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1. INTRODUCTION

Switching control offers a new look into the design
of complex control systems (e.g. nonlinear systems,
parameter varying systems and uncertain systems)
(Skafidaset al., 1999; Morse, 1996; Hespanhaet
al., 2003; Hespanha, 2004). Unlike the conventional
adaptive control techniques that rely on continuous
tuning, the switching control method updates the con-
troller parameters in a discrete fashion based on the
switching logic. The resulting closed-loop systems
have hybrid behaviors (e.g. continuous dynamics, dis-
crete time dynamics and jump phenomena, etc.). One
of the most challenging issues in the area of hybrid
systems is the stability analysis in the presence of
control switching. We refer to (Hespanhaet al., 2003)
for a general review on switching control methods.

1 This work is supported in part by AFOSR and AFRL/VA under
agreement no. F33615-01-2-3154
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In particular, we are interested in the stability analysis
of switched time delay systems. In fact, time delay
systems are ubiquitous in chemical processes, aero-
dynamics, and communication networks (Kharitonov,
1999; Dugard and Verriest, 1998). To further compli-
cate the situation, the time delays are usually time
varying and uncertain(Wu and Grigoriadis, 2001). It
has been shown that robustH ∞ controllers can be
designed for such infinite dimensional plants, where
robustness can be guaranteed within some uncertainty
bounds (Toker and̈Ozbay, 1995). In order to incor-
porate larger operating range or better robustness,
controller switching can be introduced, which results
in switched closed-loop systems with time delays.
For delay free systems, stability analysis and de-
sign methodology have been investigated recently in
the framework of hybrid dynamical systems (Morse,
1996; Skafidaset al., 1999; Yan andÖzbay, 2003;
Hochcerman-Frommeret al., 1998; De Persiset al.,
2004; Hespanha, 2004). In particular, (Skafidaset al.,
1999) provided sufficient conditions on the stability of



the switching control systems based on Filippov solu-
tions to discontinuous differential equations and Lya-
punov functionals; (Morse, 1996) proposed a dwell-
time based switching control, where a sufficiently
large dwell-time can guarantee the system stability. A
more flexible result was obtained in (Hespanha and
Morse, 1999), where the average dwell-time was in-
troduced for switching control. In (Yan and̈Ozbay,
2003) the results of (Hespanha and Morse, 1999) were
extended to LPV systems. LaSalle’s invariance princi-
ple was extended to a class of switched linear systems
for stability analysis (Hespanha, 2004). Despite the
variety and significance of the many results on hybrid
system stability, stability of switched time delay sys-
tems has seldom been addressed due to the general
difficulty of infinite dimensional systems (Hale and
Verduyn Lunel, 1993).

Two important approaches in the stability analysis
of time delay systems are (1) Lyapunov-Krasovskii
method, and (2) Lyapunov-Razumikhin method . Var-
ious sufficient conditions with respect to the stability
of time delay systems have been given using Riccati-
type inequalities or LMIs (Kao and Lincoln, 2004;
Kharitonov, 1999; Wu and Grigoriadis, 2001; Dugard
and Verriest, 1998). In the presence of switching logic
for time delay systems, stability can be guaranteed
by introducing multiple Lyapunov functions properly.
The main contribution of this paper is a collection of
results on the stability of switched time delay systems
using piecewise Lyapunov-Razumikhin functions. We
provide sufficient stability conditions in terms of the
dwell time of the switching signals for the delay in-
dependent case and the delay dependent case, respec-
tively.

The paper is organized as follows. The problem def-
inition is stated in Section 2. In Section 3, the main
results on the stability of switched time delay sys-
tems are presented in terms of the dwell time of
the switching signals. Conservatism analysis is pro-
vided by comparing with the dwell time conditions for
switching delay free systems in Section 4, followed by
concluding remarks in Section 5.

