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1. INTRODUCTION

The multiparametric linear programming problem
(mp-LP) is as follows:

z∗(θ) , min
x∈Rn

{

cT x |Ax ≤ b + Sθ
}

, (1)

where c ∈ R
n, A ∈ R

q×n, b ∈ R
q×1, S ∈ R

q×p, and
the vector x ∈ R

n is to be optimized for all values of
the parameter vector θ ∈ Θ, where Θ ⊆ R

p is some
polyhedral set. In other words, we seek the optimal
solution x∗ : Θ 7→ R

n.

Gal and Nedoma (Gal and Nedoma 1972) presented
the first algorithm for solving multiparametric linear
programs. The approach is based on visiting the op-
timal bases of the associated simplex tableau. Sub-
sequently, algorithms similar to that of Gal et al.
have been developed (van der Panne 1975, Yu and
Zeleny 1976). The value function is piecewise affine
on a number of polyhedra in the parameter space, but
can also, by using the dual solution, be represented as
the maximum of a finite number of affine functions.
The relationship between these representations can be
utilized to solve mp-LP programs (Schechter 1987).

Only recently, (Borrelli et al. 2003) proposed a fun-
damentally different algorithm for mp-LPs where the

geometric properties of the problem is used to explore
the parameter space directly. The direct exploration of
the parameter space was first presented for multipara-
metric mixed integer linear programs (Acevedo and
Pistikopoulos 1997) and later utilized in an algorithm
for multiparametric quadratic programs (Bemporad et
al. 2002b).

Extensive work has been done on the properties of
the value- and optimizer functions for different types
of multiparametric problems. The optimal value as
a function of the parameters has been shown to be
continuous for strictly convex mp-QP (Bemporad et
al. 2002b, Fiacco 1983, Bank et al. 1983), for mp-
LP (Gal and Nedoma 1972, Dinkelbach 1969), for
convex mp-QP (Best and Ding 1972) and mp-NLPs
(Fiacco 1983, Bank et al. 1983) that satisfies certain
conditions.

The optimizer function will under some assump-
tions admit a continuous selection for a general class
of multiparametric optimization problems (Michaels
1956). When the optimizer is unique, conditions for
the optimizer function to be continuous is given in
(Dantzig et al. 1967), and these concepts are further
developed for cases where the optimizer may be non-
unique in (Bank et al. 1983, Zhao 1997).



An algorithm that obtains a continuous optimizer
function for (single) parametric LPs is presented in
(Zhang and Liu 1990) while (Bohm 1975) indicates
how to construct a continuous solution for mp-LPs.
The latter, however, is not a complete algorithm for
obtaining solutions to mp-LP programs. No region of
optimality is constructed for the associated element of
the continuous selection. Difficulties that arise when
both the primal and dual solution of the mp-LP are
non-unique, are not discussed.

The geometric algorithm for mp-LP (Borrelli et al.
2003) has the advantage of simplicity compared to
the algorithm by (Gal and Nedoma 1972), especially
when the primal solution is non-unique. A modifi-
cation to the geometric algorithm that preserves the
simplicity and yields a continuous solution function is
therefore presented. Instead of choosing an arbitrary
optimal basis to construct the region of optimality
for an element of the selection, a quadratic criterion
is minimized subject to mp-LP optimality. Using re-
sults from strictly convex multiparametric quadratic
programming the minimizer function is characterized
(Bemporad et al. 2002b, Tøndel et al. 2003a) and
based on theory on minimization of strictly convex
functions over continuous point to set maps (Berge
1963, Dantzig et al. 1967, Bank et al. 1983), global
continuity of the optimizer function is proven.

When the algorithm is used to obtain an explicit solu-
tion to a model predictive control problem (Bemporad
et al. 2002a), a continuous mapping is an advantage
since a perturbation in the state, will not lead to dis-
continuous changes in the control input.

2. MULTIPARAMETRIC LINEAR
PROGRAMMING

2.1 Preliminaries
If A is a matrix, then Ai denotes the ith row of A
and AJ denotes the sub-matrix consisting of the rows
of A corresponding to the index set J .

