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1. INTRODUCTION

The number of systems of interest with “hybrid” dy-
namics has been increasing. Internet systems, biolog-
ical systems, multi-agent systems, dynamic resource
allocation systems and many others are all examples
of such a hybrid behavior. The problem of estimating
the state becomes relevant when asking to control
these systems or to verify the correctness of their
behavior, as is in the case of air-traffic control sys-
tems. Several of these systems have a partial order
naturally associated with the space of discrete and
continuous variables that is preserved by the dynam-
ics. Dynamic resource allocation problems involving
moving resources (agents) as in air-traffic controlled
systems ((Tomlin et al., 2001)) or weapon-target as-
signment problems, are examples where the tasks are
usually associated with position in Euclidean space,
where the cone partial order induces a partial order
on the tasks. There is plenty of systems where partial
order among events is naturally established by causal
order relations, as for example in message-passing
distributed systems ((Zeng et al., 2004)). Most of these
examples are also distributed, meaning that the size of
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the discrete state is so large as to render the estimation
problem prohibitive if the partial order is not explicitly
taken into account in the estimator design.

As pointed out also by (Bemporad et al., 1999), one
of the biggest issues in the estimator design for hy-
brid systems is complexity. In (DelVecchio and Mur-
ray, 2004), a low computation discrete state estimator
is constructed, which exploits a partial order on the
discrete variable space. The proposed estimator up-
dates at each step the lower and upper bound of the set
of discrete variable values compatible with the output
sequence. The main contribution of this paper is to
extend the results of (DelVecchio and Murray, 2004)
to the case in which the continuous variables need
to be estimated as well. In particular, an estimator in
cascade form is constructed assuming that the discrete
variables can be estimated independently of the con-
tinuous variables. A class of systems, the monotone
systems, is considered for which the computation of
the order relation between elements in the continuous
variable space can be efficiently performed. However,
it has been shown in (DelVecchio and Murray, 2005)
that if the system is observable and independent dis-
crete state observable, one can always find a partial or-
der on the spaces of continuous and discrete variables
for which the estimation approach here proposed is ap-



plicable. The main advantage of a monotone structure
is from a computational standpoint.

There is a wealth of research on hybrid observer
design and discrete event observer design. In the
purely discrete domain, there is the pioneering work of
(Caines, 1991) who proposes an enumeration method
for the estimation of the discrete state of a finite
state machine. This method is also used in (Balluchi
et al., 2002) for the estimation of the discrete state.
However, if the dimension of the discrete variables
set is large, the estimation problem using this method
becomes intractable. If the system has some order
preserving properties with respect to a suitable partial
order, the method proposed here generates an estima-
tor whose computation scales with the number of vari-
ables to be estimated. The estimator of this paper is
similar to the decoupled estimator design proposed by
(Balluchi et al., 2002), except that the continuous and
the discrete state are estimated simultaneously in order
to achieve a faster convergence of the continuous state
estimate, and asymptotic convergence is achieved. As
opposed to (Vidal et al., 2002), which proposes to
detect the discrete state change a posteriori, here the
state of the system is tracked.

This paper is organized as follows. In Section 2, no-
tions from partial order theory and observability re-
lated definitions are reviewed. In Section 3, the model
is introduced. In Section 4, the problem is formulated,
and a solution is proposed in Section 5. Section 6
presents a multi-robot example.

2. BASIC CONCEPTS

In this section, some basic definitions on deterministic
transition systems and on partial order theory are re-
viewed (see (Davey and Priesteley, 2002) for details).

2.1 Partial Orders

A partial order is a set χ with a partial order relation
“≤”, and it is denoted by the pair (χ,≤). Define the
join “g” and the meet ”f” of two elements x and w in
χ as x g w = sup{x,w} and x f w = inf{x,w}, where
by sup{x,w} is the smallest element in χ that is bigger
than both x and w, and inf{x,w} is the biggest element
in χ that is smaller than both x and w. Let S ⊆ χ,
its supremum is denoted