2. PROBLEM DEFINITION

Consider the following switched time delay systems:

Σt :

{

ẋ = Aq(t)x(t)+ Āq(t)x(t − τq(t)), t ≥ 0
x(t) = φ(t), ∀t ∈ [−τmax,0]

(1)
wherex(t)∈R

n is the state,q(t) is a piecewise switch-
ing signal taken values on the setF := {1,2, ..., l}, i.e.
q(t) = k j , k j ∈F , for ∀t ∈ [t j , t j+1), wheret j , j ∈Z

+∪
{0}, is the j th switching time instant. We introduce
the tripletΣi := (Ai , Āi ,τi) ∈ R

n×n×R
n×n×R

+ to de-
scribe theith candidate system of (1). Thus for∀t ≥ 0,
we haveΣt ∈A := {Σi : i ∈F }, whereA is a family of
candidate systems of (1). In (1),φ(·) : [−τmax,0] 7→R

n

is a continuous and bounded vector-valued function,

whereτmax = maxi∈F {τi} is the maximal time delay
of the candidate systems inA .

We use‖ · ‖ to denote the Euclidean norm of a vector
in R

n, and| f |[t−r,t] for the∞-norm of f , i.e.

| f |[t−r,t] := sup
t−r≤θ≤t

‖ f (θ)‖,

where f is an element of the Banach spaceC([t −
r, t],Rn).

Lemma 1.Suppose for a given tripletΣi ∈ A , i ∈ F ,
there exists symmetric and positive-definitePi ∈R

n×n,
such that the following LMI with respect toPi is
satisfied for somepi > 1 andαi > 0:

[

PiAi +AT
i Pi + piαiPi PiĀi

ĀiPi −αiPi

]

< 0. (2)

ThenΣi is asymptotically stable independent of delay
(Dugard and Verriest, 1998; Kharitonov, 1999).

If all candidate systems of (1),Σi ∈ A , are delay-
independently asymptotically stable satisfying (2), we
denoteA by Ã .

Lemma 2.Suppose for a given tripletΣi ∈ A , i ∈ F ,
there exists symmetric and positive-definitePi ∈R

n×n,
and a scalarpi > 1, such that

[

τ−1
i Ωi PiĀiMi

MT
i ĀT

i Pi −Ri

]

< 0 (3)

where

Ωi = (Ai + Āi)
TPi +Pi(Ai + Āi)+ pi(αi +βi)Pi ,

Mi = [Ai Āi ],

Ri = diag(αiPi ,βiPi),

andαi > 0, βi > 0 are scalars. ThenΣi is asymptot-
ically stable dependent of delay (Dugard and Verri-
est, 1998; Kharitonov, 1999).

Similarly we denoteA by Ãd if all candidate systems
of (1) are delay-dependently asymptotically stable sat-
isfying (3).

In what follows, we will establish sufficient conditions
to guarantee stability of switched system (1) for the
delay independent case and the delay dependent case.
Therefore, we will assume thatA = Ã andA = Ãd re-
spectively in the corresponding sections in this paper.
It is well known that switching between stable candi-
dates may result in divergence of the switched system
(Liberzon and Morse, 1999). An important method
in stability analysis of switched systems is based on
the construction of the common Lyapunov function
(CLF), which allows for arbitrary switching. However,
this method is too conservative from the perspective of
controller design because it is usually difficult to find
the CLF for all the candidate systems, particularly for
time delay systems whose stability criteria are only



sufficient and conservative. A recent paper (Zhaiet
al., 2003) explored the CLF method for switched time
delays systems with three very strong assumptions: (i)
each candidate system has the same time delayτ; (ii)
each candidate is assumed to be delay independently
stable; (iii) TheA-matrix is always symmetric and the
Ā-matrix is always in the form ofδI . In the present
paper, we consider an alternative method using piece-
wise Lyapunov-Razumikhin functions for a general
class of systems (1) and obtain stability conditions in
terms of the dwell time of the switching signal. This
method can be used for the case with delay indepen-
dent criterion (2) and the case with delay dependent
criterion (3).