Recall that the set of affine combinations of points
in a set S ⊂ R

n is called the affine hull of S. The
dimension of a set S ⊂ R

n, denoted dim(S); is the
dimension of the affine hull of S. If the dimension of S
is n, then S is said to be full-dimensional.

Let the set of parameters for which the minimum in (1)
exists be denoted Θ∗ and let X∗(θ) be the set of
optimizers to (1) for a given θ ∈ Θ∗. It is assumed
that Θ∗ is full-dimensional, see (Borrelli et al. 2003)
for details.
The following definitions are taken from (Borrelli et
al. 2003) and (Tøndel et al. 2003b).

Definition 1. (Active set). Let x be a feasible solution
to (1) for a given θ. We define the active constraints as
the set of constraints which fulfill Aix− bi−Siθ = 0,
and inactive constraints as the set which fulfills Aix−
bi − Siθ < 0. The active set A(x, θ) is the set of
indices of the active constraints, that is,

A(x, θ) , {i ∈ {1, . . . , q}|Aix − bi − Siθ = 0} .

Moreover, let N (x, θ) denote the set of inactive con-
straints, that is, N (x, θ) , {1, . . . , q}\A(x, θ).

Definition 2. (Optimal active set). Let θ be given. Let
the optimal active set A∗(θ) be the set of constraints
which are active for all x ∈ X∗(θ), that is

A∗(θ) , {i|i ∈ A(x, θ),∀x ∈ X∗(θ)}

=
⋂

x∈X∗(θ)

A(x, θ).

Let N ∗(θ) , {1, . . . , q}\A∗(θ).

Definition 3. (LICQ). For an active set A, we say
that the linear independence constraint qualification
(LICQ) holds if the set of active constraint gradients
are linearly independent, i.e., AA has full row rank.

Definition 4. (Critical region). Given an optimal ac-
tive set A∗ we define the critical region as the set of
parameters for which the optimal active set remains
unchanged, that is,

ΘA∗ = {θ ∈ Θ|A∗(θ) = A∗}. (2)

It should be noted that critical regions are convex and
that their closures are polyhedral. Since the optimal
active set is unique for all θ ∈ Θ∗, critical regions
cannot intersect, however, the intersection of their
closures may be non-empty. Since Θ∗ is assumed to
be full-dimensional and the number of optimal ac-
tive sets is finite, there exists a finite number of full-
dimensional critical regions such that the union of
their closures is equal to Θ∗. The goal is to find a
representation of the optimal mapping x∗ : Θ∗ 7→ R

n

over a finite set of closed, full-dimensional, polyhe-
dra R , {RA |A ∈ I }(Borrelli et al. 2003) where
∪A∈IRA = Θ∗, I contains a subset of all possible
active sets {A(x∗(θ), θ) |θ ∈ Θ∗ }, and each polyhe-
dron is associated with an affine function x∗

A(θ) that
is optimal for θ ∈ RA. Given a θ ∈ Θ∗ and the
associated optimal active set Ā∗ such that the critical
region ΘĀ∗ is full-dimensional. If X∗(θ) is a single-
ton for all θ ∈ ΘĀ∗ , then then RĀ∗ , cl(ΘĀ∗). On
the other hand, if X∗(θ) is not a singleton set, ΘĀ∗

is divided into a set of closed, full-dimensional, poly-
hedra {RAj

, . . . , RAk
}, {Aj , . . . ,Ak} ∈ I, whose

union is equal to cl(ΘĀ∗), each associated with only
one affine function. We refer to these polyhedra as
sub-regions. The optimal solution function

x∗(θ) = x∗
A(θ) if θ ∈ RA,

is single valued, since if a given θ is in more than one
RA, x∗

A is chosen according to some predetermined
ordering of the sets in R. If for every pair (Ai,Aj) ∈
I × I:

x∗
Ai

(θ) 6= x∗
Aj

(θ) ⇒ dim(RAi
∩RAj

) ≤ p−1, i 6= j,

then a given θ may only be in more than one RA for
lower dimensional subsets of Θ∗.

Note that closure of a full-dimensional critical region
is abbreviated critical region from this point on.



The dual of (1) can be written as (Borrelli et al. 2003)

v∗(θ) , min
π∈Rq

{

(b + Sθ)T π
∣

∣AT π = c, π ≤ 0
}

.

