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Abstract: Robust Exponential stability of continuous-time attractor neural networks with
delays is discussed. A new sufficient condition ensuring existence and uniqueness of
periodic solution for a general class of interval dynamical systems are obtained. Discrete-
time analogue of the continuous-time systems with periodic input is formulated and we
study their dynamical characteristics. The robust exponential stability and periodicity of
the continuous-time systems is preserved by the discrete-time analogue without any
restriction imposed on the uniform discretization step-size. Copyright © 2005 IFAC
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1. INTRODUCTION

The properties of equilibrium points of neura
systems play an important role in some practical
problems, such as optimization solvers (Chen, 2000;
Forti, 1995; Kennedy, 1988; Tank and Hopfield,
1986; Sudharsanan and Sundareshan, 1991), pattern
recognition (Liu and Lu, 1997) and image
compression (Venetianer and Roska, 1998). It is well
known that an equilibrium point can be viewed as a
specia periodic solution of continuous-time neural
systems with arbitrary period (Zhang, 2002; Sun and
Feng, 2003, 2004;). In this sense the analysis of
periodic solutions of neural systems may be
considered to be more general sense than that of
equilibrium points. In addition, the existence of
periodic solutions of continuous-time neura
networks is an interesting dynamic behavior. It has
been found applications in learning theory (Townley,
2000), which is motivated by the fact that learning
process usualy requires repetition. On the other hand,
the dynamical characteristics of neural networks may
often be destroyed by its unavoidable uncertainty due
to the existence of modeling errors, external
disturbance and parameter fluctuation during the
implementation on  very-large-scale-integration
(VLSI) chips. Thus, it isimportant to investigate the
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periodicity and robustness of the network against
such errors and fluctuation. In order to overcome this
difficulty, (Liao, 1998; Arik, 2003; and Sun, 2003)
have extended the model of delayed Hopfield neural
networks to interval-delayed neura systems. We
further extend the model of delayed Hopfield neural
networks with constant input to interval dynamical
systems with periodic input in (Sun, 2004).

Dynamical analysis of continuous-time attractor
neural networks with delays have been the new
world-wide focus (Van and Zou, 1998; Cao, 2000;
Gopalsamy, 1994; Liao and Wang, 2003; Sun, Zhang
et a, 2002; Mohamad, 2001). However, in
implementing the continuous-time neural system for
simulation or computational purposes, it is essential
to formulate a discrete-time system which is an
analogue of the continuous-time system. A method
which is commonly used in the formulation of a
discrete-time analogue is by discretizing the
continuous-time system. Certainly, the discrete-time
analogue when derived as a numerical approximation
of continuous-time system is desired to preserve the
dynamical characteristics of the continuous-time
system. Once this is established, the discrete-time
analogue can be used without loss of functional
similarity to the continuoustime system and
preserving any physical or biological redlity that the
continuous-time system has. Though there exist a lot
of numerical schemes (such as Euler scheme, Runge-
Kutta scheme) that can be used to obtain discrete-



time analogues of continuous-time neural networks.
However, it is generally known that these numerical
schemes can exhibit spurious equilibrium and
spurious asymptotic behavior, which are not present
in the continuous-time counterparts. The existence of
spurious equilibrium and asymptotic behavior in a
discrete-time analogue can happen if one holds the
positive discretization step size fixed and let the
original  parameters (i.e. parameters of the
continuous-time system) vary within the asymptotic
parameter space of the continuous-time systems. Asa
consequence, one has to impose limitations either on
the size of h or on the original parameters so as to
avoid the existence of spurious equilibrium and
spurious asymptotic behavior in the discrete-time
analogues. With such limitations, the computational
capability of the continuous-time network will not be
achieved fully by the discrete-time analogues. Here,
we refer to (Mohamad and Gopalsamy, 2003; Sun
and Feng, 2005) and their references therein for
related discussions on the importance of discrete-
time counterparts.

In this paper, we will derive a easily checkable
condition to guarantee robust exponentia periodicity
of continuous-time attractor neural networks with
delays for pattern recognition. We will also study the
robust exponential periodicity of discrete-time neural
systems with delays. To the best knowledge of ours,
this is the first time to investigate the robust
exponential  periodicity of discrete-time neura
networks with delays.