3. MAIN RESULTS ON DWELL TIME BASED
SWITCHING

For a given positive constantτD, the switching signal
set based on the dwell timeτD is denoted byS[τD],
where for any switching signalq(t) ∈ S[τD], the dis-
tance between any consecutive discontinuities ofq(t),
t j+1 − t j , j ∈ Z

+ ∪ {0}, is larger thanτD (Hespanha
and Morse, 1999; Morse, 1996). Sufficient condition
on the minimum dwell time to guarantee the stable
switching will be given using piecewise Lyapunov-
Razumikhin functions. Note that the dwell time based
switching is trajectory-independent (Hespanha, 2004).

Before presenting the main result of this paper, we
recall the following the lemma (Hale and Verduyn
Lunel, 1993) for general Retarded Functional Differ-
ential Equations (RFDE) in the form of

ẋ(t) = f (t,xt) (4)

with initial condition φ(·) ∈ C([−r,0],Rn), wherext

denotes the state variablesx over the interval[t − r, t],
andxt(θ) = x(t +θ), −r ≤ θ ≤ 0.

Lemma 3.(Hale and Verduyn Lunel, 1993) Suppose
u,v,w, p : R

+ → R
+ are continuous,nondecreasing

functions,u(0) = v(0) = 0, u(s), v(s), w(s), p(s) pos-
itive for s > 0, andv strictly increasing. If there is a
continuous functionV : R×R

n → R such that

u(‖x‖) ≤V(t,x) ≤ v(‖x‖), t ∈ R, x∈ R
n, (5)

and
V̇(t,x(t)) ≤−w(‖x(t)‖), (6)

if

V(t +θ,x(t +θ)) < p(V(t,x(t))) ∀θ ∈ [−r,0],

then the solutionx = 0 of the RFDE is uniformly
asymptotically stable.

A particular case of (4) is a linear time delay system
Σi , i ∈ F , where we can construct the corresponding
Lyapunov-Razumikhin function in the quadratic form

Vi(t,x) = xT(t)Pix(t), Pi = PT
i > 0. (7)

ApparentlyVi can be bounded by

ui(‖x‖) ≤Vi(t,x) ≤ vi(‖x‖), ∀x∈ R
n, (8)

where
ui(s) := κis

2, vi(s) := κ̄is
2, (9)

in which κi := σmin[Pi ] > 0 denotes the smallest sin-
gular value ofPi and κ̄i := σmax[Pi ] > 0 the largest
singular value ofPi .

Proposition 4.For each time delay systemsΣi with
Lyapunov-Razumikhin function defined by (7) as-
sume (6) is satisfied for somewi(s). Then we have

|x|[tm−τi ,tm] ≤
√

κ̄i

κi
|x|[tn−τi ,tn], ∀tm ≥ tn ≥ 0. (10)

Proof.Define

V̄i(t,x) := sup
−τi≤θ≤0

Vi(t +θ,x(t +θ)) (11)

for t ≥ 0, we have

κi(|x|[t−τi ,t])
2 ≤ V̄i(t,x) ≤ κ̄i(|x|[t−τi ,t])

2, t ≥ 0 (12)

The definition ofV̄i(t,x) implies∃θ0 ∈ [−τi ,0], such
thatV̄i(t,x) = V(t +θ0,x(t +θ0)). Introduce the upper
right-hand derivative of̄Vi(t,x) as

˙̄V+
i = limsup

h→0+

1
h
[V̄i(t +h,x(t +h))−V̄i(t,x(t))],

we have

(i). If θ0 = 0, i.e.Vi(t + θ,x(t + θ)) ≤ Vi(t,x(t)) <
p(Vi(t,x(t))), we haveV̇i(t,x) < 0 by (6). There-
fore ˙̄V+

i ≤ 0.
(ii). If −τi < θ0 < 0, we haveV̄i(t + h,x(t + h)) =

V̄i(t,x) for h > 0 sufficiently small, which results
in ˙̄V+

i = 0.
(iii). If θ0 = −τi , the continuity ofVi(t,x) implies

˙̄V+
i ≤ 0.