(3)
The primal feasibility, dual feasibility and the comple-
mentary slackness conditions for problems (1) and (3)
are

Ax ≤ b + Sθ, (4a)

AT π = c, π ≤ 0, (4b)

(Aix − bi − Siθ)πi = 0, ∀i ∈ {1, . . . , q},(4c)

respectively.
When it is clear form the context, the argument θ
(or θ0) will be omitted when referring to an optimal
active or inactive set.
2.2 Summary of the geometric approach
For convenience the geometric algorithm is summa-
rized in the following four points (i)-(iv), see (Borrelli
et al. 2003) for details.

i) Unique primal and dual solution: When both the
primal and dual solution to (1) are unique for θ =
θ0, the value function, the optimizer function and the
critical region corresponding to the active set A∗(θ0),
are uniquely given by

z∗A∗(θ) = (b + Sθ)T π∗(θ0), (5a)

x∗
A∗(θ) = A−1

A∗SA∗θ + A−1
A∗bA∗ , (5b)

RA∗ = {θ ∈ Θ |AN∗x∗(θ) ≤ bN∗ + SN∗θ} ,(5c)

respectively, where π∗(θ0) is the optimal dual solu-
tion.

ii) Non-unique dual solution: When the dual solution
to (1) is non-unique for θ = θ0, the optimizer function
and critical region are found by applying Gauss reduc-
tion to the system of equalities, AA∗x = bA∗ +SA∗θ.

iii) Non-unique primal solution: Let θ = θ0. When-
ever the primal solution to (1) is non-unique, the op-
timizer and critical region can not be characterized by
(5b) and (5c). This problem is solved by choosing a
vertex of the feasible set of (1) for which x∗(θ0) ∈
X∗(θ0) and using A(x∗(θ0), θ0) instead of A∗(θ0) in
(5b) and (5c).

iv) Non-unique primal and dual solution: One of the
optimizers x∗(θ0) is chosen as described under point
(iii). Since LICQ is violated at x∗(θ0), Gauss reduc-
tion is to applied the system of equalities

AA(x∗(θ0),θ0)x = bA(x∗(θ0),θ0) + SA(x∗(θ0),θ0)θ (6)

to find x∗(θ) and the associated sub-region.

Note that when the primal solution is non-unique,
the region obtained by following the procedure under
point (iii) or (iv) is not a critical region in the sense of
Definition 4, but a sub-region.

3. OBTAINING CONTINUOUS SOLUTIONS TO
MP-LP PROBLEMS

By arbitrarily choosing one of the optimal bases in
X∗(θ) when (1) has multiple primal solutions, as sug-

Algorithm 1 Geometric algorithm for mp-LP
1: Let Y ⊆ Θ be the current region to be explored

and let θ0 be in the interior of Y .
2: Solve the LP (1) for θ = θ0.
3: Determine which of the four cases (i)-(iv) that

applies and find the optimizer function and the
associated critical(sub)- region as described under
the respective point.

4: Partition the rest of the region into convex polyhe-
dra according to the procedure given in (Borrelli
et al. 2003) and for each nonempty element repeat
steps 1-4.

gested in Algorithm 1(Borrelli et al. 2003), the map-
ping from parameter to solution space may become
discontinuous. The idea of the present paper is to
replace the mp-LP with a strictly convex mp-QP that
has been constructed such that its unique and continu-
ous optimizer function x∗

qp(θ) is an optimal function
for (1). The following local mp-QP minimizes the
norm of the optimizer for θ ∈ ΘA∗ :

y∗(θ) , min
x∈Rn

1

2
xT x, (7a)

Ax≤ b + Sθ, (7b)

cT x = z∗A∗(θ0)
(θ), (7c)

where z∗A∗(θ0)
(θ) is the optimal value function found

from (5a), hence (1) must be solved for θ = θ0 to
obtain (7c). Index the equality constraint by q + 1.
For θ = θ0 denote the optimizer as x∗

qp(θ0) and define
the index set Aqp(θ0) as the indices of (7b) that are
active at the QP optimum, that is

Aqp(θ0) , {i ∈ {1, . . . , q}|Aix
∗
qp(θ0) = bi + Siθ0}.

