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Abstract: This paper addresses the issue of designing a fault accommodating
control algorithm which, after a sensor fault occurrence, takes information about
the degraded sensor into account and drives the system such that performance
recovery is achieved. A general class of single input nonlinear systems is considered,
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state variable, and is activated as soon as the Fault Detection and Identification
unit signals the location and occurrence of a sensor fault. Asymptotical con-
vergence of the observer within an arbitrary finite time is proved, under some
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1. INTRODUCTION

Ensuring high reliability of industrial processes
is currently becoming a key concern of indus-
trial automation, due to the increasing awareness
about the risks associated with system malfunc-
tion in terms of technical parts of the plants, per-
sonnel and environment. Correspondingly, more
and more attention is currently being given to
the problem of designing Fault Tolerant Control
(FTC) algorithms, able to recover, after fault oc-
currence, performances close to the nominal de-
sired performances. As discussed in (Blanke et

al., 2001), fault tolerance can be defined as ”the
ability of a controlled system to maintain control
objectives despite the occurrence of a fault” and
”can be obtained through Fault Accommodation”
(FA), i.e. ”through a change in controller pa-
rameters or structure to avoid the consequences

of a fault” (Blanke et al., 2001). According to
(Noura et al., 2000), fault tolerant controllers can
be divided into active or passive approaches, and
belong to different categories, the more widely
known of which is perhaps that of adaptive con-
trol (Bodson and Groszkiewicz, 1997) . The so
called integrated approaches (Noura et al., 2000)
constitute another trend, where the fault moni-
toring algorithm determines also the control law
(Nett et al., 1988). Alternatively, the fault tolerant
control problem has been formulated as an opti-
mization problem, assuming that the considered
plant is linear, and heuristic techniques have been
used as well (Babuska, 2001) (Zidani et al., 2003)
(Napolitano et al., 1999) (Hoblos et al., 2000).
Finally, the last category relies on supervised
control schemes, where a Fault Detection and
Isolation (FDI) unit provides information about
the location and time occurrence of any fault.



In this approach, faults are compensated via an
appropriate control law triggered according to the
diagnosis of the system. Within the framework of
the so called active approaches, and with reference
to this latter fault tolerant control method, the
present paper addresses the issue of designing a
fault accommodating control algorithm which, af-
ter the occurrence of a sensor fault, takes informa-
tion about the degraded sensor into account and
drives the system such that performance recovery
is achieved. To the authors’ knowledge, Variable
Structure Control (VSC) techniques have been
rarely used in this framework. Indeed, the well
known robustness features of sliding mode con-
trol (Utkin, 1992) appear particularly well suited
for handling nonlinear and uncertain single in-
put plants subject to unknown but bounded sen-
sor failures. Sensor fault tolerant controllers have
been studied mostly for linear and/or parametriz-
able systems (Yang et al., 1999) (Campos-Delgado
and Zhou, 2003) (Bennett et al., 1999), while few
results are available about nonlinear systems (Qu
et al., 2003) (Qu et al., 2001). In this paper, a
general class of single input nonlinear systems is
considered, containing also a disturbance term.
An observer is used to reconstruct the degraded
state variable, and is activated as soon as the
FDI unit signals the location and occurrence of
a sensor fault. Asymptotical convergence of the
observer within an arbitrary finite time is proved,
under some mild assumptions about the plant
structure. Note that the condition of input-to-
state stability (needed f.i. by (Qu et al., 2003))
is not required, as shown also by the simulation
example.

2. PROBLEM FORMULATION

An uncertain nonlinear system of the following
form is given:

ẋ = f(x) + B(u + d(x, t)) (1)

where x ∈ IRn is the state vector and u ∈ IR
is the plant input. The nonlinear function f(x) :
IRn → IRn and the state-input map B ∈ IRn

represent known parts of system dynamics, while
d(x, t) : IRn × IR → IR describes possible matched
disturbances and/or uncertainties.

As in many realistic situations, the system state
vector is supposed available through sensors sub-
ject to potential failure. Denoting the measure-
ment of x by x̄, one has, without loss of generality:

x = x̄ + ∆h(x) (2)

where ∆h(x) is an unknown function representing
both the occurrence and the magnitude of possible
sensor faults. As in (Qu et al., 2003), in fact, the
normal operation mode corresponds to ∆h(x) =
0, while in faulty conditions, the magnitude of the

fault itself can range from a small offset to an
unknown scaling factor

∆h(x) = δx (3)

||∆h(x)|| being possibly greater than ||x|| in se-
vere cases. Only one fault is assumed to occur at
the same time.

The following assumptions are made:

Assumption 2.1. The uncertain function d(x, t) is
bounded by a known function:

|d(x, t)| ≤ ρ(x) (4)

and a bound on the sensor failure model (3) is
available as well:

|δ| ≤ δmax (5)

Correspondingly, there exist a bound ρb(x) such
that

|[Bd(x, t)]i| ≤ ρbi(x), i = 1, . . . , n (6)

where the subscript i denotes the i-th component
of the vector.

