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1. INTRODUCTION

An increasing attention is being dedicated in the sys-
tem identification literature to the problem of iden-
tifying suitable dynamic models for nonlinear sys-
tems: many different model classes and algorithms
have been proposed in recent years (Sjoberg et al.,
1995; Piroddi and Spinelli, 2003; Previdi and Lovera,
2003; Schoukens et al., 2003; Murray-Smith and Jo-
hansen, 1997), some of which are devised as exten-
sions of well-known linear models and procedures to
the nonlinear case. However, there are some aspects of
linear identification that have become common prac-
tice also in nonlinear identification, but that should be
carefully reexamined to be correctly applied. One of
these is data pre-filtering, which is systematically em-
ployed in linear identification, mostly for anti-aliasing
reasons and to reduce the effect of high frequency
disturbances in order to increase the signal-to-noise
ratio. Moreover, pre-filtering may be used to improve
model accuracy in a specified frequency band, e.g.,
as a result of control specifications which narrow the

frequency region over which accurate models are actu-
ally needed (Ljung, 1999). Typically, input and output
data are filtered with suitable low-pass or band-pass
filters and the filtered data are used for identification:
in the linear case this is equivalent to a filtering of the
prediction error which determines a weight on the cost
function in prediction error estimation, and is thus one
of the most important design variables for selectively
emphasizing the fit of the linear model.

In principle, the same considerations on imposing
a frequency weighting on the cost function may be
extended also to the nonlinear case. However, it will
be shown that a naive data pre-filtering may yield
unwanted results (parameter estimation is biased even
in the ideal case where the true system belongs to
the considered model set), while direct error filtering
can be effective, though ad hoc parameter estimation
algorithms have to be devised.

To extend the interpretation of pre-filtering to the
nonlinear case, a nonlinear frequency domain analy-



sis is necessary: to this end the well-known Volterra
series representation of nonlinear systems (Schetzen,
1980) will be used, for which frequency analysis tools
have been developed, based on the Generalized Fre-
quency Response Functions (GFRFs). For identifi-
cation purposes, the class of polynomial Nonlinear
Auto-Regressive Moving Average with eXogenous in-
puts (NARMAX) models (Leontaritis and Billings,
1985) will be used instead. These models are linear-
in-the-parameters, so that straightforward parameter
estimation methods can be employed for model iden-
tification (Billings et al., 1989). Also, procedures are
available for the computation of the Volterra kernels
of these nonlinear models (Billings and Tsang, 1989).

2. PRE-FILTERING IN LINEAR
IDENTIFICATION

This Section briefly summarizes the role of pre-
filtering in linear identification, with specific reference
to Output Error (OE) models (see (Ljung, 1999) for a
more general treatment of this topic).

Consider a linear identification problem where the
input-output data is generated by the ‘true system’

S : y(k) = Ho(q)u(k) + e(k) (1)

where the noise source e is a zero mean, white gaus-
sian noise with variance λ2 and Ho(q) is a linear
transfer function. Given a model classM(ϑ) parame-
terized by the vector ϑ and the optimal one step ahead
predictor

M(ϑ) : y(k) = H(q;ϑ)u(k) + ξ(k) (2)

M̂(ϑ) : ŷ(k|k − 1;ϑ) = H(q;ϑ)u(k) (3)

the prediction error is given by

ε(k;ϑ) = y(k)− ŷ(k|k − 1;ϑ) =

= ∆H(q;ϑ)u(k) + e(k)
(4)

where∆H(q;ϑ) = Ho(q)−H(q;ϑ) is the estimation
error on the system’s transfer function.

The Prediction Error Minimization (PEM) approach
to system identification is typically based on the min-
imization of a quadratic norm of the prediction er-
ror filtered through a stable linear filter εL(k;ϑ) =
L(q)ε(k;ϑ). It is well known that filtering the predic-
tion error is equivalent to performing the identification
on a pre-filtered input-output data set.

