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Abstract: This paper presents a solution for the hardware implementation of EIA-709.1 
Control Networking Protocol. It is the basic protocol of LonWorks systems that is widely 
used for the building system and the sensor system. The EIA 709.1 protocol has been 
implemented at the hardware level from physical layer to network layer to reduce the 
computing load on the CPU. VHSIC hardware description language (HDL) has been used 
for the EIA-709.1 protocol. Other layers have been implemented using C programs on 
Intel 8051 processor. The EIA-709.1 protocol has been implemented using field 
programmable gate array (FPGA) technology and the commercial feasibility of the 
proposed solution has been performed through the communication test using the Neuron 
Chip of EIA-709.1 protocol. The designed EIA709.1 core is usable as one of the 
intellectual properties (IPs) and it is applicable to design System-on-a-Chip (SoC) for 
various industrial controllers. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Industrial system manufacturers have usually 
integrated devices by using their own proprietary 
protocol and physical network. It has been 
historically difficult to support interoperability 
between digital control equipment from various 
manufactures. Therefore, standardization for both 
open network and protocol in industrial domain is 
inevitable. 
  
The fieldbus is a digital serial communication 
network designed to exchange data in real-time 
between distributed controllers and equipment 
installed in the automation industry. In building such 
systems, a growing number of devices such as sensor, 
loop controller, Programmable Logic Controller 
(PLC), motor, valve, robot and microprocessor-based 
control systems are used to implement intelligent and 
distributed functions; these are connected to a 
fieldbus network. As the number of devices in a 
system grows and the functions of a system need to 
be more intelligent, these devices need to rapidly 
exchange increasing amounts of data among them. 
Point-to-point or direct connections are not 
considered suitable any more for systems composed 
of many devices because the number of cables is 
increasing proportional to the square of the number 

of devices. In order to solve this problem, various 
serial communication networks have been designed 
and implemented to provide reliable and efficient 
communication paths for data exchange among the 
system components; such networks are called 
fieldbuses (Schumny, 1998; Thomesse, 1998) A 
fieldbus is a type of real-time communication system 
based on a layered structure deduced from the seven 
layers Open System Interconnection (OSI) model 
(Zimmermann, 1980).  Fieldbuses include Profibus, 
World FIP, Fieldbus Foundation, Controller Area 
Network (CAN) and LonWorks (Choi, et al., 2000; 
Lee, et al., 2004; Almedia, et al., 2002). 
 
Most industrial devices readily incorporate the 
processor chip without a price burden because the 
cost of microprocessors has been down for 
consecutive years. Design engineers began to realize 
the necessity of open protocols for optimal 
communication performance in control systems. 
Control networks have a number of unique 
requirements that are different from data networks. 
The followings are some of these unique 
requirements. 
-  Frequent, reliable, secure communications between 

devices 
- Short message format for the information being 

passed 



 

     

-  Peer-to-peer functionality for every device 
-  Chip price that enable small and low-cost devices 
 
There are needs to address these control specific 
network requirements. In addition, there is the belief 
that a market standard for communications would 
provide interoperability between control devices 
from various manufacturers and empower the market 
to increase in both size and efficiency.  
 
The LonWorks protocol was introduced as a solution 
in the domain of the control specific network 
(Echelon, 1999). A LonWorks network uses the 
LonWorks protocol, also known as the ANSI/EIA 
709.1 Control Networking Standard, to accomplish 
these tasks that was invented by Echelon in 1988 
(ANSI, 1988). The LonWorks protocol is a layered, 
packet-based, peer-to-peer communications protocol. 
To ensure the requirements of control systems, the 
protocol has the layered structure as recommended 
by International Standards Organization (ISO). This 
is a different feature from other fieldbus protocols. 
By tailoring the protocol of each layer of the Open 
System Interconnection (OSI) reference model in 
order to guarantee domain specific control 
performance, the LonWorks protocol provides a 
control-specific solution that guarantees reliability, 
performance, and robust communications required 
for control applications. The protocol is originally 
embedded in Neuron Chip which Echelon has 
published the LonWorks protocol and made it an 
open standard under the ANSI/EIA 709.1 Control 
Networking Standard. The protocol is, therefore, 
freely available to anyone. 
 
