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Abstract: The paper considers: 1) the determination problem of optimal filtering
and interpolation estimations in the mean square sense for stochastic processes with
continuous time on continuous-discrete time-delay (memory) observations; 2) the
determination problem of likelihood ratio for recognition of the stochastic processes
on observations of the same type; 3) the anomalous noises detection in discrete
channel with memory observations. Copyright (©2005 IFAC.
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1. INTRODUCTION

The modern stage in the synthesis theory of the
algorithms for stochastic processes treatment be-
gan from paper (Kalman, 1960). The pair {z; y: },
t >0, where x; is an unobservable process and y; is
an observable process, is the basic mathematical
object in the Kalman systems. This theory re-
ceived further development in (Kallianpur, 1980;
Liptser and Shiryayev, 1. 1977, II. 1978; Sage and
Melse, 1972; Van Trees, 1971). A new class of
problems is the situation when: 1) the observable
process is a set of process with continuous time
z¢ and discrete time n(t,,), ie. yr = y(t,ty,) =
{ze;n(tm); m = 0,1,---}; 2) the processes z; and
n(t,) are time-delay processes and possess the
memory relatively unobservable process, i.e. de-
pend not only on the current values but also on
the past values of process x;. For continuous-
discrete observations with memory the filtering
problem was considered in (Abakumova et. al.,
1995a, 1995b), the extrapolation problem was con-
sidered in (Dyomin et. al., 1997; 2000; 2003), the

recognition problem with fixed memory was inves-

tigated in (Dyomin et. al., 2001). The present pa-
per considers problems of adaptive in sense (Lain-
iotis, 1971) estimation and recognition with mov-
ing memory (see Remark 2).

Notations: P{-} is event probability, E{-} is
expectation; N{y;a, B} denotes Gaussian prob-
ability density function with given parameters a
and B; |D| is a determinant of matrix; D~! is the
inversion matrix of D; DT denotes transpose of
a matrix or a vector; I and O are unit and zero
matrixes of appropriate size; B > 0 is positively
defined matrix; a vector is column-vector.

2. STATEMENT OF THE PROBLEM

On the probability space (Liptser and Shiryayev,
I. 1977, II. 1978) (Q, F, F = (F)t>0, P) the un-
observable n-dimensional process x; and the ob-
servable [-dimensional process z; with continuous
time are described by the stochastic differential
equations (in the Ito sense)

dxt:f(taxbZbe)dt—i_(bl(taxbzbe)dwh t207 (1)
dZt - h’(tu T, xtft’l‘ sty xtft}‘\, y %y e)dt
+®2(t, z)dvy, (2)



and the observable ¢ — dimensional process with
discrete time n(t,,) has the form

N(tm) = G(tms Tt s Tty —tr5 5 Tty -1, aZ,H)
+D3(tm, 2,0)E(tm), m=0,1,---, (3)

where 0 <t —ty < - <t—1t] <t, <t &) =
const, k = 1; N. It is assumed: 1) the parameter 0
can accept values from the set © = {0y, 61,---,0,}
with the a priori probabilities py(0;) = P{6 = 0 i},
j = 0;7; 2) wy and v; are standard Wiener pro-
cesses; 3) for all & € © coefficients of the equa-
tions (1), (2) satisty conditions (Kallianpur, 1980;
Liptser and Shiryayev, I. 1977, II. 1978) and g(-)
is continuous for all arguments; 4) & (¢,,) is the
standard white Gaussian sequence; 5) xg, wy, vt,
&(tm), 0 are assumed to be statistically indepen-
dent; 6) Q(-) =@y (-)07 (-)>0, R(-)=
V(:) = ®3(-)®T(-) > 0 for all # € ©; 7) the ini-
tial density functions po(z|0;) = OP{zo < z[0 =
0;}/0x, j = 0;r, are given.