Filter L(q) allows extra freedom during identification,
that can be used to remove the effects of high fre-
quency disturbances or slow drift terms not essential to
the modelling problem. Moreover, some properties of
the model can be enforced or suppressed with a proper
choice of the filter. Writing the prediction error with
the input-dependent part of the filtered error expressed
as an inverse Fourier transform gives

εL(k;ϑ) =
1

2π

∫ π

−π

L(ejω)∆H(ejω;ϑ)

U(ω)ejωkdω + L(q)e(k)

(5)

In general, if the considered model class is such that
∆H(ejω;ϑ?) is identically zero for some ϑ?, i.e., if
S ∈ M, then the PEM estimate will be consistent.
If, on the other hand, it is not possible to assume that
S ∈ M, then the identified model will be biased
and the filter L(q) may be chosen to affect the bias
distribution: for example, if L(q) is a low-pass filter,
estimation errors in the filter frequency band are rela-
tively more weighted so that the prediction error iden-
tification algorithm will yield a more accurate model
in the same band, with respect to the unfiltered case.

3. PRE-FILTERING IN NONLINEAR
IDENTIFICATION

3.1 Volterra series representation of nonlinear systems

The Volterra series (Schetzen, 1980) generalizes the
convolution integral expression to represent the input-
output relationship for a discrete-time deterministic
causal SISO nonlinear system. The output of the sys-
tem is given by y(k) =

∑

∞

n=1 yn(k), where each
signal yn(k) can be interpreted as the output of the
n-th order subsystem defined by

yn(k) =
∞
∑

k1=0

...
∞
∑

kn=0

hn(k1,..., kn)
n
∏

l=1

u(k − kl) (6)

where hn(k1, ..., kn) is the n-th order Volterra kernel
of the nonlinear system.

An equivalent representation of the nonlinear system
in the frequency domain (Schetzen, 1980) may be
obtained considering the Generalized Frequency Re-
sponse Function (GFRF) of order n, which is defined
as the Fourier transform of the n-th order kernel. Con-
versely, the inverse Fourier transform of the n-th order
GFRF gives the n-th order kernel of the system. The
output of the n-th order kernel as a function of the
corresponding GFRF is given by

yn(k) =

(

1

2π

)n∫

...

∫ π

−π

Hn(e
jω1 ,..., ejωn)

n
∏

l=1

U(ωl)e
jωlkdωl.

(7)

3.2 Formulation of the nonlinear identification problem

We will assume that the identification data is gener-
ated by a ‘true system’ S in (8) where the noise source
e is a zero mean, white gaussian noise with variance
λ2, and we will consider a generic model classM(ϑ)
which, for analysis purposes only, will be represented
in Volterra series form. The general expression based
on Volterra kernels for a NOE model parameterized by
the vector ϑ and the optimal one step ahead predictor
are given by (9) and (10). Therefore, the prediction
error for a NOE model can be expressed as a function
of the differences between the actual and estimated
GFRFs (11).
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∏
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εL(k;ϑ) = L(q)ε(k;ϑ) =

∞
∑

n=1

(

1

2π

)n
∫

...

∫ π

−π

L(ejω1+...+jωn )∆Hn(e
jω1 , ..., ejωn ;ϑ)

n
∏

l=1

U(ωl)e
jωlkdωl + L(q)e(k) (12)

εDF (k;ϑ) = L(q)y(k)− ŷDF(k|k − 1;ϑ) =

∞
∑

n=1

(

1

2π

)n
∫

...

∫ π

−π

∆HDF
n (ejω1 ,...ejωn ;ϑ)

n
∏

l=1

U(ωl)e
jωlkdωl + L(q)e(k)

∆HDF
n (ejω1 , ..., ejωn ;ϑ) = L(ej(ω1+...+ωn))Ho

n(e
jω1 ,..., ejωn )− L(ejω1 )...L(ejωn )Hn(e

jω1 ,..., ejωn ;ϑ)

(13)

3.3 Effects of pre-filtering

In the nonlinear case, error filtering and data pre-
filtering are obviously not equivalent. The follow-
ing two Lemmas (which can be readily derived from
Theorems 3.2.1 (Composition Theorem) and 4.2.1 in
(Boyd et al., 1984)) describe the effect of linear filter-
ing at the input or the output of a nonlinear system and
will be useful later in the paper.

Lemma 1. Consider a series of a linear filter with
transfer function L(q) and a nonlinear system de-
scribed in terms of a Volterra series with GFRFs
Hn(e

jω1 , ..., ejωn). Then, the GFRFs of the overall
system are L(ejω1)...L(ejωn)Hn(e

jω1 , ..., ejωn).