(8)
Denote the set of inactive constraints as Nqp(θ0) ,

{1, . . . , q}\Aqp(θ0).

Proposition 5. x∗
qp(θ) ∈ X∗(θ) and A∗(θ) ⊆ Aqp(θ),

∀θ ∈ Θ∗.

PROOF. Follows directly from (7c) and Definition 2.

To reduce the number of optimal active sets for (7)
that violate LICQ, the mp-QP is replaced with another
mp-QP:

Lemma 6. LICQ is violated for all optimal active sets
for (7). Moreover, the following mp-QP is equivalent
to (7), ∀θ ∈ ΘA∗ :

y∗(θ) = min
x∈Rn

1

2
xT x, (9a)

Aix = bi + Siθ, i ∈ A∗, (9b)

Aix≤ bi + Siθ, i ∈ N ∗, (9c)

for which LICQ is violated only if it is violated
for Aqp.

PROOF. First it is shown that (7b)-(7c) and (9b)-(9c)
define the same set. This holds trivially if c = 0.



Let c 6= 0 and define P(θ) , {x |Ax ≤ b + Sθ}.
It is clear that F , P(θ) ∩

{

x
∣

∣cT x = z∗A∗(θ)
}

is
a face of P(θ). The constraints fulfilled with equal-
ity ∀x ∈ F are exactly the constraints whose indices
are in A∗. From (Jones et al. 2004, Definition 8 and
Theorem 12) we have that it is a one to one map-
ping from these constraints to the faces of P(θ), and
that F = {x |AA∗x = bA∗ + SA∗θ} ∩ P(θ). Since
the sets defined by (7b)-(7c) and (9b)-(9c) are equal,
the LICQ assertions hold trivially.

The optimizer function x∗
qp(θ) associated with the

active set A∗ is found by (Bemporad et al. 2002b)

x∗
qp(θ) = AT

Aqp
(AAqp

AT
Aqp

)−1(bAqp
+SAqp

θ), (10)

and the critical region (for the mp-QP, and a sub-
region for (1)) for which x∗

qp(θ) is optimal is given
by:

ANqp
AT

Aqp
(AAqp

AT
Aqp

)−1(bAqp
+ SAqp

θ)

≤ bNqp
+ SNqp

θ, (11a)

λi(θ) ≥ 0, ∀i ∈ Aqp\A
∗, (11b)

where

λAqp
(θ) = −(AAqp

AT
Aqp

)−1(bAqp
+ SAqp

θ), (12)

where λAqp
denotes the components of λ correspond-

ing to Aqp. When the LP has multiple dual solu-
tions, AAqp

may not have full rank. However, it is
still possible to characterize the optimizer function
and an associated sub-region with a reduced active
set, see (Bemporad et al. 2002b). Note that if (1) has
non-unique primal solutions, the polyhedron defined
by (11a)-(11b) is not a critical region in the sense of
Definition 4, but a sub-region. Clearly

x∗
Ai

(θ) 6= x∗
Aj

(θ) ⇒ dim(RAi
∩RAj

) ≤ p−1, i 6= j,

is satisfied by uniqueness of x∗
qp(θ) and A∗, ∀θ ∈ Θ∗.

Let the primal solution to (1) with θ = θ0 be non-
unique. Algorithm 2 is proposed to replace the arbi-
trary selection of a optimizer function in the geometric
algorithm (Borrelli et al. 2003).

Algorithm 2 Proposed method
1: Identify A∗ for θ = θ0.
2: Minimize the Euclidian norm of the the solution

by solving the QP obtained by fixing θ = θ0 in (9)
and identify Aqp.

3: If LICQ holds at x∗
qp(θ0), compute the optimizer

function x∗
qp(θ) from (10) and the sub-region

from (11a)-(11b). If LICQ is violated at x∗
qp(θ0)

find x∗
qp(θ) and the associated sub-region with a

reduced active set.

