
DYNAMIC NON-MINIMUM PHASE COMPENSATION FOR SISO NONLINEAR SYSTEMS 
 
 

M. Bacic*, M. Cannon*, and B. Kouvaritakis* 
 
 

*Oxford University, Department of Engineering Science, 
Parks Rd, Oxford OX1 3PJ, UK,marko.bacic@eng.ox.ac.uk 

 
 
 

 
Abstract: Nonminimum phase difficulties prevent the use of input-output feedback 
linearization.  To avoid this problem, earlier work proposed the use of synthetic outputs 
with the view of placing zeros in prescribed locations under a condition of static 
equivalence.  The objective here is also to introduce a synthetic output. However this is 
defined through the use of dynamic perturbations aimed at yielding maximum relative 
degree.  Resetting of the initial conditions of the additional dynamics allows design 
freedom for closing the gap between the behaviour of the synthetic and actual output.  
The efficacy of the strategy in meeting pole placement is demonstrated by a simple 
numerical example.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Unconstrained optimal control is of interest in its 
own right, but it also has found extensive use in the 
definition of terminal control laws deployed in model 
predictive control (Mayne et al, 2000).  However the 
determination of the optimal is a rather challenging.  
An exception to this relates to the case when the 
optimal control cost does not include the usual term 
which places a penalty on control activity.  Under 
such circumstances, Input-Output feedback 
linearization (Isidori, 1989) provides a convenient 
means for the explicit determination of the optimal 
control law.  This results in minimum values for the 
cost, which typically (in the context of regulation) 
comprise the integral of the square of the system 
output. However there is no guarantee of stability in 
the presence of non-minimum phase characteristics.   
Roughly speaking, feedback linearization cancels the 
nonlinear dynamics from input to output thereby 
making the system internal dynamics unobservable 
from the system outputs.  Thus in the case of 
unstable inverse dynamics, it is perfectly possible for 
the output to converge to zero but the state to diverge 
from the intended equilibrium point.  These 

considerations apply in equal measure to model 
algorithmic control (Richalet et. al., 1978; Soroush 
and Kravaris,1992) where the (explicit or implicit) 
inversion of dynamics is aimed at achieving model 
reference, in place of striving for optimality. 
  
This problem was tackled through non-minimum 
phase compensation and involves approximation.  
This is achieved through minimum/-non-minimum 
phase decomposition, or stable/anti-stable 
decomposition of the zero dynamics, or inner-outer 
approximate factorisations (Doyle et. al., 1992; 
Doyle et.al. 1996).  Earlier work (Kravaris and 
Daoutidis, 1990) considered a particular canonical 
form which allows the derivation of ISE optimal 
solutions for the special case of 2nd order SISO 
systems.  The extension of this work to higher order 
systems is not straightforward and instead later work 
suggested (Niemiec and Kravaris, 2001) the use of 
synthetic outputs which allow the definition of 
minimum phase systems.  Such systems can be made 
to follow exactly a given reference signal and the 
design cycle then can be completed through a 
minimization of the deviation of the behaviour of the 

     



synthetic from the actual output. Further work on 
synthetic outputs followed (Martin et. al., 1996 and 
Fliess et. al., 1998). 
 
The work here also makes use of synthetic outputs 
but rather than create those through a redefinition of 
the output map, the idea of introducing additional 
dynamics is proposed.  Also, rather than place the 
system zeros from input to synthetic output at 
prescribed locations, the added dynamics are 
adjusted so that the system has no zeros at all.  
Moreover the minimization of the deviation of the 
behaviour of the synthetic from the actual output can 
be achieved through resetting the initial conditions of 
the added dynamics.  The main aim is to explore the 
underlying philosophy and to show its viability in 
deriving closed loop stability while at the same time 
meeting some performance specification.  For 
illustration purposes we adopt a pole placing 
objective; optimal control without a penalty on 
control activity and without constraints becomes a 
problem in “cheap control” which is of little practical 
use.  The state space augmentation with the view of 
achieving maximum relative degree leads to partial 
differential equations which may be difficult to solve 
explicitly.  Like the work presented in (Niemiec and 
Kravaris, 2001), at first sight it appears that our 
strategy requires explicit solution of equations which 
can be accomplished only in special second order 
cases.  However our zero cancellation (and pole 
placement) can be implemented in a point-wise 
fashion so that extension to higher dimensions 
should be perfectly possible.  Needless to say that the 
algebra gets progressively more cumbersome as the 
order increases however here for clarity the 
development of the paper is restricted to SISO 2nd 
order systems. 
 