∨

S and its infimum
∧

S .
If x < w and there is no other element in between x
and w, then x � w. Let (χ,≤) be a partial order. If
x f w ∈ χ and x g w ∈ χ for any x,w ∈ χ, then (χ,≤)
is a lattice. Let (χ,≤) be a lattice and let S ⊆ χ be a
non-empty subset of χ. Then (S ,≤) is a sublattice of χ
if a, b ∈ S implies that a g b ∈ S and a f b ∈ S . If any
sublattice of χ contains its least and greatest elements,
then (χ,≤) is called complete. Given a complete lattice
(χ,≤), this work is concerned with a special kind of
a sublattice called an interval sublattice defined as

follows. Any interval sublattice of (χ,≤) is given by
[L,U] = {w ∈ χ : L ≤ w ≤ U} for L,U ∈ χ. That
is, this special sublattice can be represented by only
two elements. The cardinality of an interval sublattice
[L,U] is denoted |[L,U]|.

Let (P,≤) and (Q,≤) be partially ordered sets. A map
f : P → Q is (i) an order preserving map if x ≤
w =⇒ f (x) ≤ f (w); (ii) an order embedding if
x ≤ w ⇐⇒ f (x) ≤ f (w); (iii) an order isomorphism if
it is order embedding and it maps P onto Q. A partial
order induces a notion of distance between elements
in the space. Define the distance function on a partial
order in the following way. Let (P,≤) be a partial
order. A distance d on (P,≤) is a function d : P ×
P→ R such that the following properties are verified:
(i) d(x, y) ≥ 0 for any x, y ∈ P and d(x, y) = 0 if and
only if x = y; (ii) d(x, y) = d(y, x); (iii) if x ≤ y ≤ z
then d(x, y) ≤ d(x, z).

Since this paper deals with a partial order on the space
of the discrete variables and with a partial order on
the space of the continuous variables, it is useful to
introduce the Cartesian product of two partial orders.
Let (P1,≤) and (P2,≤) be two partial orders. Their
Cartesian product is given by (P1 × P2,≤), where
P1 × P2 = {(x, y) | x ∈ P1 and y ∈ P2}, and
(x, y) ≤ (x′, y′) iff x ≤ x′ and y ≤ y′.

2.2 Deterministic Transition Systems and Observability

The class of systems dealt with in this work are
deterministic, infinite state systems with output. A
deterministic transition system (DTS) is the tuple Σ =
(S ,Y, F, g), where S is a set of states with s ∈ S ; Y
is a set of outputs with y ∈ Y; F : S → S is the state
transition function; g : S → Y is the output function.
An execution of Σ is any sequence σ = {s(k)}k∈N such
that s(0) ∈ S and s(k + 1) = F(s(k)) for all k ∈ N. The
set of all executions of Σ is denoted E(Σ).

Definition 1. (Observability) The deterministic transi-
tion system Σ = (S ,Y, F, g) is said to be observable if
any two different executions σ1, σ2 ∈ E(Σ) are such
that there is a k > 0 such that g(σ1(k)) , g(σ2(k)).

This class of systems is general. In the next section,
the continuous state evolution and the discrete state
evolution of the system are explicitly modeled, and the
class of monotone DTSs is introduced.

3. THE MODEL

For a system Σ = (S ,Y, F, g) suppose that S = U×Z
with U a finite set, and Z a possibly infinite dense
set; F = ( f , h), where f : U × Y → U and h : U ×
Z → Z; g : U × Z → Y is the output map. These
systems have the form



α(k + 1) = f (α(k), y(k)) (1)

z(k + 1) = h(α(k), z(k)) (2)

y(k) = g(α(k), z(k)),

and they are referred to as the tuple Σ = (U ×
Z,Y, ( f , h), g). Note that the set Y in general can
be both in continuous and discrete form. For such
systems, an additional notion, called discrete state
observability, is defined.

Definition 2. (Independent discrete state observabil-
ity) The system Σ = (U × Z,Y, ( f , h), g) is said to
be independent discrete state observable if for any ex-
ecution with output sequence {y(k)}k∈N, the following
are verified

(i) {α ∈ U | y(k) = g(α, z(k)) and y(k + 1) =
g( f (α, y(k)), h(α, z(k)))} := S(k) does not depend
on z(k);

(ii) if two executionsσ1 = {α1(k), z1(k)}k∈N andσ2 =

{α2(k), z2(k)}k∈N are such that if {α1(k)}k∈N ,
{α2(k)}k∈N, then there is k > 0 such that α1(k) ∈
S(k) and α2(k) < S(k).

