (29a)

F = {(xi ,yi) | 0 < |ai |< C} (29b)

AC = {(xi ,yi) | |ai |= C} . (29c)

SubsetA0 contains all points inside the insensitive
zone, depicted as stars in Fig. 3. SVs exactly on
the margin, depicted as filled circles, are contained
in subsetF . The third subsetAC consists of the
SVs lying outside the insensitive zone, depicted as
circles. Dependent on the chosenε most SVs belong
to this third subset. At this point starts the additional
reduction step. A condensed data setDcon is created
which contains only the subsetsA0 andF

Dcon =A0∪F , (30)

leaving out all data point lying outside the insensitive
zone. ForDcon it is possible to find a solution with
all data points lying inside theε-insensitive zone or
exactly on the margin. To find this reduced solution
C =∞ has to be chosen, this is reasonable as all out-
liers are eliminated. With the original kernel function
and ε this leads to an approximation of the original
solution. In the solution obtained all SVs of subset
AC are eliminated, the size of subsetF may slightly
increase, but the overall number of SVs decreases sig-
nificantly.

The additional reduction step leading to a reduced
SVM does not change the overall behavior of the
original SVM computed on the original data set. This
may surprise as theC is changed. But, leaving out
the subsetAC of the original data set the form of the
original solution is conserved. UsingC = ∞ in the
additional reduction step assures to approximate the
behavior of the original SVM.

5. EXPERIMENTAL RESULTS

Based on (3) and (4) a first order discrete-time dynam-
ical model has been selected

pA(k) = f (pA(k−1),pB(k),pP(k),
x(k), ẋ(k),xV(k)) ,

(31)

wheref will be modelled by the three model structures
described in Sec. 3. For that, the process has been dy-
namically excited for different loads; the piston veloc-
ity ẋ is computed numerically from the displacement
x. The resulting signals are then split into a training
data set comprising 2500 samples, and a validation
data set. Table 1 shows the best results for different

Table 1. Validation RMSE for different
sampling frequencies

fs RBF SVM LOLIMOT
500 Hz 4.33% 3.93% 2.94%
1000 Hz 5.03% 4.81% 3.51%
2000 Hz 5.48% 5.35% 3.37%

sampling frequencies. Theroot-mean-square errors



Table 2. Models forfs = 500Hz

RBF SVM LOLIMOT
RMSE 4.33% 3.93% 2.94%
Width σ 0.6 0.5 -
Sizeq 101 749 35

Table 3. Different SVM types

standard std./red. fixed fixed/red.
RMSE 4.01% 4.07% 3,93% 3,96%
Sizeq 896 261 749 227

have been determined by simulating the models on
the validation data set. Obviously, all models have the
best generalization performance forfs = 500Hz, so
the detailed results for this choice can be found in
Tab. 2. Whereas LOLIMOT has the smallest validation
error, it can be observed that the performance of the
RBF network can be improved if it is replaced by
a SVM with the identical structure. However, SVMs
usually lead to much more complex models than RBF
networks. Regarding LOLIMOT’s size, it should be
kept in mind that each of its “neurons” contains a
linear submodel and is thereforenot equivalent to a
RBF neuron (or a support vector, respectively). The
parameters of the SVM have been chosen asε = 0.008
andC = 4.6.

To reduce the SVM’s size, the reduction method de-
scribed in Sec. 4.2 is applied, see Tab. 3. The results
show that both standard SVMs with variable bias and
SVMs with fixed bias (b = 0) can be cut down to 30%
of the model complexity, without losing generalization
abilities.

6. CONCLUSIONS

Three model types have been studied for their appli-
cability as nonlinear dynamical models of a hydraulic
cylinder: RBF networks, support vector machines and
local-linear model trees (LOLIMOT). In general, all
models were able to grasp the cylinder’s behavior.

The best results are obtained by LOLIMOT since its
local submodels are an adequate structure for this type
of process. However, by the use of SVMs the general-
ization abilities of the RBF network can be improved
without changing its structure. For the computation of
SVMs a novel implementation of the SMO regression
algorithm has been proposed as well as a reduction
method that significantly reduces the SVM’s complex-
ity, i.e., the number of support vectors.

The areas of future work comprise all topics addressed
in this study: Improved optimization algorithms, SVM
reduction techniques as well as the application of the
SVM principle to model structures other than the basis
function network considered so far.
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