Reduction of the ideas of the paper to the linear case 
leads to the paradox that one should be able to 
achieve nearly zero cost under cheap control, even 
for systems with non-minimum phase zeros.  All one 
has to do, is add extra dynamics to get rid of the 
transmission zeros and apply cheap control using the 
synthetic output.  Given that under cheap control all 
the states (of the augmented system) can be made to 
decay arbitrarily fast it is then easy to show that the 
deviation between synthetic and actual outputs would 
also decay arbitrarily fast thereby indicating that 
synthetic and actual cost could be made to be 
arbitrarily small.  This paradox would suggest that 
one can do better than optimal control, and whereas 
in some sense this is true, it is a theoretical artifice in 
that it depends on exact knowledge of the system 
parameters and is in fact arbitrarily sensitive to small 
parameter perturbations.  This robustness issue 
however is the result of sensitivity due to the use of 
cheap control rather than due to the strategy of 
augmenting the system dynamics. Although 
robustness is not tackled explicitly in our paper, 
sensitivity tests show that our results enjoy a 
significant measure of robustness.  No doubt, in the 
absence of input constraints, an unreasonable pole 
placement objective could well introduce robustness 
problems, but in part that could be counteracted 

(albeit at some sub-optimality) by the convergence 
conditions imposed on the resetting process. 
 
2. STATE SPACE AUGMENTATION FOR ZERO 

CANCELLATION 
 
 
Consider the second order affine in the input 
nonlinear model 
 
 ( ) ( ) ,x f x g x u y Cx= + =       (1-2) 
 
where 2 , ,x u y∈ ∈ ∈R R R  and for convenience 
the output is assumed to depend linearly on the 
states; if this is not the case, the algebra presented in 
the sequel is still possible but more involved.  It is 
assumed that 0, 0x u= =  defines an equilibrium 
point.  If this system were minimum phase about the 
origin, then input-output feedback linearization 
(IOFL) could be used to steer the state to the origin 
and to ensure that the output decays to zero 
according to the dynamics of a linear system with 
prescribed poles, e.g. two poles at say –1.  For 
brevity, we shall refer to this as pole-placement (PP).  
The challenge is to achieve PP when the inverse 
dynamics about the origin exist, i.e. when 
 
                                   (3) ( ) 0Cg x ≠
 
and when the zeros of the linearization of (1) about 
the origin lie in the right half of the complex plane.  
PP implies the need for IOFL but in the presence of 
nonminimum characteristics this may lead to 
instability; the inverse dynamics will be made 
unobservable from the output so that the output could 
be converging to 0 while the state diverges.  

To overcome this, the proposal here is to 
introduce an extra state, , and synthetic output z ψ : 
 
 ( ) ( ) ,z p x q x u Cx zψ= + = +     (4-5) 
 
Due to the presence of non-minimum phase 
characteristics, it is not possible to attain exact PP 
from  to , however one could achieve this 
approximately by aiming for exact PP from  to 

u y
u ψ  

while seeking to minimize .  The idea is to design z
( ), ( )p x q x  such that (1), (5) has maximum relative 

degree thereby enabling the application of IOFL.  
Accordingly, it is required that ,ψ ψ  are made 
independent of  whereas u  is so chosen that u ψ  is 
an appropriate linear combination of , ,ψ ψ ψ , e.g. 
 