Problem 1 (estimation). To determine the op-
timal estimations p(t) and p(t — t,¢) in mean-
square sense for x; and Ti—r, k = 1; N, respec-
tively, on the realizations set F;" = {zo,no }
where 2§ = {25;0 < s < t}, 0" = {n(to), n(t1),"
Ntm);0 <tg < -+ <t <t}

Problem 2 (recognition). To determine the
likelihood ratio A; = (6, : 6,) for the hypotheses
recognition problem H,;{6 = 6;} and Ho{0 = 0,}
on the realizations set F,"

Remark 1. The term ”delay” means time delay in
mathematical models of both observed and nonob-
served processes (Dion et. al., 1999; Basin and
Martinez-Zuniga, 2003; Wang and Ho, 2003). Since
in this paper delay is present only in mathemati-
cal models of observed processes, the given paper
uses the term ”memory” meaning that the cur-
rent values of observed processes have a memory
relative to the past values of nonobserved process
according to (Abakumova et. al., 1995a, 1995b;
Dyomin et. al., 1997, 2000, 2001, 2003).

Remark 2. The models of the processes z:, 7(t.,)
of (2), (3) are adequate to the observations with

moving memory (Abakumova et. al., 1995a, 1995b;

Dyomin et. al., 1997; 2000). If t—¢; = 7, = const
in (2) and t,, —t; = 74 = const in (3), k=1; N,
observations have fixed memory (Dyomin et. al.,
2001; 2003).

3. MAIN RESULTS

For k = 1; N, we shall enter extended processes

Le—tx
~N k41 _ Lt—tx, | ~N+1 €T
Ly + » Trp—tr = | 2N (4)
P
Te—tx,

and operators

~ 8[fz(57 Y, ')@(3’ Y, )]
9yi

Ls,y[@(&ya')}:_
=1
1 o~ 2%[Qij(s,y,)e(s,9 )]
5 T G,

b

i,j=1

- 0 s Yy
i=1 g
Z 2o(s,y. )
J’_ i 1Qz] Yy - 8y18y] ’ (5)
@1(57%')

Lsyler(s,y, )i p2(sy, )= ©2(s,9,-)
fote ety [ 220]

Let for j =0;7, k = 1; N,

pe(0;) = P{O = 0;]z¢,n5"}, (6)
pe(z;2n0;) = ONTIP{2y < 237N,
<Tnl0 =6, 25, 5} 0x0T N, (7)

ptft*‘(ngkJrlw) aN k:+1p{~N k+1

t—t}

0 * /0T N—k41- (8)

Theorem 1. The posterior probabilities (6) and
the posterior conditional probability densities (7)
on the time intervals t,, < t < t,,41 are deter-
mined by the equations

dtpt(ej) = pt(9j>[h(ta Z|9j) — h(t, Z)]T
“R1(t, 2)[dz: — h(t, 2)dt], )
dipe(2;Tn105) = { Lt x[pe (23 2n105)

S Ty_pt1l0 =05, 2

N

+ Lot [pe(@ EN105)ipe vy (Fn-r110,) ]t
k=1

+pt($; ENW])[}L(ta x, ENa 2 9]) - h(tv Z|9J)}T
x RY(t, 2)[dz — h(t, z|6,)dt] (10)
with the initial conditions

po,, (0,) = SOl 2100 o

C(n(tm), 2)
e, (2 7N10;)
(n(tm) Z, T .1']\/‘,9) ~
Dt,. —o(x; N 105), (12
Clnlt) i) PomolB i) (12)
where
W:E{h(taxtvié\it*az’9)‘267776”}7 (13)
h(t, z|0;)
= B{h(t,zs, 7N ., 2, 0)|0 = 0;, 25,05}, (14)
C(n(tm)3 )_ E{C( (m)wzvxtmv
%ﬁL—t*vo)‘Zémvng)n ! ) (15)
Cntm), 210;) = E{C(n(tm), 2, 24,,,
T s 0)|0 = 05, 257 g ), (16)

Cn(tm), z,2,Zn,0;) = |V(tm, 2,0;)|~ 1/2
Xexp{_§[ ( m) _g<tmv$7xN7279j)]
XV (tm,2,05)[0(tm) = 9 (tm,z, T 12,05} (17)