A independent discrete state observable system admits
a discrete state estimator that does not involve the
continuous state estimate. This property will allow
us to construct a cascade discrete-continuous state
estimator.

Now, Σ is restricted to the case in whichZ is partially
ordered and the continuous dynamics of the system
preserves the ordering. Monotone dynamical systems
are usually defined on ordered Banach spaces. An
ordered Banach space is a real Banach spaceZ with a
nonempty closed subset K known as the positive cone
with the following properties: (i) αK ⊆ K for any
α ∈ R+; (ii) K + K ⊆ K; (iii) the cone is pointed,
i.e., K ∩ (−K) = {∅}. A partial ordering is then defined
by x ≥ y for any x, y ∈ Z if and only if x − y ∈ K,
with x > y if and only if x ≥ y and x , y. The space
and the partial order is denoted (Z,≤) (for details see
(Smith, 1995) and (Berman and Plemmons, 1994)). A
monotone dynamical system on Z is one whose flow
preserves the ordering on initial data. To extend this
property to DTSs the notion of extended system is
introduced.

Definition 3. (System extension) Consider the system
Σ = (U × Z,Y, ( f , h), g). Let (χ,≤) be a lattice with
U ⊆ χ. An extension of Σ on the lattice (χ × Z,≤)
is given by Σ̃ = (χ × Z,Y, ( f̃ , h̃), g̃) such that f̃ :
χ × Y → χ and f̃ |U×Y = f ; h̃ : χ × Z → Z with
h̃|U×Z = h; g̃ : χ ×Z → Y and g̃|U×Z = g.

Definition 4. (Monotone deterministic transition sys-
tems) A system Σ = (U ×Z,Y, ( f , h), g), with (Z,≤)
an ordered Banach space, and (χ,≤) a lattice with
U ⊆ χ, is said to be monotone on the partial order (χ×
Z,≤) if there is an extension Σ̃ = (χ × Z,Y, ( f̃ , h̃), g̃)
on (χ × Z,≤) with the property that h̃ : χ × Z → Z

is order preserving. The extension Σ̃ is termed the
monotone extension of Σ on (χ ×Z,≤).

For a monotone system, the partial order (Z,≤) can be
used in the estimator design to bring the computational
burden down, as the elements of Z are points, and
their partial order relation can be computed efficiently
using the definition of (Z,≤).

4. PROBLEM STATEMENT

Given a monotone deterministic transition system Σ =
(U×Z,Y, ( f , h), g) and an output sequence {y(k)}k∈N,
determine and track the current state (α(k), z(k)). This
is defined in the following problem.

Problem 5. (Cascade continuous-discrete state esti-
mator) Given the monotone deterministic transition
system Σ = (U×Z,Y, ( f , h), g), find functions f1, f2,
f3, f4, with f1 : χ × Y ×Y → χ, f2 : χ ×Y ×Y → χ,
f3 : Z × χ × Y × Y → Z, f4 : Z × χ × Y ×Y → Z,
withU ⊆ χ, (χ,≤) a lattice, such that the update laws

L(k + 1) = f1(L(k), y(k), y(k + 1))

U(k + 1) = f2(U(k), y(k), y(k + 1))

zL(k + 1) = f3(zL(k), L(k), y(k), y(k + 1))

zU(k + 1) = f4(zU(k),U(k), y(k), y(k + 1)) (3)

with L(k),U(k) ∈ χ, L(0) :=
∧

χ, U(0) :=
∨

χ,
zL(k), zU(k) ∈ Z, zL(0) =

∧

Z, and zU (0) =
∨

Z,
have the following properties

(i) L(k) ≤ α(k) ≤ U(k) (correctness);
(ii) |[L(k + 1),U(k + 1)]| ≤ |[L(k),U(k)]| (non-

increasing error);
(iii) There exists k0 > 0 such that for any k ≥ k0,

[L(k),U(k)] ∩U = α(k) (convergence).
(i’) zL(k) ≤ z(k) ≤ zU(k);

(ii’) there is a nonnegative function V : N → R such
that d(zL(k), zU(k)) ≤ V(k), with V(k+1) ≤ V(k);

(iii’) There exists k′0 ≥ k0 such that for any k ≥ k′0,
d(zL′ (k), zU′ (k)) = 0 where L′ =

∧

([L,U] ∩
U) and U ′ =

∨

([L,U] ∩ U), with zL′ (k +
1) = f3(zL′ (k), L′(k), y(k), y(k + 1)), and zU′ (k +
1) = f4(zU′ (k),U ′(k), y(k), y(k+1)), with zL′ (0) =
zL(0) and zU′ (0) = zU (0),

for some distance function “d”.