         3 3ψ ψ ψ ψ= − − −          (6) 
 
Let  be a vector function such that ( )Tn x
 
                       (7) ( ) ( ) 0Tn x g x =
 

     



and such that the matrix of first order partial 
derivatives of  is symmetric:  ( ) ( )T

xn x Cf x−
 

            1 2

2 1

[ ( )] [ (x xn Cf x n Cf x
x x

∂ − ∂ −
=

∂ ∂
)]

         (8) 

 
Let also  be a region containing the origin such 
that for all 

Γ
x ∈Γ  the following holds true:  

 
     (9) ( ) ( ) ( ) ( ) ( ) ( ) 0T T T

x xg x n x f x n x f x g x+ ≠
 
where  denote the matrices of first 
order partial derivatives of the elements of 

, respectively with respect to 

( ), ( )x xn x f x

( ), ( )n x f x 1 2,x x .  
Then it is possible to state the following results. 
Theorem 2.1 For all x ∈Γ  (1), (4) has maximum 
relative degree if and only if ( )p x ,  satisfy: ( )q x
 

( ) ( ), ( ) ( ) ( )T
x xq x Cf x p x Cf x n x= − = − +

           (10-11) 
 
Proof:  Differentiation of (5) with respect to time 
and use of (1) and (4) gives 
 

( ) ( ) [ ( ) ( )]Cx z Cf x p x Cg x q z uψ = + = + + +
                        (12) 
 
which is independent from  if and only if u
 
                                 (13) ( ) ( )q x Cf x= −
 
For this choice of  ( )q x
 
         ( ) ( )Cf x p xψ = +                     (14) 
 
Further differentiation and use of (1) gives 
 
 

( ) ( ) ( ) ( )
( ) ( ) [ ( ) ( )] ( )

x x x

x x x

Cf x x p x x Cf x f x
p x f x Cf x p x g x u

ψ = + =
+ + +

+
    (15) 

 
where ( )T

xp x  denotes the transpose of the gradient 

of ( )p x .  Then the condition  
 
                 (16) [ ( ) ( )] ( )x xCf x p x g x+

     

0=
 
is necessary and sufficient to make ψ  independent 
of : u
 [ ( ) ( )] ( )x xC f x p x f xψ = +               (17) 
 
Eqn. (16) together with the definition of  
suggest (11).  Substitution of (11) into (15) gives: 

( )n x

 
                               (18) ( ) ( )Tn x f xψ =

 
Differentiation of the above yields 
 
       ( ) ( ) ( ) ( )T T T

x xx n x f x n x f x xψ = +        (19) 
 
so that after substitution into the above of (1) gives 
 

[( ( ) ( ) ) ( ) ( ) ...

( ) ( )( ( ) ( ) )

T T T
x

T
x

f x g x u n x f x

n x f x f x g x u

ψ = + +

+ +
      (20) 

 
For x ∈Γ  the above establishes that the third 
derivative of ψ  is the lowest derivative that does 
actually depend on u.  This implies that the relative 
degree of (1), (4) is three, which for the assumed 
dimensions of (1) is the maximum it can be.            ■  
 
Corollary 2.2  For the ( ), ( )p x q x  of Theorem 2.1 
and for x ∈Γ , the control law 
 

3( ( ) ( )) 3 ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

T T T
x

T T T
x x

T T T
x x

T T T
x x

Cx z Cf x p x n x f x f x n x f xu
g x n x f x n x f x g x

f x n x f x n x f x f x
g x n x f x n x f x g x

− − − + − −
=

+

+
−

+

                

                                                                               (21) 
ensures satisfaction of the PP condition (6). 
 
Proof: For all x ∈Γ  the control law of (21) is 
defined.  The remainder follows by a straight forward 
substitution of (14), (18) and (21) into (6). ■ 
 
3. POINTWISE SOLUTION OF PP CONDITIONS 

 
The results of §2 require the computation of , 
and although both (7) and (8) seem straightforward, 
in general the solution for  can be challenging.  
The reason for this is that whereas from (7) it follows 
that direction of  is fixed and must be that of 
the left null space of , the scaling factor has to 
be such that it satisfies (8).  This implies the need for 
solution of a partial differential equation which can 
be solved, using the method of characteristics, but 
which in general is rather challenging.  This can be 
avoided by forcing the scaling to be 1 along the 
trajectories of (1), (4) and by treating any given 

