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Abstract: Robust Exponential stability of continuous-time attractor neural networks with 
delays is discussed. A new sufficient condition ensuring existence and uniqueness of 
periodic solution for a general class of interval dynamical systems are obtained. Discrete-
time analogue of the continuous-time systems with periodic input is formulated and we 
study their dynamical characteristics. The robust exponential stability and periodicity of 
the continuous-time systems is preserved by the discrete-time analogue without any 
restriction imposed on the uniform discretization step-size.  Copyright © 2005 IFAC 
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1. INTRODUCTION  
 
The properties of equilibrium points of neural 
systems play an important role in some practical 
problems, such as optimization solvers (Chen, 2000; 
Forti, 1995; Kennedy, 1988; Tank and Hopfield, 
1986; Sudharsanan and Sundareshan, 1991), pattern 
recognition (Liu and Lu, 1997) and image 
compression (Venetianer and Roska, 1998). It is well 
known that an equilibrium point can be viewed as a 
special periodic solution of continuous-time neural 
systems with arbitrary period (Zhang, 2002; Sun and 
Feng, 2003, 2004;). In this sense the analysis of 
periodic solutions of neural systems may be 
considered to be more general sense than that of 
equilibrium points. In addition, the existence of 
periodic solutions of continuous-time neural 
networks is an interesting dynamic behavior. It has 
been found applications in learning theory (Townley, 
2000), which is motivated by the fact that learning 
process usually requires repetition. On the other hand, 
the dynamical characteristics of neural networks may 
often be destroyed by its unavoidable uncertainty due 
to the existence of modeling errors, external 
disturbance  and  parameter  fluctuation  during  the 
implementation on very-large-scale-integration 
(VLSI) chips. Thus, it is important to investigate the 
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periodicity and robustness of the network against 
such errors and fluctuation. In order to overcome this 
difficulty, (Liao, 1998; Arik, 2003; and Sun, 2003) 
have extended the model of delayed Hopfield neural 
networks to interval-delayed neural systems. We 
further extend the model of delayed Hopfield neural 
networks with constant input to interval dynamical 
systems with periodic input in (Sun, 2004). 
 
Dynamical analysis of continuous-time attractor 
neural networks with delays have been the new 
world-wide focus (Van and Zou, 1998; Cao, 2000; 
Gopalsamy, 1994; Liao and Wang, 2003; Sun, Zhang 
et al, 2002; Mohamad, 2001). However, in 
implementing the continuous-time neural system for 
simulation or computational purposes, it is essential 
to formulate a discrete-time system which is an 
analogue of the continuous-time system. A method 
which is commonly used in the formulation of a 
discrete-time analogue is by discretizing the 
continuous-time system. Certainly, the discrete-time 
analogue when derived as a numerical approximation 
of continuous-time system is desired to preserve the 
dynamical characteristics of the continuous-time 
system. Once this is established, the discrete-time 
analogue can be used without loss of functional 
similarity to the continuous-time system and 
preserving any physical or biological reality that the 
continuous-time system has. Though there exist a lot 
of numerical schemes (such as Euler scheme, Runge-
Kutta scheme) that can be used to obtain discrete-



     

time analogues of continuous-time neural networks. 
However, it is generally known that these numerical 
schemes can exhibit spurious equilibrium and 
spurious asymptotic behavior, which are not present 
in the continuous-time counterparts. The existence of 
spurious equilibrium and asymptotic behavior in a 
discrete-time analogue can happen if one holds the 
positive discretization step size fixed and let the 
original parameters (i.e. parameters of the 
continuous-time system) vary within the asymptotic 
parameter space of the continuous-time systems. As a 
consequence, one has to impose limitations either on 
the size of h or on the original parameters so as to 
avoid the existence of spurious equilibrium and 
spurious asymptotic behavior in the discrete-time 
analogues. With such limitations, the computational 
capability of the continuous-time network will not be 
achieved fully by the discrete-time analogues. Here, 
we refer to (Mohamad and Gopalsamy, 2003; Sun 
and Feng, 2005) and their references therein for 
related discussions on the importance of discrete-
time counterparts. 
 
In this paper, we will derive a easily checkable 
condition to guarantee robust exponential periodicity 
of continuous-time attractor neural networks with 
delays for pattern recognition. We will also study the 
robust exponential periodicity of discrete-time neural 
systems with delays. To the best knowledge of ours, 
this is the first time to investigate the robust 
exponential periodicity of discrete-time neural 
networks with delays. 
 
 

2.  PROBLEM STATEMENT 
 
Consider the model of continuous-time neural 
network with delays described by the following 
functional differential equations 
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As a special case of neural system (1), the delayed 
neural networks with constant input vector 
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widely by many researchers. This system is described 
by the following functional differential equations 
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In practice implementation of neural networks, the 
value of the constants id and connection weight 
coefficients ija  depend on certain resistance and 
capacitance value which are subject to uncertainties. 
This may lead to some deviations in the value of id , 
and ija . The deviations and perturbations of the 
neuron charging time constants and the weights of 
interconnections are bounded in general. In the 
following, we correspondingly intervalize the above 
mentioned quantities by defining the set of matrices 
as follows similar to (Liao, 1998; Sun and Feng, 
2003).   