The above analysis shows that

V̄i(tm) ≤ V̄i(tn), ∀tm ≥ tn ≥ 0. (13)

Recall (12), we have

κi(|x|[tm−τi ,tm])
2 ≤ V̄i(tm) ≤ V̄i(tn) ≤ κ̄i(|x|[tn−τi ,tn])

2,
(14)

for any tm ≥ tn ≥ 0. This implies (10) and proves
Proposition 4.

Suppose all of the conditions of Lemma 3 are satisfied
for general RFDE (4), we also have the follow result.

Lemma 5.(Hale and Verduyn Lunel, 1993) Suppose
|φ|[t0−r,t0] ≤ δ̄1, δ̄1 > 0, andδ̄2 > 0 such thatv(δ̄1) =

u(δ̄2). For allη satisfying 0< η ≤ δ̄2, we have

V(t,x) ≤ u(η), ∀ t ≥ t0 +T. (15)

Here

T =
Nv(δ̄1)

γ
(16)

is defined by γ = infv−1(u(η))≤s≤δ̄2
w(s) and N =

⌈(v(δ̄1)− u(η))/a⌉, where⌈·⌉ is the ceiling integer
function anda > 0 satisfiesp(s)− s > a for u(η) ≤
s≤ v(δ̄1).



3.1 The Case with Delay Independent Criterion

Consider the switched time delay systemsΣt defined
by (1) and assume each candidate systemΣi , i ∈ F

delay-independently asymptotically stable satisfying
(2) (i.e. A = Ã). A sufficient condition on the mini-
mum dwell time to guarantee the asymptotic stability
can be derived using multiple piece-wise Lyapunov-
Razumikhin functions.

Theorem 6.There exists a finite constant̄T > 0, such
that the switched time delay system (1) withΣt ∈ Ã

is asymptotically stable for any switching ruleq(t) ∈
S[τD], whereτD > 0 is defined byτD := T̄ + τmax.

Proof.Consider an arbitrary switching interval[t j , t j+1)
of the piecewise switching signalq(t) ∈ S[τD] , where
q(t) = k j , k j ∈ F for ∀t ∈ [t j , t j+1) and t j is the j th

switching time instant forj ∈ Z
+ ∪ {0} and t0 = 0.

The state variablex j(t) defined on this interval obeys:

Σk j :

{

ẋ j = Ak j x j(t)+ Āk j x j(t − τk j ), t ∈ [t j , t j+1)

x j(t) = φ j(t), ∀t ∈ [t j − τk j , t j ].
(17)

For the convenience of using ”sup”, we definex j(t j+1)=
limh→0− x j(t j+1 +h) = x j+1(t j+1) based on the fact
thatx(t) is continuous fort ≥ 0. Thereforex j(t) is now
defined on a compact set[t j , t j+1]. The initial condi-
tion φ j(t) of Σk j is φ j(t) = x j−1(t), t ∈ [t j − τk j , t j ] for
j ∈ Z

+, which is true becauseτD := T̄ + τmax> τmax.
And φ0(t) = φ(t), t ∈ [−τk0,0].

Construct the Lyapunov-Razumikhin function

Vk j (x j , t) = xT
j (t)Pk j x j(t), t ∈ [t j , t j+1] (18)

for (17), we have

κk j‖x j‖2 ≤Vk j (t,x j) ≤ κ̄k j‖x j‖2, ∀x j ∈ R
n. (19)

A straightforward calculation gives the time derivative
of Vk j (t,x j(t)) along the trajectory of (17)

V̇k j (t,x j) = xT
j (A

T
k j

Pk j +Pk j Ak j )x j

+ 2xT
j (t)Pk j Āk j x j(t − τk j ), (20)

where

2xT
j (t)Pk j Āk j x j(t − τk j ) ≤ αk j x

T
j (t − τk j )Pk j x j(t − τk j )

+α−1
k j

xT
j (t)Pk j Āk j P

−1
k j

ĀT
k j

Pk j x j(t), ∀αk j > 0.