( )n x

( )n x

( )Tn x
( )g x

x  as 
a constant but ensuring that  and ( )Tn x ( )p x satisfy 
at the given x  all the differential properties implied 
by the conditions of Theorem 2.1.  Thus at a given 
x ,  can be taken to be the unit vector in the 
direction of the left null space of , but since (7) 
must be identically true, we must also have that 

( )Tn x
( )g x

 
               0T T

x xn g g n+ =                       (22) 
 
where the argument “(x)” has been purposely 
suppressed (since the given x  is now treated as a 
constant).  The above gives the solution for  as T

xn
 



 1

2

1 T
T T T
x xT T

n
n g ng

g g n
γ
γ

⎡ ⎤
= − + ⎢

⎣ ⎦
⎥            (23) 

 
However the off diagonal elements of  must also 
satisfy (8) at 

T
xn

x  so that 
 

       

1 2
1 2

1

2 1
2 1

2

[ ]

[ ]

T T T
Tx

T

T T T
Tx

T

e g ng e Cfn e
g g x

e g ng e Cfn e
g g x

γ

γ

∂
− + −

∂

∂
= − + −

∂

2

1

x

x

=

       (24)     

which implies that 2γ  and hence  can be 

expressed as affine functions of 

T
xn

1γ : 
 
 2 1( ), ( )T

xl x n L 1γ γ= =        (25) 
 
On the other hand, forcing the norm of  to be 1 
along the trajectories of (1), it follows that at any 
given 

( )n x

x  we must have  which implies that 0Tn n =
 
       (26) [ ]T T T T T

x xx n n f ug n n= + =

     

0
 
The combination of (26) with (25) yields 
 

             1

1

( )
( )

T

T

f L nu
g L n

γ
γ

= −        (27) 

 
Theorem 3.1  At each x ∈Γ , for 1γ  such that 
 

1

1

( 3( ) 3 ) (

( ) ( )

T T T T T
x x

T T T T
x x

Cx z Cf p n f f n f n f f g L n

g n f n f g f L n

)γ

γ

+ + + + + +

= +
 

       (28) 
the control law 
 

1

1

3( ) 3 ( )
( )

T T T
x

T T
x

Cx z Cf p n f f L f n f fu
g L f n f g

γ
γ

− − − + − − −
=

+
   (29) 

 
ensures that (at the given x ) PP of (6) is satisfied. 
 
Proof: Equation (28) is the consequence of the u of 
Corollary 2.2 which ensures the satisfaction of (6) 
also satisfying the necessary condition of (27).  
Furthermore (29) is just (27) re-written for the 
solution of  that satisfies the necessary conditions 

(8) and (22), namely for the  as given by (25). ■ 

T
xn

T
xn

 
Although the expression in Theorem 3.1 and the 
relevant results may appear somewhat involved, they 
are all amenable to a straightforward computer 
implementation.  Thus, (28) is a quadratic for which 
solutions can be computed explicitly, whereas the 
values of  required in both (28) and (29) can be 
obtained through the use of an ordinary differential 
equation solver of (1), (4) for the u  of (29). The 

values of 

z

p  can also be obtained from a ODE solver 
because along the trajectories of (1), it follows that 
 
 ( ( ) ( ) )T T

x xp p x p f x g x u= = +          (30) 
 
The pointwise treatment of this section avoids the 
need for explicit expressions for p  and can be 
applied to any 2nd order affine in the input system.  
More importantly it can be extended to higher 
dimensions, although then both ( )p x ,  must 
become vector functions; augmentation by a single 
extra state  would no longer provide enough 
degrees of freedom for the achievement of maximum 
relative degree. The detailed treatment of the general 
dimension case forms the object of future research. 