The update laws (3) are in cascade form as the vari-
ables L and U are not updated on the basis of the
variables zL and zU . The lattice intervals [L(k),U(k)]
and [zL(k), zU(k)] define the sets that contain the values
of α(k) and z(k) respectively. Properties (iii) and (iii’)
roughly establish that such sets shrink to α(k) and z(k)
respectively. The distance function “d” has been left
unspecified for the moment, as its form depends on the
particular partial order chosen (Z,≤). The following
section proposes a solution to the Problem 5.



5. MAIN RESULT

Given the monotone DTS Σ = (U × Z,Y, ( f , h), g),
a set of sufficient conditions that allow a solution to
Problem 5 is given. First, some definitions involving
the monotone extension Σ̃ are given.

Definition 6. (Interval compatibility) The pair (Σ̃, (χ,≤
)) is said to be interval compatible if

(i) {w ∈ χ | y(k+1) = g̃( f̃ (w, y(k)), h̃(w, z(k)) and y(k)
= g̃(w, z(k))} = [lw(k), uw(k)];

(ii) the extension f̃ : χ × Z → χ is such that
f̃ : ([lw(k), uw(k)], y(k))→ [ f̃ (lw(k), y(k)),
f̃ (uw(k), y(k))] is order isomorphic.

Item (i) establishes that the set of w ∈ χ compatible
with the pair (y(k), y(k + 1)) is a sublattice interval
(see Figure 1). Note that S(k) ⊆ [lw(k), uw(k)]. For
the construction of a cascade estimator, it is interesting
the case in which the partial order (Z,≤) is related to
(χ,≤) by means of the system dynamics. Thus, a new
notion of interval compatibility is introduced.

Definition 7. (Induced interval compatibility) The pair
(Σ̃, (Z,≤)) is said to be induced interval compatible if

(i) for any w ∈ χ, {z ∈ Z | y(k + 1) =
g̃( f̃ (w, y(k)), h̃(w, z)) and y(k) = g̃(w, z)} =
[lz(k,w), uz(k,w)], and if w1 ≤ w2 then lz(k,w1) ≤
lz(k,w2) and uz(k,w1) ≤ uz(k,w2) (see Figure 1);

(ii) h̃ : α × [lz(k, α), uz(k, α)]→ [h̃(α, lz(k, α)),
h̃(α, uz(k, α))] is order isomorphic for any α ∈ U;

(iii) d(h̃(L, lz(k, L)), h̃(U, uz(k,U))) ≤ γ(|[L,U]|), with
γ : N→ R a monotonic function of its argument.

Theorem 8. Consider the monotone DTS Σ = (U ×
Z,Y, ( f , h), g). Assume that there is a lattice (χ,≤)
withU ⊆ χ such that Σ̃ is a monotone extension of Σ
with the properties that (Σ̃, (χ,≤)) and (Σ̃, (Z,≤)) are
interval compatible and induced interval compatible
respectively. A solution to Problem 5 is provided by

L(k + 1) = f̃ (lw(k) g L(k), y(k))

U(k + 1) = f̃ (uw(k) f U(k), y(k)) (4)

zL(k + 1) = h̃(lw(k) g L(k), zL(k) g lz(k, lw(k) g L(k)))

zU(k + 1) = h̃(uw(k) f U(k), zU(k) f uz(k, uw(k) f U(k))).

Proof. For the proof of (i)-(ii)-(iii) the reader is de-
ferred to (DelVecchio and Murray, 2004). Define U ∗ =
uw(k)fU(k), L∗ = lw(k)gL(k), z∗U = zU (k)fuz(k,U∗),
and z∗L = zL(k) g lz(k, L∗). The dependence of uz and lz
on their arguments is omitted.