The variety of services provided by the LonWorks 
protocol allows for enhanced reliability, security, and 
optimization of network resources.  
 
In this paper we develop EIA-709.1 protocol by 
using VHDL and the C programming language. Of 7- 
layers of EIA-709.1, the physical layer, Medium 
Access Control (MAC) layer, and the data link layer 
are implemented at the hardware level. And then the 
functional verification is performed in Field 
Programmable Gate Array (FPGA). The software 
implemented in an 8032 microprocessor handles the 
protocol implemented in FPGA, and the experiment 
is performed with Neuron chip to verify the 
functionality and interoperability. 
 
 

2. OUTLINE OF EIA-709.1 PROTOCOL 
 
The seven layers of the ISO/OSI model, along with 
the corresponding services, are provided by the 
LonWorks protocol. It is not a requirement that any 
given protocol implement every layer of this model. 
A truly complete and fully scalable protocol – such 
as the LonWorks protocol – provides all the services 
described in this model. 
 
The physical layer defines the raw bits over a 
communication channel. The LonWorks protocol is 

media-independent so that multiple physical layer 
protocols are supported according to the 
communication medium.  
 
The link layer defines media access method and data 
encoding scheme to ensure efficient use of a single 
communications channel. The raw bits of the 
physical layer are broken up into data frames. The 
LonWorks protocol uses a unique media access 
control algorithm, called predictive p-persistent 
Carrier Sense Multiple Access (CSMA) protocol that 
has excellent performance characteristics even during 
the period of network overload, allowing a channel to 
operate with full capacity with minimum collision. 
The CSMA protocol is a listen-before-transmit 
scheme in which a device with a message to transmit 
first listens to the network. If no message traffic is 
detected, then the device will transmit its message 
after a calculated number of packet time slots. 
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Fig. 1. EIA-709.1 Address Format 
 
The link layer supports simple connection-less 
service. It is limited to Frame transferring, frame 
encoding, and error search function. However, the 
layer does not support the error restoration function. 
The address format of this protocol supports a total 5 
modes, and the details are shown in Fig. 1. The 
format performs 2 broadcast modes, 2 subnets, node 
communication, and Unique Node ID 
communication.  
 
The network layer deals with transmission of packets 
within a single domain, but does not support 
communication between domains. The network layer 
provides connection-less and unacknowledged 
service. On the contrary, it does not support message 
division and the reassembling function.  
 
The transaction control sub-layer that is common in 
both transport layer and session layer makes 
transactions in order and senses duplicated message. 
The transport layer provides connection-less reliable 
transaction with either one or several nodes. 
Authentication to identify message sender is 
provided optionally. Transaction control sub-layer is 
designed only to perform that function. Therefore, 
the message from the transport layer and session 
layer can be authorized using all the addressing 
modes except broadcast. The session layer provides 
simple Request-Response mechanism approachable 
to remote server.  
 
There are a total of 5 forms of communication 
services used here. First of all, Unacknowledged 
service does not require an acknowledge frame, and a 



 

     

simple unacknowledged message that is one of this 
service does not need to sense the duplicated 
message. Just as acknowledged service requires an 
acknowledge frame, repeated service also requires an 
acknowledge frame, but instead, it completes the 
service after sending messages repeatedly as many as 
specified count. Request/Response service requires a 
response frame instead of an acknowledged frame. 
Finally, Authentication service is a service form to be 
used to avoid uncertainty in security. 
 
Both Presentation layer and practical application 
layer provide all the general services to transmit and 
receive messages including Network Variables. In 
addition, the service related to maintenance such as 
management and security of network is performed at 
this layer. 
 