2. PROBLEM STATEMENT

Consider the model of continuoustime neura
network with delays described by the following
functional differential equations

X(t)=%1x(t)+iaq f(X(t-2)+0), t>0 (1)

x@t)=¢ @), i=12--,n,
where 0< 7, <7 is the transmission time delay of
the jthunit, X (t) isthe state vector of the i th unit
a timet, a;,b; are constants. For simplicity, let
D be an nxn constant diagonal matrix with
diagona elements d; >0, i=12...,n, A=(a;) is
nxn constant interconnection matrix,
f, (X, (t—7,)) denotes the activation function of the
jth unit at time t—z,, 10)=(0,0).,0...],0) eR" is
an input periodic vector function with period o , i.e.,
there exists a constant >0 such that
I t+w)=1,(@t) (=22---,n) for dl t>0, and
X= (X, X5,...,%,)" € R". Suppose further f eGLC
inR", i.e, for each je{12--,n}, f,: R—>Ris
globally Lipschitz continuous with Lipschitz constant

M, >0, that is [f,(u)-f(V)|<Mu-y for al
u, v e R. Moreover, we will use norms of vector x
inR", which is defined as x| = >"|x|.

As a specia case of neural systém (2), the delayed
neural networks with constant input vector
| =(I,,1,,...,1,)" € R " have been studied

widely by many researchers. This system is described
by the following functional differential equations

XO=—dxO+2 a1 05-a)+, 120 @

X@t)=¢ (), v<t<0,i=12---,n,
Define x, (0) =x(t+0), 8 [-7,0],t >0. Let

x]= sup Yl (t+0).

-7<60<0 j=1
Let X =(X,%,,-,X,) be the equilibrium point of
system (2), i.e,

dlx[:iaijfj(xi')ﬂl (3)

In practice implementation of neural networks, the
value of the constants d, and connection weight

coefficients a; depend on certain resistance and

capacitance value which are subject to uncertainties.
This may lead to some deviations in the value of d, ,

and a; . The deviations and perturbations of the

neuron charging time constants and the weights of
interconnections are bounded in genera. In the
following, we correspondingly intervalize the above
mentioned quantities by defining the set of matrices
as follows similar to (Liao, 1998; Sun and Feng,
2003).

D, ={D=diag(d,), . :D<D<D,
<3

A ={A= (aij)nxn A ASK’

e, a; <a; <a;,i,j=12,..,n}.

In the following, we formulate a discrete-time
analogue of the continuous-time neura networks (1)
by a semi-discretization technique. For detail, reader
can refer to (Sun and Feng, 2004).

X (m+1) = x(m)e "
+ (h){i a,f,(x (m-)+1, (m)} @

fori=12,---,n, me Z;, where

1-e ™"

0, (h) = L i=12-.n.

It can be verified that 6 (h)>0 if d, >0,h>0.

System (4) is our discrete-time analogue of the
continuous-time system (1). It is easily to verify that
the discrete-time analogue (4) converges towards the

continuous-time network (1) when h — 0.



In order to study the discrete-time analogue (3), we
assume that the system (3) is supplemented with an
initial condition, a consequence of the discretization,

of the form x(I)=¢ (1) for | e[-0,0], where
i=12--,n, o= maxj:lz‘___,n{aj}, and the external
input function are periodic function with positive
integer period @ , i.e.,

L (m+a@)=1,(m),i=12---,n, meZ".

As a specia case of neural system (4), the delayed
discrete-time neural networks with constant input

vector | =(l,1,,...,1,)" e R" is described by the
following functional differential equations
X (M+1) = x(me "

+0i(h){zn:aijfj(xj(m—ai))+li}. ©)

Let X' =(x,x,-,x) denote an equilibrium point
of (5). We obtain from (5) that
X =xe 10 (h){znjaij fj(x;)+|i}.
j=1
from which one easily obtains the equilibrium point
equation (3) of system (2). Obvioudly, the discrete-

time analogue (5) preserves the equilibrium X of the
continuous-time network (2).