Proof. For (j =0;r)

p(z;ZN;0;) = ONTIP{ay < ;7 . <Zn;
0 = 0125, 10"}/ 0x0T v (18)

on the time intervals ¢,, <t < t,;,4+1 we have the
equations

dipe(2; TN 05) = { Lt o [pe (23T 0;)]

N
+Z£H;,xk [Pt (252 N30 )3pe—t7 (T N—k415 05) [Hdt
=1

+pe(z;Zn; 0;)[M(t, 2, T, 2,05) — h(t, 2)]T
xR71(t, 2)[dz — h(t, z)dt], (19)

Pr—tz (TN—k+1;05) = ON—kH1p (N A+

<FN_pr1;0 = 05]2 tkmok}/amN k+1 (20)

with the initial conditions

Pt (T;7N;0;)
Cn(tm),z,z,Zn,0;) ~
= _olxz; N3 05), (21
C(n(tm),z) ptm 0(1.7‘%1\/" j)?( )
which follows from (Abakumova et. al., 1995a;
Theorems 1, 3). Since

pe(z;2N;05) = pe(z;2N(0;)pe(05),  (22)

integrating (19), (21) with respect to {z; Zn} tak-
ing into account (14), (16) yields (9), (11), and
(12) follows from (11), (21). As innovation pro-
cess

Zr = /0 [dzs — h(s, z)ds] (23)

is such that Z, = (3, F7) is Wiener process (Kal-
lianpur, 1980; Liptser and Shiryayev, I. 1977, II.
1978) with

B{E3T|F) = /O R(s,2)ds,  (24)

then differentiating according to Ito formula (Kal-
lianpur, 1980; Liptser and Shiryayev, 1. 1977, II.
1978)

pe(;2N105) = pe(z;2n305)/pe(0;)  (25)

taking into account (9), (19), (23), (24) yields
(10).

Theorem 2. The mean-square optimal filter-
ing estimation u(t) and interpolation estimations
wu(t —t5,t), k =1; N are determined by

= 20

titZa Z.UJ tkatw pt( )v (26)

7=0

where (see (4), (7

©(t0;) / /xpt x; Tn|0;)drdTy,
(e85, 165) =+ fonpel: o 165)dad, (27)
and p¢(6;), p:(x; Tn|0;) are determined by Theo-

rem 1.

Proof. As the meant-square optimal estimations
are posterior expectations (Kallianpur, 1980; Liptser
and Shiryayev, I. 1977, II. 1978) then

pu(t) = E{xt|zévn6n}7
pu(t =i, t) = B{xi |25, ng"}- (28)
As F7" C FP™ then according to (27), (28)
u(t) = B{E{w| FF "0 F7
= E{u(t|0)| 7"}, (29)
plt =1, 1) = B{E{we |77 HF)
= E{p(t = 1;10)[F"-
Then formulas (26) follow from (6), (7), (27)—(29).

Remark 3. In Lainiotis sense (Lainiotis, 1971) es-
timations (26) are adaptive estimations of filter-
ing and interpolation with respect to the set of
continuous and discrete observations with moving
memory.

Theorem 3. For the likelihood ratio A:(6; : 64)
in the problem of hypotheses recognition H;{6 =
0} and Ho{0 = 0,.}, j =0;7, a =0;r, j;éoz we
have

At(9j : Ha) = At_t’{_o(ej . Ga)

Can(t:), 216;)
e {Zm {cm(ti), zwa)}

+ f [h(svzlej) —h(8,2|9a)]TR_1(S,Z)

t—t}

x[dzs — $h(s, 210;)ds %h(s,zwa)ds]}.(BO)

Proof. Let us denote P;(0; : 0) = p(0;)/p:(0a).