Lemma 2. Consider a series of a nonlinear system
described in terms of a Volterra series with GFRFs
Hn(e

jω1 , ..., ejωn) and a linear filter with transfer
function L(q). Then, the GFRFs of the overall system
are L(ej(ω1+...+ωn))Hn(e

jω1 , ..., ejωn).

3.3.1. Error filtering Recalling (11) and applying
Lemma 2, the filtered prediction error can be writ-
ten as in (12). The above expression for the filtered
prediction error lends itself to considerations not un-
like the ones made for the linear case with respect to
equation (5): if the considered model class is such
that ∆Hn(e

jω1 , ..., ejωn ;ϑ?) is identically zero for
some ϑ?, then the estimate will be consistent, i.e., the
minimization of the prediction error norm and of the
filtered prediction error norm lead to the same model,
at least asymptotically, as in the linear case. If, on the
other hand, it cannot be assumed that S ∈ M, then the
identified model will be biased and the pre-filter L(q)
may be chosen to affect the frequency distribution of
the estimation error. Note, however, that the frequency
weightings L(ejω1+...+jωn) acting on the kernel es-

timation errors of increasing order have significantly
different shapes.

Further insight in the shape of the weighting factors
can be obtained by inspection of their behaviour along
the main diagonal in the frequency domain, i.e., set-
ting ωl = ω, l = 1, ..., n. As an example, Fig-
ure 1(a) illustrates the Bode plot of the magnitude of
the weighting factor L(ejnω) for the case of a second
order digital band-pass Butterworth filter with band-
width [0.1, 1]. It is apparent from Figure 1(a) that,
while in the linear case the effect of pre-filtering is to
‘cut out’ all the frequencies external to the bandwidth
over which the fit is required, in the nonlinear case
the bandwidth of the weighting factor is a function
of the kernel order and the fit is also important in
different bands, due to the nonlinear effect that scatters
the spectrum.

3.3.2. Data pre-filtering If we denote εDF (k;ϑ)
the prediction error sequence obtained after filtering
the identification data, we can write (13), in view of
Lemmas 1-2. In this case, even assuming that the con-
sidered model structure is sufficiently complex so as to
have a value ϑ? such that ∆HDF

n (ejω1 , ..., ejωn ;ϑ?)
is identically zero for all n, the input dependent part
of the prediction error will be (ideally) eliminated for
a choice of ϑ? such that

Hn(e
jω1 , ..., ejωn ;ϑ?) =

=
L(ej(ω1+...+ωn))

L(ejω1)...L(ejωn)
Ho
n(e

jω1 , ..., ejωn).
(14)

It is apparent from the above expression that, apart
from the case n = 1, Hn(·;ϑ

?) will correspond to a
weighted version ofHo

n(·), where the weighting factor
depends both on the characteristics of filter L(q) and
on the order of the considered kernel. In particular,
Hn(·;ϑ

?) ≈ Ho
n(·) in the frequency regions where
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Fig. 1. Bode diagram of weighting factor for a second
order Butterworth filter with bandwidth [0.1, 1]:
(a)
∣

∣L(ejnω)
∣

∣, (b)
∣

∣L(ejnω)/L(ejω)n
∣

∣.

L(ej(ω1+...+ωn))
L(ejω1 )...L(ejωn )

≈ 1, while the approximation de-
grades where this ratio differs from 1 significantly.

This approximation depends on the shape of the filter
and, as in the case of error filtering. Along the diago-
nal, (14) reduces to

Hn(e
jω,..., ejω;ϑ)=

L(ejnω)

L(ejω)n
Ho
n(e

jω, ..., ejω). (15)

It is clear from expression (15) that for rational filters
L(q) with positive relative degree (such as, e.g., con-
ventional low-pass or band-pass filters) the frequency
weighting factor L(ejnω)/L(ejω)n will be of high-
pass type and will take abnormally high values out-
side the filter bandwidth for higher order kernels: this
implies, in the first place, that the identification algo-
rithm will try to fit a severely distorted kernel. More
disturbingly, though this distortion takes place outside
the filter bandwidth, in some cases the shape of the
weighting factor also affects the model accuracy in-
side the filter bandwidth. In fact, the minimization pro-
cedure in the identification algorithm will be enticed to
consider as numerically significant only the portion of
the identification data with frequency content outside
the filter bandwidth, thus producing an unwanted bias
also inside the filter bandwidth. Notice, finally, that
even in the ideal case when the system belongs to the
model family, the presence of the weighting factor in
(15) actually configures an under-parameterized iden-
tification problem.