3. MAIN RESULTS

In this section, we will present the results concerning
the robust exponentia periodicity of interval delayed
neural networks of the form (1) and (3) for each
D:diag(di)nxn € DI 1 A: (aij)nxn € A1 )

Theorem 1. Suppose fe GLC. If there exists a
positive diagonal matrix A =diag (4,,4,,...,4,)
such that the system parameter
d , a (,j=12--,n) saisfy the following

conditions
Ad —Miz”a}‘>o,for i=1--,n, (4
j=1

where

oy | = max... ., {éu fa, |}
then for every periodic input | (t) , the delayed neural
system (1) isrobustly exponentially periodic.
Proof. Let C=C([-7,0],R") be the Banach space
of al continuous function from [-z,0] to R" with
the topology of uniform convergence. For any ¢ € C,

let |4 =sup_...., > |4, (). Given any ¢, peC,

let  X(t,¢) = (X (t.¢). %, (t.¢), X, (t,¢)"  and
X(t, ) = (X, (@), %, (t, @)+, X, (t,p))"  be the
solutions of (1) starting from ¢ and ¢ respectively.

Define X (¢)=x(t+6,¢), 0e[-7,0], then
X (¢) e C fordl t>0. Thus, it follows from (1) that

XH-%tA=-dxtA-x%00)
+Y 8, (1,0, -, - F,(x,t-7,.0) O

fort>0,i=12,---,n.
We consider function F, (-) defined by

F(z)=4(d, —gi)—Mie”"Z"“zj‘a*ji‘
-1

for &, €[0,0),i=1---,n. (6)
We have from (4) and (6) that F, (0)>0 for
i=1---,n and hence by the continuity of F, (-) on
[0,0) , there exists aconstant & > 0 such that

F(e)=4 (g. —5)—Mie”ilj‘a}‘>o’
-1

fori=1---,n @)
We will use the following positive definite
Lyapunov function candidate defined as follows:

VO =Y 2 (x 09 -x to)e"

YA

t

t-7j

X, (5,4) X, (5,0) e dsJ . (®

Define the upper right derivative of V(t) by
D*V(t) = limsup[V(t+h)-V(t)]/h.
h—0*

Computing the upper right derivative of V(t) aong
(5) for t >0, we have

DV =D A 5ot -6 -9 -t )

+3a,(f(x, t-7,. )~ ,(x, (-7, ,q)))}e“

+ A% ()%t p)ee

es(Hrj)

£33 Afa M .8 -x, o)
%, t=7,.9) - %, (t-7,.0) &)

sga[—dilx(t,¢)—x(t,<o>|

+Zi:|a”||fj (x,(t=7,, ) - f,(x, (t-7, ,(D)ﬂem
+3 AXEA-x o)
+Zin:12rj‘:11i |aiJ |M j qX; (t’¢)_ Xj (t’(D)
~|x, =7, H-x t-7,.0) &)
<> aldixta-x ol
+3 XA -xt.o)
+XT AlaM([x, 6 - x, o)
s—i{& d-9-Me YA, \}{x 9% t.0)
<0.

&'

es(HrJ’)

e

(t+7j)
es rl)

est




Therefore,
V()< V(),t=0. 9
From (8), we obtain
et (ming., 2 ) % (t.8)—x (t. @) <V(1)
and

V() =" 4[% (0.4)-x (0.0)

20

e or n
< lmaxKisn A +Mre " 4 maxmsn(

a, |M j .[0,, |Xi (s.4)-x (s d S}

2 |Jlo-.

M,} is constant. Therefore,

Bisn{

where M = max
from (9), we get

Yo g -x o) <alp-glexp-ct)  (10)
fordl t>0, where

max,._, 4 +Mze" )" 4 maxhj.gn(la:j U
a= - >1.
min,,_, 4,

It follows from (10) that

% (#) - x (9)]| < @l - ¢l exp(-£(t 7)) (11)
We can choose a positive integer m such that

aexp(-e(mw—1)) < % .