Applying Razumikhin condition withp(s)= pk j s, pk j >
1, we obtain

xT
j (t − τk j )Pk j x j(t − τk j ) ≤ pk j x

T
j (t)Pk j x j(t) (21)

for

Vk j (t +θ,x j(t +θ)) < pk jVk j (t,x j(t)) ∀θ ∈ [−τk j ,0].

Let

−Sk j:=AT
k j

Pk j+Pk j Ak j+ pk j αk j Pk j+α−1
k j

Pk j Āk j P
−1
k j

ĀT
k j

Pk j

(22)

we have

V̇k j (t,x j) ≤−xT
j (t)Sk j x j(t). (23)

BecauseΣt ∈ Ã , we haveSk j > 0 from Lemma 1.
Furthermore we can selectw(s) = wk j s

2 in Lemma 3,
such that (6) is satisfied, wherewk j := σmin[Sk j ] > 0.

Define

λ := max
i∈F

κ̄i

κi
, (24)

µ := max
i∈F

κ̄i

wi
. (25)

For some 0< β < 1 and 0< α < 1, we choose

T̄ :=
λµ
α2⌈

λ−α2

α2β(p̄−1)
⌉, (26)

wherep̄ := mini∈F {pi} > 1.

We claim that‖x j(t)‖ ≤ αδ j for any t ≥ t j + T̄, t ∈
[t j , t j+1], where we assume|φ j(t)|[t j−τkj

,t j ] ≤ δ j .

To show this fact, we can choosēδ1 = δ j , δ̄2 =

δ̄1

√

κ̄k j /κk j ≥ δ̄1, and selectη = αδ̄1 in Lemma 5.

It is straightforward that 0< η < δ̄1 ≤ δ̄2. Recall (15)
and (16), we have

Vk j (t,x j) ≤ κk j η
2, for t ≥ t j +T, (27)

where

T =
Nv(δ̄1)

γ

=
⌈(v(δ̄1)−u(η))/a⌉v(δ̄1)

infv−1(u(η))≤s≤δ̄2
w(s)

=
κ̄2

k j
⌈(v(δ̄1)−u(η))/a⌉

α2wk j κk j

(28)

Combining (19) and (27) yields

‖x j(t)‖ ≤ αδ j , for t ≥ t j +T. (29)

Now choosinga = β(pk j −1)κk j η
2, we have

T =

κ̄2
k j
⌈

κ̄kj
κkj

−α2

α2β(pkj
−1)

⌉

α2wk j κk j

≤ T̄ (30)

Therefore
|x j |[t j+T̄,t j+1]

≤ αδ j , (31)

which is straightforward from (29) and (30).

Notice thatφ j+1(t) = x j(t), t ∈ [t j+1− τk j+1, t j+1] and
recall the fact thatt j+1 − t j > τD = T̄ + τmax≥ T̄ +
τk j+1, we have

|φ j+1|[t j+1−τkj+1
,t j+1] = |x j |[t j+1−τkj+1

,t j+1]

≤ |x j |[t j+T̄,t j+1]
≤ αδ j := δ j+1 (32)

and δ0 is defined asδ0 := |φ|[−τmax,0] ≥ |φ|[−τk0
,0].

Therefore we obtain a convergent sequence{δi}, i =
0,1,2, . . . , whereδi = αiδ0.



Meanwhile, (10) implies

|x j |[t−τkj
,t] ≤

√

κ̄k j

κk j

|x|[t j−τkj
,t j ], ∀t ∈ [t j , t j+1]. (33)

Hence

sup
t∈[t j ,t j+1]

‖x j(t)‖ ≤ sup
t∈[t j ,t j+1]

|x j |[t−τkj
,t]

≤
√

λ|x|[t j−τkj
,t j ]

≤
√

λδ j = α j
√

λδ0, (34)

which implies the asymptotic stability of the switched
time delay systemΣt with the switching signalq(t) ∈
S[τD]. This completes the proof.