( )q x

z

 
4. THE ONLINE ALGORITHM AND ITS 

CONVERGENCE 
 
The attainment of maximum relative degree implies 
that the control law of Theorem 3.1 is not only 

stabilizing in -space, where w [ ]Tw ψ ψ ψ= , 

but also in -space, where ; the 

danger of unstable inverse dynamics which are 
unobservable unstable dynamics no longer exists.  
Such a scheme would be fine if the objective were to 
drive  to zero while 

v
TTv x z⎡= ⎣ ⎤⎦

w ψ  observes the linear 
dynamics of (6).  However the concern here is to 
cause  to converge to the origin while  decays 
according to the linear dynamics of (6).  The 
difference between the synthetic and actual output is 
given by  and therefore the minimization of  
forms a sensible design objective.  However  is an 
artificial state introduced to achieve maximum 
relative degree and this is achieved by observing the 
differential conditions of Sections 2 and 3.  Therefore 
one is free to reset the initial condition for  back to 
zero at each instant when the control u  of Theorem 
3.1 is computed.  Clearly the same applies to 

v y

z z
z

z

p  as 
well and resetting takes place at a high frequency, 
then given that  is constrained to converge to the 
origin, it follows that both  and 

w
z p  will stay close 

to zero.  Of course it is known that  and z p cannot 
remain at exactly zero all the time because then the 
control of Theorem 3.1 would be de-stabilizing (on 
account of the assumed non-minimum phase 
characteristics of (1), (2)).  In essence therefore the 
suggested scheme of resetting  and z p  allows for 
small perturbations on the IOFL control law which 
cause it to become stabilizing.  However, whereas 
without resetting, stability was guaranteed, it now 
becomes necessary to invoke a convergence 
condition. 

To establish the convergence condition, 
consider the case without resetting for which the 
dynamics of (6) can be described in state space form 
as 
 



     

1 ⎥               
0 1 0

, 0 0
1 3 3

w Aw A
⎡ ⎤
⎢= = ⎢ ⎥
⎢ ⎥− − −⎣ ⎦

        (31) 

 
However  would evolve as per (4) and (30) and 
could therefore grow to be sufficiently large so that 
the behaviour of the synthetic and actual output 
could be very different.  The question now arises as 
to whether every  seconds, where h  is an 
arbitrarily small time interval, one could perturb the 
values of  by  thereby also perturbing 
the values of 

,z p

h

,z p ,z p∆ ∆
,ψ ψ , the first and second elements of 

, the first of which is directly proportional to  
and the other directly proportional to 
w z

p , with the 
constants of proportionality both being equal to 1 
(see equations (5) and (14)).  The consequence of 
this would be to cause the behaviour of  to deviate 
away from that predicted by (31).  To ensure that  
still converges (albeit not necessarily as fast as 
indicated by (31)), it becomes necessary to restrict 
the size of the perturbation on w. 

w
w

 
                 (32) 0

TT Tz pδ ⎡= ∆ ∆⎣ ⎤⎦

]0

w

 
Theorem 4.1  Let Q be the solution of 
 
           (33) [1 1 1, 1 0 TT TA Q QA e e eη+ = − =
 
Then the law of Th3.1 with resetting constrained by 
 

            (34) 
1 1( ) [ ]( )T T T Tw A Q QA w w e eδ δ η+ + + ≤ −

will cause  to converge to 0 and guarantees that w
 
         2

0

1( ) T
o ot dt w Qwψ

η
∞

≤∫         (35) 

where  denotes the initial value of . ow w
Proof: The conditions of Theorem 3.1 ensure that 
between resetting the dynamics of  will be 
dictated by (31).  (34) ensures that  is a 
Lyapunov function which at all times satisfies 

w
TV w Qw=

 
                   2V ηψ≤ −                       (36) 
Condition (33) ensures that at all times there exist δ  
that satisfy (34), with 0δ =  being one of them.  As 
a consequence  will decrease monotonically so that 
upon integration of  (36) one gets the result of (35).■ 

v

 
Remark 4.1 In practice  may be chosen not to be 
arbitrarily small, and the analysis of Theorem 4.1 
could be applied to the linear discrete time dynamics 
implied by (31).  However this is a straightforward 
technicality which will not be considered further. 

h

 
Remark 4.2 The upper bound on the -norm of 2l ψ  

depends on both η  and Q  so that in order to make 

this tight for general initial conditions one could 
minimize (offline) the trace or determinant of Q  for 
any particular choice of η  subject to condition (33) 
with the equality sign replaced by “ ”.  The 
resulting minimization can be shown to be a convex 
optimisation for which there exist efficient solvers.   