Proof of (i’). This is proved by induction on k. Since
zL(0) =

∧

Z, and zU(0) =
∨

Z, then at the first
step zL(0) ≤ z(k) ≤ zU(0) (base case). Assume that
zL(k) ≤ z(k) ≤ zU(k) (induction assumption), show
that zL(k + 1) ≤ z(k + 1) ≤ zU(k + 1). Consider the
third equation of (4). By the order preserving property
of h̃, it follows that h̃(L∗, z∗L) ≤ h̃(z(k), α(k)). Thus,

L(k)lw(k)

U(k + 1)

U∗

y(k)

α(k + 1)

L(k + 1)

y(k + 1)

f̃

uw(k)
U(k)

L∗

α(k)

zU (k + 1)

y(k)
zU (k) h̃

zL(k + 1)

z(k)
z∗U

lz
zL(k)

z∗L

uz

y(k + 1)

z(k + 1)

Fig. 1. Hasse diagrams representing the updates of the estimator
in Theorem 8. x < y if and only if there is a sequence of
connected line segments moving upward from x to y.

zL(k + 1) ≤ z(k + 1). Similar arguments can be used
to prove that z(k + 1) ≤ zU(k + 1) (see Figure 1).

Proof of (ii’). By the order preserving property of h̃,
it follows that h̃(L∗, z∗L) ≥ h̃(L∗, lz), as z∗L ≥ lz (see
the Figure 1). By similar reasonings, it is also true
that h̃(U∗, z∗U) ≥ h̃(U∗, uz). The property (iii) of the
distance function yields to d(zL(k + 1), zU(k + 1)) ≤
d(h̃(L∗, lz), h̃(U∗, uz)). This along with (iii) of Defini-
tion 7, yields to d(zL(k + 1), zU(k + 1)) ≤ γ(|[L∗,U∗]|).
Since f̃ is order isomorphic, it follows that |[L∗,U∗]| =
|[ f̃ (L∗, y), f̃ (U∗, y)]|. By the first two equations of (4),
it follows that (ii’) of Problem 5 is satisfied with
V(k) = γ(|[L(k),U(k)]|).

Proof of (iii’). The proof proceeds by contradiction.
Assume that d(zL′ (k + 1), zU′ (k + 1)) is never zero.
Then, there are at least two elements z′′1 , z

′′
2 ∈ [zL′ (k +

1), zU′ (k+1)]. Because of Property (ii) in Definition 7,
and because (a) zL′ (k+1) = h̃(α(k), zL′ (k)g lz(k, α(k))),
and (b) zU′ (k + 1) = h̃(α(k), zU′ (k) f uz(k, α(k)))
for k > k0, there are z′1, z

′
2 ∈ [zL′ (k), zU′ (k)] such

that z′′1 = h(α(k), z′1), z′′2 = h(α(k), z′2), and z′1, z
′
2 ∈

[lz(k, α(k)), uz(k, α(k))] (see Figure 1). In analogous
way, there are z1, z2 ∈ [zL′ (k − 1), zU′ (k − 1)] such that
z′1 = h(α(k − 1), z1), z′2 = h(α(k − 1)z2), and z1, z2 ∈

[lz(k−1, α(k−1)), uz(k−1, α(k−1))]. This implies that
there are two executions of Σ, σ1 = {α(k), z1(k)}k∈N
and σ2 = {α(k), z2(k)}k∈N that share the same output
sequence {y(k)} for all k. This contradicts the observ-
ability of Σ. �

Corollary 9. If in addition to the assumptions of The-
orem 8, Σ̃ is observable and independent discrete state



observable , then (iv) there exists k′0 > 0 such that for
any k ≥ k′0 d(zL(k), zU(k)) = 0; (v) there exist a k0 > 0
such that for any k > k0 L(k) = U(k) = α(k).
For the proof of (v), see (DelVecchio and Murray,
2004). The proof of (iv) can be carried out by con-
tradiction in a way analogous to how (iii’) of Theorem
8 was proved. In order to verify the properties of Defi-
nition 7, an algebraic check is given. For this purpose,
define h̃k(w, z) := h̃(h̃k−1(w, z), f̃ k−1(w, y(k − 2))), and
f̃ k(w, y(k − 1)) := f̃ ( f̃ k−1(w, y(k − 2), y(k − 1)), with
f̃ 0(w, y) := w and h̃0(w, z) := z.