3.2 The Case with Delay Dependent Criterion

In a similar fashion, we can investigate the stability
of the switched time delay systemΣt of (1) under the
assumption thatΣt ∈ Ād. Hence each candidate system
Σi , i ∈ F is delay-dependently asymptotically stable
satisfying (3).

Theorem 7.There exists a finite constant̄Td > 0, such
that the switched time delay system (1) withΣt ∈ Ãd

is asymptotically stable for any switching ruleq(t) ∈
S[τd

D], whereτd
D > 0 is defined byτd

D := T̄d +2τmax.

Proof.Similar to the proof of Theorem 6, we consider
an arbitrary switching interval[t j , t j+1) of the piece-
wise switching signalq(t) ∈ S[τd

D] , where the state
variablex j(t) defined on this interval obeys (17). The
first order model transformation (Hale and Verduyn
Lunel, 1993) of (17) results in

ẋ j(t) = (Ak j + Āk j )x j(t)

−Āk j

∫ 0

−τkj

[Ak j x j(t +θ)+ Āk j x(t +θ− τk j )]dθ,(35)

where the initial conditionψ j(t) is defined asψ j(t) =
x j−1(t), t ∈ [t j −2τk j , t j ] for j ∈Z

+, andψ0(t) defined
by

ψ0(t) =

{

φ(t), t ∈ [−τmax,0]
φ(−τmax), t ∈ [−2τmax,−τmax)

By using the Lyapunov-Razumikhin function (18), we
obtain the time derivative ofVk j (t,x j(t)) along the
trajectory of (35)

V̇k j (t,x j ) = xT
j (t)[Pk j (Ak j + Āk j )+(Ak j + Āk j )

TPk j ]x j (t)

−
∫ 0

−τkj

[2xT
j (t)Pk j Āk j (Ak j x j (t +θ)+ Āk j x j (t +θ− τk j )]dθ.

AssumeVk j (t + θ,x j(t + θ)) < p(Vk j (t,x j(t))) for
∀θ ∈ [−2τk j ,0], wherep(s) = pk j s, pk j > 1, we have
(Dugard and Verriest, 1998; Kharitonov, 1999)

V̇k j (t,x j) ≤−xT
j (t)S

d
k j

x j(t), (36)

where

Sd
k j

:=−{Pk j (Ak j + Āk j )+(Ak j + Āk j )
TPk j

+τk j [α
−1
k j

Pk j Āk j Ak j P
−1
k j

ĀT
k j

AT
k j

Pk j

+β−1
i Pk j (Āk j )

2P−1
k j

(ĀT
k j

)2Pk j

+ pk j (αk j +βk j )Pk j ]}. (37)

BecauseΣt ∈ Ãd, we haveSd
k j

> 0 from Lemma 2.

Therefore we can selectw(s) = wd
k j

s2 in Lemma 3,

such that (6) holds, wherewd
k j

:= σmin[Sd
k j

] > 0. We
choose

T̄d :=
λµd

α2 ⌈ λ−α2

α2β(p̄−1)
⌉, (38)

where
µd := max

i∈F

κ̄i

wd
i

(39)

and the other parameters are the same as those defined
in the proof of Theorem 6.

We can obviously apply analogues of Theorem 6 to
obtain the following inequality:

sup
t∈[t j ,t j+1]

‖x j(t)‖ ≤
√

λδd
j , (40)

where |ψ j(t)|[t j−2τkj
,t j ] ≤ δd

j , and δd
j+1 = αδd

j . Note

thatδd
0 can be selected as

δd
0 := |ψ|[−2τmax,0] = |φ|[−τmax,0] = δ0.