More specifically, Figure 1(b) considers a second or-
der digital band-pass Butterworth filter with band-
width [0.1, 1]. In the optimal model, the accuracy of
higher order kernels would be reasonable only within

a fraction of the filter bandwidth, which gets smaller
as the kernel order increases. Also, a severe distortion
would result both outside and inside the filter band-
width.

All these considerations clearly suggest that pre-
filtering data is not a good practice when a nonlinear
model has to be identified: the resulting model will
always be biased, even if S ∈ M. On the other hand,
including error filtering in the identification algorithm
could still be valuable, in order to ”shape” the bias
distribution of the identified models. Note also, that
the above analysis holds regardless of the specific pa-
rameterization for the model class and is also therefore
largely independent of the considered parameter esti-
mation algorithm.

3.4 Error filtering for nonlinear polynomial models

The inclusion of an error filtering mechanism in a
general algorithm for nonlinear model identification is
quite straightforward for a model class which is linear
in the parameter vector ϑ. Consider the general black-
box nonlinear model structure (Sjoberg et al., 1995)

M̂(ϑ) : ŷ(k;ϑ) = g(φ(k), ϑ), (16)

where g is a nonlinear function parameterized in ϑ
and φ(·) is a vector of regressors, defined as past
input u(k − κ), output y(k − κ) and estimated output
ŷ(k − κ;ϑ) values. Such model structure includes
NFIR, NARX and NOE models along with the clas-
sification of (Sjoberg et al., 1995). Now assume that g
depends linearly on ϑ, as happens e.g., for polynomial
input/output recursive black-box models

M̂(ϑ) : ŷ(k;ϑ) = ψ(k)Tϑ, (17)

where the elements of ψ(k) are linear and nonlinear
monomials of u(k−κ), y(k−κ) and ŷ(k−κ;ϑ). For
such models, the filtered prediction error results

εL(k;ϑ) = L(q)y(k)− L(q)ŷ(k;ϑ) =

= yL(k)− ψL(k)
Tϑ,

(18)

where ψL(·) denotes the vector of filtered monomials.
Filtered versions of monomials including u(k−κ) and
y(k−κ) terms only can be computed at the onset of the
minimization procedure, while monomials containing
also terms of the type ŷ(k − κ;ϑ) must be filtered at
each algorithm iteration after ŷ(·;ϑ) has been recalcu-
lated given the current parameterization ϑ.

4. SIMULATION EXAMPLES

This Section reports two simulation examples which
illustrate the results discussed in the paper. For sim-
plicity reasons, only NFIR and NARX models will
be considered, both when the system belongs to the
model family and when the model family is under-
parameterized (see (Spinelli et al., 2004) for addi-
tional details).



Table 1. Estimated parameters for the
model in Example 1

Regressors true LS DFLS EFLS
u(k − 1) 1.0 1.00278 1.01590 1.00426
u(k − 2) 0.7 0.70071 0.74577 0.70254
u(k − 1)2 2.0 1.99979 34.01886 1.99569
u(k − 2)2 1.0 0.99996 33.43990 1.00531
u(k − 1)u(k − 2) -0.5 -0.49918 -61.36556 -0.50142

Example 1. Consider the system

S1 : y(k) = u(k − 1) + 0.7u(k − 2)+

+ 2u(k − 1)2 + u(k − 2)2

− 0.5u(k − 1)u(k − 2) + e(k)

(19)

and the NFIR model structure
M1(ϑ) : y(k) = a1u(k − 1) + a2u(k − 2)+

+ b1u(k − 1)
2 + b2u(k − 2)