Lemma 7. When the solution π∗(θ) to (3) is unique
for a given θ ∈ Θ∗, then A∗(θ) is uniquely given by

A∗(θ) = {i ∈ {1, . . . , q} |π∗
i (θ) < 0} . (13)

PROOF. Let x be an optimal solution to (1). Define
the sets K = {i ∈ {1, . . . , q} |i ∈ A(x, θ), π∗

i < 0}

Algorithm 3 Modified geometric algorithm
1: Let Y ⊆ Θ be the current region to be explored

and let θ0 be in the interior of Y .
2: Solve the LP (1) for θ = θ0.
3: Determine which of the four cases (i)-(iv) de-

scribed in section 2.2 that applies.
4: if the primal solution is non-unique then
5: Execute Algorithm 2.
6: else
7: Find x∗

A∗(θ) and the associated critical region
as described in section 2.2.

8: end if
9: Partition the rest of the region into convex polyhe-

dra according to the procedure given in (Borrelli
et al. 2003) and for each nonempty element repeat
steps 1-9.

and J = {i ∈ {1, . . . , q} |i ∈ A(x, θ), π∗
i = 0}. It

is obvious that i ∈ K ⇒ i ∈ A∗ since the com-
plementarity condition holds for all optimal x. From
(Mangasarian 1979) we have that π∗ is unique if and
only if LICQ holds for AK and there is at least one
feasible solution d to the system

AKd = 0, AJ d < 0, (14)

Assume first that the primal solution is non-unique.
The set of feasible directions at x is given by
{

r
∣

∣AA(x,θ)r ≤ 0
}

and consequently x̄ = x + αd is
feasible for sufficiently small scalar α > 0. It is clear
that for α > 0 the constraints in J are inactive, so it
suffices to show that x̄ is optimal:

cT (x + αd) = π∗T A(x + αd) = π∗T Ax = cT x,
(15)

where we have used (4b), (4c), and (14). This implies
i ∈ J ⇒ i /∈ A∗. If the primal solution is unique,
then we have from (Mangasarian 1979) that

AKd = 0, AJ d ≤ 0, (16)

has no solution d 6= 0, hence, the solution to (14) is
d = 0, and consequently J = ∅.

Remark 8. When both the primal and dual solution
are non-unique, A∗ can be identified by using an
interior point method to solve (1)(Güler and Ye 1993).

Remark 9. Algorithm 3 can always discard critical
regions if the associated active set has already been
found. This can not be done in Algorithm 1 if the LP
has multiple primal solutions, since this may lead to
sub-regions with different optimizer functions having
intersecting interiors.

Remark 10. As an alternative to the last part of step
3 of Algorithm 2 a projection can be performed if
regions with identical optimizer functions are not al-
lowed to have intersecting interiors. The active con-
straints for problem (9) are projected onto the param-
eter space when LICQ is violated.

Theorem 11. (Continuity of solutions). The function
x∗ : Θ∗ 7→ R

n obtained by Algorithm 3 is continuous.



(a) Partition, Geometric algorithm. (b) Partition, Modified geometric
algorithm

(c) x∗

1
(θ1, θ2), Geometric algo-

rithm.
(d) x∗

2
(θ1, θ2), Geometric

algorithm.

(e) x∗

3
(θ1, θ2), Geometric algo-

rithm.
(f) x∗

1
(θ1, θ2), Modified geomet-

ric algorithm
(g) x∗

2
(θ1, θ2), Modified ge-

ometric algorithm
(h) x∗

3
(θ1, θ2), Modified geomet-

ric algorithm

Fig. 1. Comparison.

PROOF. We view problem (7) as a strictly convex
mp-QP with the parameter vector θ̂ = [θ, z∗(θ)]T .
Since z∗(θ) is a continuous function (Gal 1995, The-
orem IV-4), x∗

qp(θ̂) is also continuous (Bemporad et
al. 2002b).

4. EXAMPLE WITH NON-UNIQUE PRIMAL
SOLUTION

Consider the following mp-LP

z∗(θ) , min
x∈R3

{

cT x |Ax ≤ b + Sθ, θ ∈ Θ
}

,

cT ,−
[

1 1 1
]

, bT ,
[

10 4 3 3 3 3 3 3 3
]

,

AT ,





1 1 −1 1 −1 0 0 0 0
1 −2 0 0 0 1 −1 0 0
1 0 −2 0 0 0 0 1 −1



 ,

ST ,

[

−1 −1 −1 0 0 0 0 0 0
−1 −2 −2 0 0 0 0 0 0

]

,

Θ , {θ ∈ R
p |0 ≤ θ1 ≤ 2.5, 0 ≤ θ2 ≤ 3} .