Proposition 10. Consider the monotone DTS Σ =
(U × Z,Y, ( f , h), g). If its monotone extension Σ̃ is
observable, there is k̄ > 0 such that {z | g̃(w0, z) =
y(0), ..., g̃(h̃k̄−1(w0, z), f̃ k̄−1(w0, y(k̄ − 2)) = y(k̄ − 1)} =
{z(0)}, where y(k) = g̃(w(k), z(k)), and w0 = w(0).
This proposition indicates that if the system Σ̃ is
observable, the continuous state z can be expressed as
a function of the output sequence and of the starting
discrete state. Thus, there is a map that attaches to
a discrete state, a value of the continuous state after
some time given an output sequence: this map is
defined to be the observability map.

Definition 11. (Observability map) Let the monotone
extension Σ̃ of Σ be observable. Let Y := {y(k)}k∈[1,k̄]
be the output sequence up to the smallest step k̄
such that the system of equations g̃(z,w) = y(0),...,
g̃(h̃k̄−1(z,w), f̃ k̄−1(w, y(k̄−2))) = y(k̄−1) has an unique
solution for z ∈ Z. Then, the observability map,
denoted OY : χ → Z, is the map that for a fixed Y
attaches to w the unique z satisfying the above system.
Also, Σ̃ is said to be observable in k̄ steps if k̄ is not
dependent on z.

Here is an algebraic condition that guarantees that Σ̃ is
induced interval compatible with (Z,≤).

Proposition 12. If the monotone extension of Σ, Σ̃ is
observable in two steps, and the observability map
Oy : χ→ Z is order preserving, then the pair (Σ̃, (Z,≤
)) is induced interval compatible.
Proof. To prove (i) of Definition 7, let Y = (y(k), y(k +
1)) be a pair of consecutive outputs in the output
sequence {y(k)}k∈N corresponding to an execution of
Σ̃. By the observability in two steps hypothesis, it
follows that {z ∈ Z | y(k) = g̃(w, z), y(k +
1) = g̃(h̃(w, z), f̃ (w, y(k)))} = {z∗}, and thus lz(k,w) =
z∗ = uz(k,w). Also, by the Definition 11, it follows
that z∗ = OY (w). By the order preserving property
of OY , it follows that OY (w1) ≤ OY (w2) if w1 ≤

w2. Item (ii) of Definition 7 is clearly verified as
lz(k, α) = uz(k, α). Item (iii) can be proved in the
following way. Let d̄ := maxwi�w j‖h̃(OY (wi),wi) −
h̃(OY(w j),w j)‖ for wi,w j ∈ [L,U]. Then, (iii) is ver-
ified with γ(|[L,U]|) = d̄|[L,U]|. �

Remark 13. The basic assumption to have induced in-
terval compatibility, is the order preserving property

z1

(x1,y1)

z2 z3 z4 z5

(x2,y2)

(x3,y3)

(x4,y4)

(x5,y5)

Fig. 2. An example state of the RoboFlag Drill for 5 robots. Here
α = {3, 1, 5, 4, 2}.

of the observability map. The two steps observability
assumption can be abolished by relaxing item (i) of
Definition 7 to consider a longer sequence of observa-
tions. This can be done with minor modifications.

6. SIMULATION EXAMPLE

A version of the RoboFlag Drill system, already pre-
sented in (DelVecchio and Murray, 2004), is consid-
ered where the robots have partially measured second
order dynamics. Briefly, there are two teams of N
robots, say the attackers and the defenders, in which
each defender is assigned to an attacker and moves
toward it in order to intercept it before it passes over
a defensive zone. There is an assignment protocol
that establishes that two close defenders moving one
toward the other will exchange their assignments. The
dynamics of the defenders are different from our pre-
vious work. In this case in fact, they are second order
dynamics in which the state is not entirely measured.
Figure 2, represents an example with five robots per
team. The attacker positions are denoted by (xi, yi) and
their dynamics is given by if yi > δ then y′i = yi−δ. Let
perm(N) denote the set of all possible permutations of
N elements. For the defenders, let the assignment be
denoted by α = (α1, ..., αN) ∈ perm(N), with αi the
assignment of defender i, U = perm(N), their state
variable be denoted by z = (z1,1, z1,2, ...., zN,1, zN,2) ∈
Z, with output (z1,1, ..., zN,1) ∈ Y. We assume that the
set Z is such that zi,1 ∈ [xi, xi+1] and zi,2 ∈ [xi, xi+1]
for any i. The function f : U × Y → U that updates
α is given by