2+

+ b3u(k − 1)u(k − 2) + ξ(k),

(20)

where clearly S1 ∈ M1. The identification is per-
formed over a data set of 10000 samples generated
with both input and noise signals, u(·) and e(·), se-
lected as white gaussian noises, with variances 1 and
λ2 respectively, the latter value being chosen in or-
der to obtain SNR = 20 dB. The parameters of the
model have been estimated using basic least squares
(LS), as well as least squares with data pre-filtering
(DFLS) and error filtering (EFLS). In the last two
cases a second order low-pass digital Butterworth
filter with bandwidth [0, 0.5] has been considered.
Figures 2-3 show the Bode diagrams of the identi-
fied GFRFs and the corresponding bias distribution,
respectively. While with both LS and EFLS the esti-
mated model converges to the true system, the DFLS
algorithm estimates the second order frequency re-
sponse badly in all the frequency range (notice, in
particular, the increasing amplitude at high frequency,
in agreement with equation (15)). Figure 3 shows that
LS and EFLS obtain comparable accuracies, whereas
DFLS has significantly more bias in all the frequency
range. Evaluation in simulation gives yet another con-
firmation that the model estimated with DFLS is inac-
curate. This is reflected also by the numerical values
of the estimated parameters (see Table 1). While the
estimates computed using LS and EFLS are consis-
tent, DFLS leads to abnormally high values for the
parameters associated with the quadratic regressors.

The correct estimation of the first order GFRF is a con-
sequence of the fact that for a second order nonlinear
system with normally distributed white gaussian input,
the spectrum of the error can be written as the sum
of two independent contributions, related to the first
order and second order bias, respectively, while the
cross spectrum is asymptotically zero. In the general
case, however, the estimation of the various GFRFs is
not independent, since the quadratic prediction error
norm also contains cross terms, which account for the
interactions between different GFRFs.

Example 2. Consider the NARX system
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Fig. 2. Actual (solid) and estimated (dashed) GFRFs
for Example 1: LS (upper), DFLS (middle),
EFLS (lower).
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Fig. 3. Bias distribution for the estimated GFRFs of
Example 1: LS (solid), DFLS (dashed), EFLS
(dash-dot).

S2 : y(k) = 0.5y(k − 1) + 0.75u(k − 1)+

+ 0.25u(k − 2) + 0.15u(k − 1)2+

+ 0.35u(k − 2)2 + e(k)

(21)

and the (under-parameterized) NARX model structure

M2(ϑ) : y(k) = ay(k − 1) + bu(k − 1)+

+ cu(k − 1)2 + ξ(k)
(22)

so that S2 /∈M2. The identification is performed over
a data set of 1000 samples generated with white gaus-
sian input u(·) (variance 1) and noise e(·) (variance
λ2, chosen in order to obtain SNR = 20 dB), using
all the considered identification methods. The filter
used in DFLS and EFLS is the same used in the previ-
ous example. The parameters of the identified models
are reported in Table 2, while the frequency domain
characteristics of the identified models obtained using
LS, DFLS and EFLS are compared in Figures 4-5.

Consistently with Example 1, (low-pass) error filtering
can be used to reduce the bias both in the first and
second order kernel estimates in the frequency band
of interest. Unlike the previous example, however, the



Table 2. Estimated parameters for the mod-
els in Example 2

Regressors LS DFLS EFLS
y(k − 1) 0.71893 0.85327 0.63673
u(k − 1) 0.74604 0.50235 0.79515
u(k − 1)2 0.19342 0.48249 0.37221
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Fig. 4. Estimated GFRFs for Example 2: LS (upper),
DFLS (middle), EFLS (lower).
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Fig. 5. Bias distribution for the GFRFs of Example 2.

estimate of the second order kernel obtained with data
pre-filtering does not exhibit the high frequency am-
plification which was apparent in the previous cases.
This is due to the presence of the autoregressive term
in the model class M2, which structurally prevents
this kind of behavior. However, the undesirable effect
of the weighting function (15) is still visible in terms
of the increased low frequency bias in the kernel es-
timates obtained via DFLS with respect to the corre-
sponding LS estimates.

5. CONCLUDING REMARKS

The role of pre-filtering in nonlinear system identi-
fication has been investigated within the framework
of Volterra series representation of nonlinear systems.
The classical results on the frequency domain inter-
pretation of prediction error filtering available in the

linear system identification literature have been ex-
tended to the nonlinear case and the pitfalls associated
with the naive application to nonlinear problems of
the practice of data pre-filtering have been analyzed
and illustrated via simulation examples of NFIR and
NARX model. Future developments include the inves-
tigation of nonlinear data and error pre-filters.
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