Note that in this section subscripts on variables refers
to the elements of the vectors, that is, xi denotes the
ith element of x.

4.1 Modified geometric algorithm

Let θ = θ0 = [1, 1]T , which is in the interior of Y =
Θ. The resulting LP has multiple primal solutions and
a unique dual solution π∗(θ0) = [−1 0 . . . 0]T .
Algorithm 2 is then executed.

1: Noting that the dual solution is unique, A∗ = {1}
is uniquely identified.

2: Solving the QP obtained by fixing θ = θ0 in (9a)-
(9c) yields Aqp = {1}.

3: The optimizer function is then given by

x∗
qp(θ) = AT

{1}(A{1}A
T
{1})

−1(b{1} + S{1}θ),

and the sub-region becomes

R1 =
{

θ ∈ Θ
∣

∣A{2:9}x
∗
qp(θ) ≤ b{2:9} + S{2:9}θ

}

.

The parameter space is then partitioned into convex
polyhedra that have not yet been explored.

Assume that the parameter vector θ = θ0 = [2, 2.5]T

is in the interior of the next unexplored polyhedron.
Again this results in a non-unique primal solution and
A∗ = {1}, however now Aqp = {1, 2}, and the
optimizer function and sub-region R2 is calculated as
explained earlier.

The partition obtained by following Algorithm 3 is
depicted in Figure 1(b).

4.2 Geometric algorithm

Let θ = θ0 = [1, 1]T , which is in the interior of Y =
Θ. The resulting LP has multiple primal solutions, and
hence, a feasible vertex of the inequalities for which
x∗(θ0) ∈ X∗(θ0) is then chosen. A valid choice is
x∗(θ0) = [3, 2, 3]T , which results in A(x∗(θ0), θ0) =
{1, 4, 8}. The optimizer functions become

x∗
1(θ) = 3, x∗

2(θ) = −θ1 − θ2 + 4, x∗
3(θ) = 3.

and the sub-region R1 is depicted in Figure 1(a).

Let θ = θ0 = [1, 2]T be in the interior of the next
unexplored polyhedron. This vector also yields a non-
unique primal solution. A valid choice of x∗(θ0) gives
A(x∗(θ0), θ0) = {1, 4, 6}. The optimizer functions
become

x∗
1(θ) = 3, x∗

2(θ) = 3, x∗
3(θ) = −θ1 − θ2 + 4.

and the sub-region R2 is shown in Figure 1(a). The
hyperplane which separates R1 and R2 is given by
3θ1 +4θ2 = 9. Clearly, both x∗

2(θ1, θ2) and x∗
3(θ1, θ2)

are discontinuous along this line. One of the possible
solutions, following Algorithm 1, is depicted in Fig-
ure 1(a).



4.3 Comparison

Figures 1(c)-1(h) illustrate the optimizer functions.
Clearly, all three functions are discontinuous for the
geometric algorithm and for the proposed method all
are continuous. By coincidence the solution consists
of the same number of polytopes (Figure 1(a)-1(b)).
Since the number of regions found by the geometric
algorithm depends on the order in which they are
found, it is not possible to determine which algorithm
that generally yields the smallest number of polytopes.

5. CONCLUSION
A method for obtaining continuous solutions to mul-
tiparametric linear programming problems has been
presented. The geometric algorithm presented by
(Borrelli et al. 2003) has been modified such that
no vertex is arbitrarily chosen in the case of non-
unique primal solutions. When the mp-LP has mul-
tiple optimizers, the optimizer function is found from
an mp-QP that has been constructed to maintain mp-
LP optimality. The algorithm proposed by (Borrelli et
al. 2003) is simpler to implement than the algorithm
of (Gal and Nedoma 1972) and the proposed method
is conceptually as simple as the geometric algorithm.

If regions with equal optimizer functions are allowed
to have intersecting interiors, polytopes for which the
active set has already been found can be discarded as
the algorithm explores the parameter space.

The results of the present paper has also been ex-
tended to convex multiparametric quadratic programs
(Spjøtvold et al. 2005).
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