 
3. PROBLEMS OF CONVENTIONAL METHOD 
 
EIA-709.1 protocol was developed by Echelon. 
Implementation method widely-used till now is, as 
mentioned previously, as follows: to design hardware 
board using Neuron Chip of either Toshiba or 
Cypress, to compile basic form, firmware and 
application program using LonBuilder Developer’s 
Workbench and Neuron C of Echelon, and then to 
load the Neuron Chip with the compiled result.  
Although EIA-709.1 is open protocol, due to 
dependency of both hardware and software on a 
particular company, several problems could happen. 
 
First of all, the network configuration is possible 
only with the hardware referred to as Neuron Chip; 
therefore, other network configurations that Neuron 
Chip does not provide are not feasible. As other 
communication speed except the speed provided by 
Neuron Chip cannot be used, the efficiency of a 
network could not be improved. When some problem 
happens in network, it cannot be handled because 
debugging is impossible at chip level. Also, in the 
case of the communication using Neuron Chip and 
LonBuilder, due to the problem dealing with 
firmware, the duration between sending data packet 
and sending next data packet is relatively long 
compared with logical duration that can be 
implemented by EIA-709.1. This is not such a big 
problem in the normal state, but it could cause 
serious problems in the case that either the amount of 
packet gets increased or some error occurs on the 
network. 
 
Another problem is to write an application program 
only by following the guideline that LonBuilder 
supports. In other words, Neuron C programming 
language, which is transformed from ANSI-C, must 
be used instead of the general C. In this case, 
software programming becomes tightly dependent on 
the LonBuilder development environment. When 
implementing various functions, we cannot use the 
functions that the development environment does not 
support. Therefore, application program has little 

flexibility and compatibility, and there is a limit in 
implementing program as well. 
 
4. CONFIGURATION OF THE DEVELOPMENT 

SYSTEM 
 
This system implemented EIA-709.1 protocol in 
hardware using VHDL, which is composed of a 
physical layer, MAC layer and link layer, and 
network layer. FPGA fitting was made, and design of 
firmware and hardware board was performed in order 
to verify function specification. The hardware board 
is not only for implementing the protocol, but also 
for designing the hall station board for an elevator 
system that adopts the protocol. That is why some 
other functions were added. 
 
 
4.1 Implementation of FPGA 
 
FPGA was designed by Logic design using VHDL 
(VHSIC Hardware Description Language; VHSIC 
stands for Very High Speed Integrated Circuit), 
synthesized using Design Compiler of Synopsis, and 
performed Logic simulation using Verilog-XL 
simulator of Cadence. Finally, FPGA P&R (Place & 
Route) and FPGA fitting were performed using 
Maxplus II Tool of Altera (Motorola, 1997;  Altera, 
1999; Douglas, 199).  
 
This FPGA is composed of major 6 blocks such as 
MAC block, transmitting block, receiving block, 
timer block, interrupt block, and register block. The 
overall block diagram is shown in Fig. 3. 
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Fig. 3. Overall Block Diagram of EIA-709.1 protocol 
 
 
4.2 MAC (Media Access Control) Block 
 
This block is divided into several sub-blocks such as 
the blocks for variable communication boardrate 
setup, Differential Manchester Encoder/Decoder, 
digital filter for communication port, and Cyclic 
Redundancy Check (CRC) generation and detection. 
Predictive p-persistent CSMA algorithm is 
implemented in the MAC block as well (Fred, 1988). 
 
In the case of communication through Twisted Pair 
cable, all of the communication data are not the form 
of NRZ, and the communication is always performed 
using Differential Manchester coding algorithm. 
Differential Manchester coding is a method to cause 
a transition only once at the starting point of 1 bit, 
and to keep the current value for 1 bit duration in 



 

     

case that the value equals to 1, and to cause a 
transition once more at the time position of 1/2 bit in 
case of 0. The design algorithm of Differential 
Manchester Encoder/Decoder is shown in Fig. 4. 
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Fig. 4. Manchester Encoder and Decoder Algorithm 
 