≤

 
Algorithm 4.1 Implement the control law of 
Theorem 3.1 with 0, 0z p= =  if the required 
perturbation δ  satisfies (34) otherwise select the δ  
which satisfies (34) and minimizes .    2 2z p+
 
Remark 4.3 For small h  the change in  
between resetting times will be small so that starting 
from 

,z p

0, 0z p= =  the δ  required to reset  at 
zero will be small and therefore for sufficiently small 

,z p

η  such δ  are likely to be feasible (i.e. to satisfy 
(34)).  Under such circumstances the minimization of 
Algorithm 4.1 will not be required and both  and z
p  will be small thereby suggesting a near exact 

satisfaction of the PP objective.  If the δ  above are 
infeasible, it is pointed out that the minimization of 
the Algorithm is trivial as it involves finding the 
point of tangency between an ellipse (defined by 
(34)) and a circle (corresponding to the equation 

2 2z p r2+ = ).  This would be true for extensions to 
higher dimensions, except of course that the ellipses 
would become ellipsoids and the circles spheroids. 
 

5. ILLUSTRATIVE EXAMPLE 
 
For simplicity consider the bilinear system 
 
 ( ) ,x Ax B Fx u y Cx= + + =  

[ ]              (37) .72 1.18 5.2370
, , .69 .2

.78 .59 8.5732

.6892 .4610

.7056 1

A B C

F

− − −⎡ ⎤ ⎡ ⎤
= = = −⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 
This example was chosen to be challenging in that 
the origin is unstable both for  and for IOFL.  
For this example the condition 

0u =

          
( ) ( ) ( ) ( ) ( ) ( ) 0T T T

x xg x n x f x n x f x g x+ =  
 
define the two lines labelled as “abc” and “def” in 
Figure 1.  They divide the x -plane into four 
quadrant of which the one containing the origin is 
Γ .  The figure shows the closed loop trajectories 
generated by Algorithm 4.1 for a variety of initial 
conditions.  It is pointed out that for the chosen initial 
values, the nonlinear effect of the term “ ” is 
significant.  The convergence parameter was chosen 

Fx

310η −=  and the associated minimum determinant 
 (see Remark 4.2) was found to be Q

 
.0021 .0017 .0005
.0017 .0018 .0006
.0005 .0006 .0002

Q
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 



               
The crosses on the figure mark the instances when 
(34) became active thereby preventing a resetting to 
zero of  and z p .  The efficacy of Algorithm 4.1 is 
illustrated by the plots of Figure 2.  Plot (a) depicts 
the behaviour of , whereas (b) shows the evolution 
of .  The very small values of  indicate that for 
those release conditions the algorithms achieved near 
exact PP.  The plots of Figure 3 replicate the results 
of Figure 2 for the case when the model of equation 
(37) is used in the computation of the control law but 
the elements of the matrices are made subject to 
random time varying additive perturbations of up to 
10%.  Algorithm 4.1 can be seen to enjoy a high 
degree of robustness. 

y
z z

 
6. CONCLUSIONS 

 
Exact IOFL is destabilizing around non-minimum 
phase equilibrium points.  This paper proposed a 
scheme which removed this difficulty by applying 
IOFL to a synthetic output which is created through a 
dynamic perturbation of the actual output.  The 
perturbation was design to achieve maximum relative 
degree but otherwise was kept as small as possible 
thereby minimizing the deviation of synthetic from 
actual output.  The development was presented in the 
context of second order systems but it is believed 
that extensions to the general case are possible and 
form the focus of future research.  The ability to 
adjust the control law online also fosters the 
possibility of extensions which accommodate input 
constraints.  Simulations show that for the chosen 
illustrative example our algorithm enjoys a high 
degree of robustness but a systematic study of this 
issue still remains to be completed.   
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Fig. 1.  State trajectories 

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

7

8

Time[s]

y(
t)

 
Fig. 2(a). Output trajectory(perfect model) 
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Fig. 2(b). z trajectory(perfect model) 
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Fig. 3(a). Output trajectory (random model error) 
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Fig. 3(b).  z trajectory (random model error) 
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