As Ay(8; 1 0,) = [po(0a)/po(0;)]Pi(8; : 0,) (Sage
and Melse, 1972; Van Trees, 1971) then differenti-
ating according to Ito formula taking into account
(9), (23), (24) yields for t,, <t < t;n41 the equa-
tion
diAe(0; 2 6,)
= Ae(0; : 0,)[h(t, 2]0;) — h(t, 2|0,)]T
XR7L(t, 2)[h(t, 2) — h(t, 2|04)]dt
+A¢(0; : 0,)[h(t, 2|0;) — h(t, 2|04)]"
XR7Y(t, 2)[dzy — h(t, z)dt] (31)

with the initial condition
C(n(tm) 72‘0]')

A, (05:0a)= C(ntm),z|0a)

A, —0(05:04), (32)



which follows from (11). Let us denote A.(6; :
0o) = In{A.(6; : 0,)}. Differentiating according
to Ito formula taking into account (23), (24) yields
for t,, <t < t,,+1 the equation
di i (0; 2 0,)
= [h(t, 2[0;) — h(t, 2[0a)] " R7(t, 2)
x|dzy — (1/2)(h(t, 20;) + h(t, z|6,))dt] (33)

with the initial condition

As, (0 : 00)

m

= /~\tm_0(0j : Ha) +1

Then (30) follows from (33), (34).

From Theorem 1-3 follows that the effective cal-
culation p(t), p(t — t5,t), Au(0; : 6,) are real-
ized provided that there is a possibility of effec-
tive calculation p(t]6;), u(t — t3,t6;), h(t, 210;),
C(n(tm), 20;). In following item the particular
case of the processes ¢, z¢, 1(tm) supposing such
possibility is considered.

4. CONDITIONALLY-GAUSSIAN CASE

Proposition 1. Assume (see (1)—(4))
fC)=[t,2,0)+ F(t,2,0)z,
Dy(-) = Py(t, 2,0),
h() = ht,2,0) + Hon(t,z, 9)35?;;, (35)
9() = 9(tm, 2,0) + Go N (tm, 2, 0)Z, ¢
po(@)0;) = N{w; i, T3}, j = 0ir,

m*t’”

where
Hon(-) = [Ho():H1(-): -+ :HN ()],
Gon(-) = [Go():Gr():---1GN ()] (36)
Then (t —th = [t —t},---,t — t}])
pe(x;Zn105) = pe(@N+1105) = N{Zn1;

fin41(t—T, t10;), Tna (=T, t10;)}, (37)

N B p(tl6;)
fin+1(:10;) = [ fin (t =y, 165) ]

(t[6;) _
=Ly |+ @
= V| T(8) Ton(t—ty.tl6))
FN+1("0J) - [ fg“N() FO;V( t;,v,t|0 ) ]
L(t]0;) Toy(t—17,t)0;) Tor(t—15,t0;)

r ) (t t17t|9) Flk(tft?"titz’th)’(gg)
) THO) Drr (tt5, 216;)

=L;N—-1, k=2;N, k>I,

and block components of distribution (37) param-
eters fin+1(+), Dny1(¢) for all j = 0;7 are defined

by system of differential-recurrent equations (11)—
(20), (24)—(29) in (Abakumova et. al., 1995b).

The formulated proposition follows immediately
from the results of (Abakumova et. al., 1995b).

Theorem 4. Let (35) be satisfied. Then we have
Theorems 1-3 where p(t|6;), p(t —t;,t]0;) are de-
termined by Proposition 1 and
h(t, z|6;) = h(t, 2,0;)
+Hon (8 2,0;)in+1 (¢ — T3, 116;),  (40)
Cn(tm), 2105) = |V (tm, 2,0;)| 7/
x exp{—(1/2)[n(tm) — g(tm,z,0;)]"
XV (tm, 2, 05)[0(tm) — g(tm, 2,05)]}
— thv tm0)["/
TN 1t — Epstn — 010)[1/2
exp{(1/2)a(t,,|0
Erivor oy
a(tm|0;) = Fiky 1 (tm — Exs tml0;)
XIS (b — T ol 031 (i — By b6,

T2 (Em

a(tm — 0(6;) :ﬁ%+l(t t]\n —06;)
XFJT/'{i-l( m t]\ﬁ m O|0 )
)TNt (tm = Tt = 016;). (42)

Proof. The formula (40) follows from (14), (35)—
(38), and (41) are proved by analogy with (4.26)
in (Dyomin et. al., 2001).