 
4.3 Transmitting Block 
 
The Transmitting block is generated as state 
transition block according to generation of frame to 
transmit, generation of control signal, and generation 
signal of each frame. The diagram of the transmitting 
block is described in Fig. 5.  
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Fig. 5. Block Diagram of the Transmitting Block  
 
The transmitting order starts from the Line Idle state. 
While in the Line Idle state, Beta-1 timer operates 
automatically and checks the Beta-1 time. When 
Beta-1 timer is operating, expired or ready to operate, 
if the Transmit Start Enable signal get activated from 
outside, first the transmitting block waits for the 
Beta-1 timer to expire. Afterwards, while waiting for 
the Beta-2 time of Priority Slot and Random Slot, if 
the line state keeps being inactivated, the block starts 
to transmit a packet. 
 
Preamble is loaded on a shift register as many times 
as there are Preamble Bytes. Preamble consists of 
BitSync and ByteSync; BitSync has the value of ‘1’ 
and ByteSync has the value of ‘0’. First, the value of 
‘1’ is transmitted to all the bits of every shift register, 
and then the final Preamble would be loaded with the 
value of ‘0’ on the last bit. 
 
After completing Preamble transmission, a packet is 
transmitted in order from FIFO to shift register one 
by one. While transmitted from FIFO one by one, the 
number of transmission data length written before 
transmitting is decreased. If the number is ‘0’ after 
all packets are transmitted, the normal operation is 
performed, and otherwise Data Length Mismatch 
Error takes place. After transmitting all values of 

FIFO, it sends out 16 bits CRC by performing the 
operation of CRC generator. It also checks by Jabber 
Timer if a transmission line is occupied abnormally. 
After completing CRC transmission, it notices the 
end of a packet by remaining in the state of Code 
Violation for interval time of 2.5 bits. 
 
 
4.4 Receiving Block 
 
The Receiving block consists of receiving control 
block, FIFO of 32 bytes, shift register, address 
recognition block, and etc. The block diagram is 
described in Fig. 6.  
As the Differential Manchester decoder recognizes 
the new packet, it transfers serial data to the shift 
register. When 16 bit data is stored in the shift 
register, upper 8 bits are loaded into FIFO. At the 
same time, it recognizes the address field in the shift 
register and decides if the data is to be received. In 
case that address does not match, data is not loaded 
in FIFO, and CRC in the shift register is checked to 
determine whether CRC error occurs. Finally, it is 
used to control generation of random numbers. 
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Fig. 6. Block Diagram of the Receiving Block 
 
The Receiving control block is used to control FIFO 
of the receiving block, shift register, and address 
recognition block.  
 
4.5 Interrupt Control Block 
 
Interrupt control block supports the interrupt 
handling by Interrupt Pin, and selectively deals with 
the interrupt based on the priorities of eight interrupt 
sources. Interrupt source supports Edge Trigger 
Mode only. The overall block diagram is described in 
Fig. 7.  
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Fig. 7. Interrupt Control Block Diagram 
 



 

     

 
4.6 Other Blocks 
 
As for other implementation, Loop-back mode is 
supported for the convenience of debugging, and 16 
input ports and 16 output ports are provided for hall 
station control of an elevator system. The 
implementation provides software reset function and 
has an output port to show current communication 
status.  
 
4.7 Testing Board 
 
The test board was designed with 8032 for CPU, 
ROM (32K bytes) and RAM (32K bytes). The board 
was also implemented with RS-232 channel for 
debugging, and FPGA was implemented using 
EPF10K100GC503-4 chip of Altera. The board 
performs communication using the designed 
communication transceiver, and consists of other 
blocks for elevator hall station. The overall block 
diagram is shown in Fig. 8.  
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Fig. 8. The Board with FPGA implementing EIA 

709.1 

4.8 Firmware 

The firmware program for i8051 using C language 
was designed. It is compiled using IAR 8051 C 
compiler of IAR Systems Co., Ltd. The test program 
is performed to display the transmitting/receiving 
data on the display unit using RS-232 port. We also 
debugged the firmware with a commercial emulator 
and a ROM-based method.  
 