if xαi > zi,1 and xαi+1 < zi+1,1 then (α′i , α
′
i+1) = (αi+1, αi),

(5)
for any i. This updates state that whenever two close
defenders have conflicting assignments, they swap
them. The function h : U × Z → Z that updates
the z variables is given by

z′i,1 = (1 − β)zi,1 − βzi,2 + 2βxαi

z′i,2 = (1 − λ)zi,2 + λxαi (6)



for any i. These laws establish that each defender
moves toward the attacker assigned to him. The fact
that zi,1 ∈ [xi, xi+1] and zi,2 ∈ [xi, xi+1] for any i is
guaranteed if β and λ are assumed sufficiently small.

It can be easily shown that the system is independent
discrete state observable and interval compatible with
(χ,≤) defined in the following way. The set χ is the
set of vectors in NN with components less than N, and
the order between any two vectors in χ is established
component-wise. By construction perm(N) ⊂ χ (see
(DelVecchio and Murray, 2004) for details). It can be
verified that the system is observable in two steps. The
system is monotone and the observability map is order
preserving. To see this, consider the positive cone K in
Z composed by all vectors v = (v1,1, v1,2, ..., vN,1, vN,2)
such that vi,2 ≥ 0, the system preserves this order
as if z(1)

i,2 < z(2)
i,2 and w(1)

i ≤ w(2)
i then (1 − λ)z(1)

i,2 +

λxw(1)
i
≤ (1 − λ)z(2)

i,2 + λxw(2)
i

because xw(1)
i
≤ xw(2)

i

whenever w(1)
i ≤ w(2)

i , and because (1 − λ) > 0. The
output map is readily seen to be order preserving in its
argument w = (w1, ...,wN) ∈ χ as for any k, it follows
that zi,2(k) = 1

β

(

(1 − β)yi(k) − yi(k + 1) + 2βxwi(k)
)

.

The estimator in equations (4) has been implemented
for system in equations (5) and (6). The discrete state
estimator is identical to the one in (DelVecchio and
Murray, 2004). For the continuous state estimator set
zL = (zL,1, ..., zL,N) ∈ RN and zU = (zU,1, ..., zU,N) ∈ RN ,
where zL,i ≤ zi,2 ≤ zU,i, that is zL,i and zU,i are respec-
tively the lower and upper bound of the zi,2. The first
components zi,1 are neglected as they are measured.
Figure 3 illustrates the estimator performance. W(k) =
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Fig. 3. Estimator performance with N = 10 agents.

∑N
i=1 |mi(k)|, where |mi(k)| is the cardinality of the sets

mi(k) that are the sets of possible αi for each com-
ponent obtained from the sets [Li,Ui] by removing
iteratively a singleton occurring at component i by all
other components. When [L(k),U(k)] ∩ perm(N) has
converged to α, then mi(k) = αi(k). The distance func-
tion for z, x ∈ RN is defined d(x, z) =

∑N
i=1 abs(zi − xi).

The function V(k) is defined as V(k) = 1
2
∑N

i=1(xUi(k) −

xLi(k)), and it is always non increasing. Note that even
if the discrete state has not converged yet, the contin-
uous state estimation error after k = 8 is close to zero.

7. CONCLUSIONS

In this paper, computational tractability of the discrete-
continuous state estimation problem has been achieved
by the use of a partial order on the space of continu-
ous and discrete states. This was possible due to the
order preserving properties of the system dynamics.
An example showed how to apply the estimator in
the case of a distributed system whose discrete state
space is so large as to render prohibitive enumeration
estimation methods. Future research will address the
problem of relaxing the main assumption underlying
this work, that is, that the discrete state dynamics does
not depend on the continuous state.
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