Let us consider the case when coefficients of (35),
(36) are independent of z and solutions are made
in moments t,, of discrete observations recept, i.e.
only by values of Ay, (6 : 64).

Theorem 5. Let coefficients of (35), (36) are in-
dependent of z. Then

W (t]0;)] /2
(W (tm]0a)]~1/2
exp{=5 AT (tm 0;)W ™ (t:10;) Atm, 0,)}
GXP{*%AT(tma W)WMt |0a) At 00 )}
A(tm, 0:) = [(tm0:) — g(tm,0:)],

Ao, (6 : 6) =

,(43)

where for all ¢ = 0;r

N(tm0:) = n(tm)
—Go,N (tm, 02)Fin+1(tm — Eiys tm
W(tm|9')_ (

XFN_;,_l(t tN’

— 00:), (44)
:0i) + Go,n (tm, 0:)
O|0 )GgN( maoz) (45)

Proof. From (3), (35), (36), (44) taking into ac-
count independence coefficients from z follow that
process 7(tm, |0;) by hypothesis H; (0 = 6;) is Gaus-
sian with parameters g(t,,, 0;) and W (t,,|6;), i.e

e, (N[Hi) = N{; g(tm, 0:), W (tm|6:)}. (46)



Then for

A, (05:00) =D, (1(Em105))/Pr,., (1(tm|0a)) (47)

from (46), (47) follows formula (43).

Theorem 6. Let conditions of Theorem 5 are
satisfied and f(-), F(-), ®1(-), h(-), Ho.n(-), Go,n(+)
are independent of . Then for Kullback diver-
gences (Kullback, 1960) for all j = 0;7, a = 0;r,
j # a7

Itm (] : a)

take place formulas

= E{ln[A,, (0; : 6a)lH;}  (48)

1 tm|Oa
I, (G o) = L [ ml%a)]

2 [W(tnl6;)]
(tm0a)W (tn6;)]
—g(tm,GQ)]TW !

= 9(tm,0a)] —

1
+otr[W
1

+_

S| )

g(tma 0])

X[g(tmv 9])

(tm
5 (9)

Formula (49) arises from (43), (46), (48).

5. EXAMPLE

Let x4, z¢, n(tm) are scalar stationary processes
and are represented by

dry = —axedt + ®1dwy, a >0,
dZt = Hoil'tdt + (I)det,

Ntm) =Gowe,+ G124, t++E0 (tm) +081 (Em),(50)

i.e. m; is Ornstein-Uhlenbeck process (Kallian-
pur, 1980), z; is process without memory, & ~
N{Oa VO}a 51 ~ N{b7 Vl}7 0 = {00;01} = {0’1}7
&o(tm) is a regular noise, & (t,,) is an anomalous
noise. Therefore the problem of hypotheses recog-
nition Ho{# = 6o} and H1{6 = 61} is problem of
anomalous noise detection. The case of rare obser-
vations is considered when solution is made only
with respect to the current discrete observation

n(tm)'

Proposition 2. For Ay (01 : 6p) and Kullback di-
vergences Iy (1:0), I, (0: 1) we have

Atm (91 . 90) = (Wo/W1)1/2

S A0 NN
L, (1:0)=

1 Vo +vg(t")
JlﬁHn%+wa
(+ D)V ]
Vo+v9t*) ]’

)= L (U DV +g(t)
o1 = i (50 £t

(@ -1V
I+ 1)V + vg(t*)} ’ (53)

(52)

where [ and q are such that V; = [Vy, b = ¢/ Vo,

ﬁ(tm) = n(tm) - GUM(tm - O)
7G1‘LL(tm —t* b — 0),

y=MA—-a)/d, A= \/m7
§=H2/R, Q=032 R=a2
g(t*) = G2+ G3[e + (1 — &) exp{—2)t*}]
+2GoGrexp{—At*}, = (A+a)/2X. (54)

This Proposition follows from Theorems 5, 6 tak-
ing into account (50) and formula (3.19) in (Dy-
omin et. al., 2000).