 

5. EXPERIMENT OF EIA 709.1 
 
5.1 Test System Configuration 
 
The test environment, as shown in Fig. 9, consists of 
one hall board equipped with FPGA that is 
implemented with EIA-709.1 protocol, one original 
hall board, and controller board that manages overall 
data. Besides them, the test system consists of other 
test components such as button or lantern so that the 
transmission and receiving of packets were verified. 
Fig. 9 shows the detailed picture of the hall board 
equipped with FPGA implemented with EIA-709.1 
protocol. The clock for CPU and FPGA is 
14.7456MHz and 20MHz, respectively. The 
maximum input frequency shown in the specification 
sheet of the Neuron Chip is 10 MHz. Therefore, the 
frequency of 20 MHz for FPGA is suitable for EIA-

709.1 protocol to be implemented. The 
communication speed is used with 78.125Kbps fixed. 
An original hardware with the Neuron Chip 
implemented is used to test and verify 
interoperability between the original hardware and a 
new hardware implemented with the newly designed 
FPGA. 
 

 
 
Fig. 9a. Test System Configuration 
 

 
 
Fig. 9b. The Board with FPGA implemented with 

EIA-709.1 Protocol 
 
5.2 Verification Results 
 
First of all, the result of simulation was verified using 
SimWaves and Verilog-XL of Cadence. Fig. 10 
shows a communication packet that the transmitting 
block generates in case of Unrepeated service 
communication of the group address method. When 
the total of 10 data is loaded and then the 
transmission starts, Fig. 10 shows that the packets for 
each state are generated and sent out.  
 
Fig. 11 shows the simulation waveforms of the 
receiving block. These are the waveforms at the time 
of receiving the second packet. The total of 9 data 
points, from the 11th received FIFO through the 19th 
received FIFO, are received and stored, and we can 
also see that the control signals corresponding to 
each state are generated.  
 
The board test for the transmitting block was 
performed as the following. As key input is activated, 
packets are transmitted and then the original Neuron 
board receives the packets and changes the value of 
lantern of a hall board. On the contrary, the test for 
the receiving block was performed such that the 
received packets are displayed on the terminal using 
RS-232 port. Fig. 12 shows the oscilloscope 
waveforms measured from FPGA board when 
transmitting. Channel number 1 represents the signal 



 

     

that packet is transmitting, and channel number 2 
shows the data of the transmitting packet and 
represents that a normal operation has been 
performed.  
   

 
 
Fig. 10. Simulation Waveforms of Transmitting 

Block 
 

 
 
Fig. 11. Simulation Waveforms of Receiving Block 
 
 

 
Fig. 12. Oscilloscope waveforms of Receiving Block 
 
 

6. CONCLUSIONS 
 

In this paper, EIA-709.1 Control Networking 
Protocol was implemented. We resolved several 
problems raised as the conventional methods based 
on original Neuron chip are implemented. First, in 

order to increase flexibility, the protocol from 
physical layer to network layer was implemented 
using VHDL in hardware level, and verified with 
FPGA. Other upper layers were handled in software.     
By doing this, it is possible to control lower layers 
directly so that we can effectively deal with 
communication errors such as network failure, packet 
error, and etc. Secondly, CPU can be widely selected 
to control communication speed or process freely 
compared to conventional method, and high 
effectiveness could be accomplished as well. 
Therefore, if the result of this study is adopted to 
implement the EIA-709.1 protocol, the flexibility can 
be increased. In addition, because any kind of 
commercial CPU can be used with the method 
proposed in this paper, it can be used as a more 
useful and convenient approach than conventional 
methods. As a hardware part is designed using 
VHDL and implemented as IP, it is possible to apply 
this result in designing any application product using 
EIA 709.1 protocol such as SoC chip design of a 
distributed control system. The further work is to 
design optimal hardware and advanced firmware 
program. In addition, in case of using general 
processor, it is essential to build the integrated 
development environment, and especially, the study 
on application layer and network maintenance should 
be performed.  
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