Define a Poincaré mapping H:C—>C by
Hg¢ = x, (¢) . Then from (11), we can derive that

[Hrg-H"o| <780, (12)

where H"¢=x_ (¢) . This implies that H™ is a
contraction mapping. Therefore, there exists a unique
fixed point ¢ eC such tha H"¢ =¢"

So, H"(H¢")=H(H"¢")=Hg¢" . This shows that
H¢" eC is dso a fixed point of H™ , hence,
Hg =¢", that is, x,(¢")=¢". Let X(t,¢") be the
solution of (1) through (0,¢) By using
It+w)=1() for t>0, X(t+w,¢") is dso a
solution of (D). Note that
X., (@) =% (x,(#))=x(¢") for t=0 , then
Xt+w,¢")=x(t,¢") for t>0 . This shows that
X(t,¢") is a periodic solution of (1) with period o .
From (11), it is easy to see that all other solutions of

(1) converge to this periodic solution exponentialy
ast— +owo.

Remark 1. When |1 =(1,1,,---,1,) is a constant
vector, then for any constant T>0 we have
I =1(t+T)=1() for t>0. Thus by the results

obtained, when the sufficient condition in Theorem 1
is satisfied, a unique periodic solution becomes a
periodic solution with any positive constant as its
period. So, the periodic solution reduced to a
constant solution, that is, an equilibrium point.
Furthermore, al other solutions globally

exponentially converge to this equilibrium point as
t >+ . The unique equilibrium point of the
delayed neura system (2) is globaly robustly
exponentially stable. Obvioudly, the results obtained
are consistent with the exponentia stability results
that were recently reported in (Cao, 2000; Sun, et al,
2002) and (Sun and Feng, 2003; Zhang, 2002).

Theorem 2: Suppose f eGLC and the positive step-

sizeisfixed. If there exists a positive diagonal matrix
N =diag (4,4,,...,4,) such that the system

parameter d, , a, (i,j=12--,n) saisfy the
following conditions
zigi—Mii,zj‘a*ﬁbo, for i=1---,n,

j=1

where
|a” | =max, ., {Qij |1 |aij |}!

then for every periodic input 1(m) , the delayed
neural system (3) is robustly exponentially periodic.
Proof. Let B=B([-k,0],,R") be the Banach space
with norm |¢] = max, ., . @Li ¢, (I)|) for any
$peB Given ay ¢ , weB , le
X(m,g) = (x, (M, $), %, (M §).,+, %, (M,$))" and

X(m,l//)=(Xi(m,l//),xz(m,l//),"',Xn(m,l//))T be the
solutions of (16) starting from ¢ and  respectively.

Define  x"(#)(1) = x(m+1,¢), |e[-0,0],, then
x"(#)(1) e B for adl me Z". Thus, it follows from
(3) that

X(MH19) —x(M+1y) < Xm¢h)—x(my)e””

+ gi (h){i a1j M i (Xj (m_Gj |¢) - Xj (m_ Gj !l//))|}

j=1
fori=12,---,n. (13)
We consider function IE (-) defined by

oj +1
r.i

F()=40-re™)-Ma MY 4,
forr, e[L),i=1---,n. (14)

We have from (4 and (14) that

F=0 (h)[/ligi MY A U >0 for

i=1---,n and hence by the continuity of
IEi(-) on [1,), there exists a constant r >1
such that

F()=40-re*)-MaMmY 4 [r 20,
j=1

fori=1,---,n (15)
In the following, we consider nonnegative sequence
z,(m) defined by
% (M, $)—x (M)
g, (h)
fori=%---,n, me[-o,x),. (16)

z(m=A"r"




By using (18) and (21) we obtain the following
inequalities:

X (m+11 ¢) —X (m+11 W)|
¢, (h)

z(m+)=A"r""

<re ¥z (m+2"Y [a,}4,M,0,(r" "z (m-0)),
j=1

fori=%---,n, me[-o,x),. ()]
Accordingly, we will use the following positive
definite Lyapunov function candidate:

V(m) = Z(; W) +/1fi|au M, 0, (hyr k"“‘:izj (l)]

for me Z, . (18)
Calculating the difference AV(m) =V(m+1) -V (m)
aong (22), we obtain