Let I, (1 :0) and I, (0 : 1) denote the corre-
sponding values in the case of observations 7(t,,)
without memory, when Gy =0. Then AL (1:0) =
L (1:0)—1, (1:0), AL, (0:1) =1, (0:1)—
I, (0 : 1) will characterize the observation effec-
tiveness with memory in regard to the observa-
tions without memory with respect to probable
errors « = P{0 = 6,0 = 6p} and 8 = P{0 =
6ol0 = 61}. Lower boundaries o* = infa and
B* = inf 8 can be find from Kullback inequalities
(Kullback, 1960)

I; (1:0) > BIn[5/(1 — )]

+(1 = 8)In[(1 = B)/a, (55)
I, (0:1) > alnja/(1 - 5)]
+(1 —a)In[(1 —a)/8]. (56)

Since inequalities ALy (1:0) >0, AL, (0:1) >0
correspond to inequalities Aa* < 0, AG* < 0
according to (55) and (56), then a channel with
memory is more effective then a channel with-
out memory with respect to a probability of false
detection « and probability of anomalous noise
omission 8. From (52), (53) for AL (1 : 0),
AT, (0:1) follow formulas

AL, (1:0) = AL(1:0) + AL(1:0),
AL, (0:1) = AL(0:1) + AL(0: 1), (57)
AT (1:0) = (1/2)In[dy/d,],
AL (0:1) = (1/2)In[dy /ds], (58)
di = [+ 1)V + g(t" W[V + G§l,
= [V + gt ML+ 1)V + Gl (59)
AL(1:0) = (1/2)(¢* + DV ([V + g(t*)y] !
—[V+GH), (60)
AL(0:1) = (1/2)(¢* =)V ([ + 1)V
FgE)N] T = [+ DV +GH]). (61)

The research of the dependencies AI; (1 : 0),
AL (0 : 1) as functions of the memory depth ¢*
brings us to the following result.

Proposition 3. Let

(Go, Gl) EG:{(GQ, Gl)Z |G0+G1| < |G0‘}(62)



Then AL, (1:0) and AL, (0: 1) by ¢t* 1§° are
monotonically decreasing from the values AT} (1 :
0) > 0 and AI? (0 : 1) > 0 up to the values
AI(1:0) <0and AI°(0: 1) < 0. The value
t* subject to Iy, (1 : 0) = AL, (0 : 1) = 0 can

be defined as the effective depth of memory deter-
mined by the formula

1 |Gol+ VG0 —ee(1—2)|G:[?
tre =<1 . (63
eff A n 89|G1| ( )
The values AI? (1:0), AI? (0:1) and AI°(1:
0), AI°(0 : 1) are determined by the formulas
(57)—(61), where g(t*) = go = (Go + G1)? and
g(t*) = goo = G2 + G2, respectively.

The influence of continuous observations z; on qual-
ity detection is carried out by means of parameter
g, and when z; is absent (§ = 0) then e = 1. In
this case from (63) it follows that

tery = (1/a)) In(2|Gol/|Ghl), (64)

i.e. formula (5.22) in (Dyomin et. al., 2001) is
referred to as a particular case (63).

6. CONCLUSION

Under conditions (35) the obtained solution in-
cludes solutions of particular problems: 1) there
is no discrete observations (Go n(-) = O) and con-
tinuous observations with memory, without mem-
ory (Hy(-) = O,k = 1; N), with lag (Ho(:) = O);
2) there is no continuous observations (Ho n () =O)
and discrete observations with memory, without
memory (Gi()=0,k = 1;N), with lag (Go()=0).

As it follows from the example considered the pres-
ence of memory can either improve or worsen the
quality of recognition procedure and estimation
procedure (Abakumova et. al., 1995b; Dyomin et.
al., 1997; 2000).
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