It is clear that|ψ|[−2τk0
,0] ≤ δd

0, which further implies

δd
j = δ j , j ∈ Z

+ ∪{0}. The upper bound of the state
variablex(t) of the switched time delay systemsΣt is
bounded by a decreasing sequence{δi}, i = 0,1,2, . . .
converging to zero, which implies the asymptotic sta-
bility and proves this theorem.

The dwell time based stability analysis proposed in
this paper is general in the sense that it can be used for
other stability results based on Razumikhin theorems
as long as the correspondingly Lyapunov functions
are in quadratic forms. Particularly, Theorem 7 can be
extended easily to the case whereΣt has time-varying
time delays and parameter uncertainties, which has
important applications such as TCP congestion control
of computer networks (Kelly, 2001).

4. CONSERVATISM ANALYSIS

The dwell time based stability results has been ob-
tained for linear delay free switched systems (Morse,
1996). It is interesting to compare the conservatism of
the results presented in this paper with those for delay
free systems.

In fact, one extreme case of the switched systemΣt

is τi = 0 andĀi = 0 for i ∈ A , which corresponds to
the delay free scenario. For each candidate system ˙x=
Aix, a sufficient and necessary condition to guarantee
asymptotic stability is∃Pi = PT

i > 0, such thatQi :=



−(AT
i Pi + PiAi) > 0. Correspondingly a dwell time

based stability for such switched delay free system is
q(t) ∈ S[τ̃D], where

τ̃D = µ̃lnλ, (41)

whereλ is defined by (25) and

µ := max
i∈F

κ̄i

w̃i
, (42)

wherew̃i := σmin[Qi ] > 0.

On the other hand in our case, forτi = 0 andĀi = 0,
we observe that

lim
αi→0+

Si = lim
αi ,βi→0+

Sd
i = Qi , i ∈ F (43)

from (22) and (37), which indicatesµ = µd = µ̃ by
(25), (39), and (42). Accordingly we can selectpi >

1, i ∈ F sufficiently large such that⌈ λ−α2

α2β(p̄−1)
⌉ = 1 in

(26) and (38), and obtain

τD = T̄ =
λµ
α2 =

λµd

α2 = T̄d = τd
D. (44)

Therefore

τD = τd
D =

λµ̃
α2 > λµ̃> µ̃lnλ = τ̃D. (45)

The dwell times derived in this paper for switched
time delay systems are more conservative than that for
switched delay free systems, although they are tight
results based on Razumikhin theorems. It is due to
the fact that asymptotic stability for linear delay free
systems is equivalent to exponential stability. For time
delay systems, the sufficient stability conditions based
on Lyapunov-Razumikhin theorem do not guarantee
exponential stability, however. As a matter of fact, the
exponential estimates for time delay systems require
additional assumptions besides asymptotic stability
(Kharitonov and Hinrichsen, 2004).

5. CONCLUDING REMARKS

We provided stability analysis for switched linear sys-
tems with time delays, where each candidate sys-
tem is assumed to be delay-independently or delay-
dependently asymptotically stable. We showed the ex-
istence of a dwell time of the switching signal, such
that the switched time delay system is asymptotically
stable independent of the trajectory. The results are
compared with the dwell time conditions for switched
delay free systems. An extension of this work is to
consider switching control methods for time varying
time delay systems.
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Toker, O. and H.Özbay (1995).H ∞ optimal and
suboptimal controllers for infinite dimensional
siso plants.IEEE Trans. on Automatic Control
40, 751–755.

Wu, F. and K. Grigoriadis (2001). LPV systems with
parameter-varying time delays: analysis and con-
trol. Automatica37, 221–229.

Yan, P. and H.̈Ozbay (2003). On switchingH ∞ con-
trollers for a class of LPV systems. In:Proc. of
the 42nd IEEE Conf. on Decision and Contr.

Zhai, G., Y. Sun, X. Chen and A. Michel (2003). Sta-
bility and L2 gain analysis for switched sym-
metric systems with time delay. In:Proc. of the
American Control Conference.