AV (m) < Zn: {re""“zi (m)

i=1
+/1;1r2|a”. |/Ij M. 6, (hr” "z (m-o,)
j=1

+/1;1an|au |/11 M6, (hr”™ Zm: z,(1) -z (m)
=

I=m+1-k;j

n m-1
& Sla g0 0 $iz,0f
j=1

I:m—kj

= —Zn: {1— re " —M.,é, (h)zn: A4, |aji
i=1 j=1

n

:_Zﬂ'. —1{& (1_rédih)_Mi f (h)iﬂq ‘aji

L

r“'”}z (m)

n

3—241{4(146“‘“)—'\4 Y

a
ji

r“}z @™ 19

for me Z,. By using (20) in (24) we assert that

AV(m<0 for meZ, which implies
V(m) <V(0) for me Z" . It then follows from (19)
that

Yzm=<Y {20

i=1

+/1flzn:|au |/11 M0, (hyr =™ le % (I)}
j=1

I==0j

and by substituting (21) in the above we obtain
i P |Xi (m, ¢) =X (m| l//)| < (Ejm
r oj +1O_i }

=l 6, (h) \r
xi/lll{l+ M0, (2, Y a,
= =

x| sup |¢i_l//i|
id-00, 6, (h)

with the implication

Ay & Ao (1Y
oS me) - () < = (?)

xz":{u M, 6, (M4, Z CH }x( sup |¢, v, |),
i=1 j=1 le[-0,0]z
where

2’mm = mini:l,z,---,n {ﬂl } 1 ﬂ’max = maxi:l,z,---,n {ﬂ“l } '

0, (N =min_, 16, ()},
0, (N)=max,_,, {0, (h)}.
Therefore, we obtain
> [x (@) -x"w) < a(%j Z(sup 4. -v, Ij |

for me[-o,0),,

where
2.0, () oy
=—TeCmee T m L+MaMh) fa ro
“ lm\nemin(h) axsz"'vn{ I ‘( )le ! O-}
>1.
We can choose a positive integer m such that
1 M@ -o 1
= <=, 20
“[rj 4 20

Define a Poincar¢ mapping H:B—>B by
Hg¢ = x_ (¢) . Then from (20), we can derive that

R B ] @y

where H"¢=x_ (¢) . This implies that H" is a

mo

contraction mapping. Therefore, there exists a unique
fixed point ¢"eB such that H"¢ =¢" . So,
H"(Hg")=H(H"¢")=Hg" . This shows that
Hg¢" eB is aso a fixed point of H" , hence,
Hg" =¢", that is, x, (¢")=¢". Let x(k,¢") be the
solution of (3) through (0,¢7)
I(m+@)=1(k) for meZ", x(m+@,¢") is dso a
solution of (16). Note that
X (87) = X (X, (47)) = X, (¢7) for me Z", then
x(M+a@,¢") =x(m,¢") for me Z*. This shows that
x(m,¢") isaperiodic solution of (3) with period @ .
From (21), it is easy to see that all other solutions of

(3) converge to this periodic solution exponentialy
as M—> +oo.

By using

Remark 2. When | =(I,,1,,---,1,) is a constant
vector, then for any constant T>0 we have
| =1 (m+T)=1(m) for me Z". Thus by the results

obtained, when the sufficient condition in Theorem 2
is satisfied, a unique periodic solution becomes a
periodic solution with any positive constants as its
period. So, the periodic solution reduced to a
constant solution, that is, an equilibrium point.
Furthermore, all other solutions globally robustly
exponentially converge to this equilibrium point as
m— +co . The unique equilibrium point of the
discrete-time dynamical neural system (4) is globally
exponentially stable. Obvioudly, the results obtained
are consistent with the exponential stability results
that were recently reported in (Mohamad and



Gopalsamy, 2003), (Sun and Feng, 2004) and
(Mahamad, 2001).

4. CONCLUSIONS

In this paper, robust exponentia stability and
periodicity of continuoustime and discrete-time
dynamical systems for pattern recognition have been
proposed. Without assuming the boundedness and
differentiability of the activation functions, the easily
checked conditions ensuring the exponentia
periodicity of attractor neural networks are obtained.
It is shown that the discrete-time analogue preserves
the dynamical characteristics of the continuous-time
neural systems.
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