 == DDI { diag DDDd nni ≤≤× :)( ,  

i.e., iii ddd ≤≤ , },,2,1 ni K= ;  

== AAI { AAAa nnij ≤≤× :)( ,  
i.e., ijijij aaa ≤≤ , },,2,1, nji K= . 

 
In the following, we formulate a discrete-time 
analogue of the continuous-time neural networks (1) 
by a semi-discretization technique. For detail, reader 
can refer to (Sun and Feng, 2004). 
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It can be verified that 0)( >hiθ  if 0,0 >> hdi . 
System (4) is our discrete-time analogue of the 
continuous-time system (1). It is easily to verify that 
the discrete-time analogue (4) converges towards the 
continuous-time network (1) when +→ 0h . 



     

In order to study the discrete-time analogue (3), we 
assume that the system (3) is supplemented with an 
initial condition, a consequence of the discretization, 
of the form )()( llx ii ϕ=  for [ ]Zl 0,σ−∈  where 

ni ,,2,1 L= , { }jnj σσ ,,2,1max L== , and the external 
input function are periodic function with positive 
integer period ϖ , i.e., 

)()( mImI ii =+ϖ , ni ,,2,1 L= , +∈ Zm .  
 
As a special case of neural system (4), the delayed 
discrete-time neural networks with constant input 
vector ∈= T

nIIII ),,,( 21 K R n  is described by the 
following functional differential equations 
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from which one easily obtains the equilibrium point 
equation (3) of system (2). Obviously, the discrete-
time analogue (5) preserves the equilibrium *x  of the 
continuous-time network (2). 
 

3.  MAIN RESULTS 
 
In this section, we will present the results concerning 
the robust exponential periodicity of interval delayed 
neural networks of the form (1) and (3) for each  
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We will use the following positive definite 
Lyapunov function candidate defined as follows: 
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By using (18) and (21) we obtain the following 
inequalities: 
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{ })(max)( ,,2,1max hh ini θθ L== . 

Therefore, we obtain 
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We can choose a positive integer M such that 

4
11

≤







−σϖ

α
M

r
.                                (20) 

Define a Poincaré mapping BBH →:  by 
)(φφ ϖxH = . Then from (20), we can derive that  

ϕφϕφ −≤−
4
1MM HH ,                           (21) 

where )(φφ ωm
M xH = . This implies that MH  is a 

contraction mapping. Therefore, there exists a unique 
fixed point B∈∗φ  such that ∗∗ = φφMH . So, 

∗∗∗ == φφφ HHHHH MM )()( . This shows that 
BH ∈∗φ  is also a fixed point of MH , hence, 

∗∗ = φφH , that is, ∗∗ = φφω )(x . Let ),( ∗φkx  be the 
solution of (3) through ),0( ∗φ . By using 

)()( kImI =+ϖ  for +∈ Zm , ),( ∗+ φϖmx  is also a 
solution of (16). Note that 

)())(()( ∗∗∗
+ == φφφ ϖϖ mmm xxxx  for +∈ Zm , then 

),(),( ∗∗ =+ φφϖ mxmx  for +∈ Zm . This shows that 
),( ∗φmx  is a periodic solution of (3) with period ϖ . 

From (21), it is easy to see that all other solutions of 
(3) converge to this periodic solution exponentially 
as +∞→m . 
 
Remark 2. When ),,,( 21 nIIII L=  is a constant 
vector, then for any constant 0≥T  we have 

)()( mITmII =+=  for +∈ Zm . Thus by the results 
obtained, when the sufficient condition in Theorem 2 
is satisfied, a unique periodic solution becomes a 
periodic solution with any positive constants as its 
period. So, the periodic solution reduced to a 
constant solution, that is, an equilibrium point. 
Furthermore, all other solutions globally robustly 
exponentially converge to this equilibrium point as 

+∞→m . The unique equilibrium point of the 
discrete-time dynamical neural system (4) is globally 
exponentially stable. Obviously, the results obtained 
are consistent with the exponential stability results 
that were recently reported in (Mohamad and 



     

Gopalsamy, 2003), (Sun and Feng, 2004) and 
(Mahamad, 2001). 
 
 

4. CONCLUSIONS 
 
In this paper, robust exponential stability and 
periodicity of continuous-time and discrete-time 
dynamical systems for pattern recognition have been 
proposed. Without assuming the boundedness and 
differentiability of the activation functions, the easily 
checked conditions ensuring the exponential 
periodicity of attractor neural networks are obtained. 
It is shown that the discrete-time analogue preserves 
the dynamical characteristics of the continuous-time 
neural systems.  
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