Assumption 2.2. There exists at least a compo-
nent fj(x) of f(x) such that the following function

Fj(x, x̃k)
def
= fj(x1, . . . , xk, xk+1, . . . xn) +

− fj(x1, . . . , x̃k, xk+1, . . . , xn), (7)

satisfies:

(xk−x̃k)Fj(x, x̃k) ≤ 0 ∀ x̃k : (xk−x̃k) 6= 0 (8)

denoting by the subscript k the component sub-
ject to fault.

Assumption 2.3. There exists a linear sliding sur-
face

s(x) = Cx =

n
∑

i=1

cixi, ci > 0, i = 1, . . . , n

(9)
such that the achievement of a sliding motion on it
ensures the asymptotic stabilization of the plant
(1).Note that a suitable selection of (9) ensures
also the achievement of desired performances in
the fault-free system, according to standard re-
sults (see (Utkin, 1992)).

Remark 2.1. While Assumptions 2.1, 2.3 corre-
spond to standard hypotheses fulfilled by most
physical systems, Assumption 2.2 is apparently
restrictive. It should be noticed, however, that
for linear systems it simply corresponds to the
presence of at least a negative value in the k-
th column (corresponding to the sensor subject
to fault) of the dynamical matrix. It follows that
any stable linear plant satisfy Assumption 2.2,
and unstable linear plants stabilizable by static



output feedback (in the fault-free condition) fulfill
Assumption 2.2 as well.

The problem addressed in this paper can be
formalized as follows:

Problem 1. The problem here considered consists
in finding a fault-tolerant controller guarantee-
ing the robust asymptotical stabilization of the
plant (1), under the Assumptions 2.1-2.3, in the
presence of failures of the form (2) of the sensors
measuring the state variables.

Note that only the problem of designing a fault-
tolerant robust controller is being addressed here,
leaving to further studies how to detect and iden-
tify the fault itself.

3. A PRELIMINARY RESULT

Once the sliding surface (9) has been determined,
a stabilizing controller can be found straightfor-
wardly in the fault-free case. Indeed, it is enough
to compute an input u = u(x) such that

s(x)ṡ(x) < 0 ∀x (10)

which ensures the fulfillment of the sliding condi-
tion in the worst case. A possible controller of this
type is (see, for instance, (Utkin, 1992)):

u(x) = −[CB]−1 [Cf(x)] − ρ(x)sgn(s(x)) (11)

Whenever a sensor fault has occurred, the above
quantities are no more available, since x̄ 6= x.
Introduce the following state observer:

˙̂x = f(x̂) + Bu + ν (12)

where ν will be designed later on. The observation
error is ∆x = x − x̂, whose dynamics are:

˙̂x = ẋ− ∆̇x = f(x) + B(u + d(x, t))− ∆̇x (13)

It follows that, in faulty conditions, what is avail-
able to the designer is the observed sliding surface:

s(x̂) = Cx̂ =

n
∑

i=1

cix̂i (14)

instead of (9), and the observed controller

u(x̂) = −[CB]−1 [Cf(x̂)] − ρ(x̂)sign(s(x̂)) (15)

instead of (11). Since the condition (10) cannot be
checked experimentally, consider the correspond-
ing observed function instead:

W (x̂) = s(x̂)ṡ(x̂) (16)

whose sign can be detected simply checking
wether the observed sliding surface (14) is increas-
ing or decreasing.

Hypothesizing that a fault on the k-th state com-
ponent has occurred and has been detected, the

following Lemma can be proved. It provides a
set of allowed values for the observer input νk

ensuring the knowledge of the sign of the unknown
observer error xk − x̂k. In this vein, it is likely to
introduce the following Assumption.

Assumption 3.1. Consider the case when a sensor
failure on the k-th component of the state vector
of the plant (1) has occurred at a time t̄. It is
assumed that a known M(t̄) exists such that

|xk(t̄) − x̂k(t̄)| < M(t̄) (17)

Remark 3.1. Assumption 3.1 simply requires that,
when a fault occurs, the observer output immedi-
ately after the fault time t̄ differs from the mea-
sured variable immediately before the same time
t̄ for an arbitrarily large but bounded quantity.
Basically, what is hypothesized is that both the
faulty variable and the observer output, at the
very time the failure occurs, remain finite, which
is likely to occur in real plants.

Under Assumption 3.1, the following Lemma can
now be proved. Define:

F̄k(x̂k, t̄)
def
= sup

ξ∈IRn:|ξ−x̂k|<M(t̄)

|fk(ξ, t̄) − fk(x̂k, t̄)|

(18)
and

∆j,k(x̂k, t̄) =

n
∑

i=1

i6=j

ciF̄i(x̂k, t̄) + ckF̄k(x̂k, t̄) (19)

Lemma 2. It is given the plant (1) under the
Assumptions 2.1, 2.2, 3.1. Assume that a sensor
fault on the k-th component of the state vector
has occurred. The following input for the observer
(12) νk =




























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























νk < −
1

ck






CBρ(x̂) +

n
∑

i=1

i6=k

ciρbi(x̂) + ∆j,k(x̂k, t̄)







if s(x̂) > 0

νk >
1

ck






CBρ(x̂) +

n
∑

i=1

i6=k

ciρbi(x̂) + ∆j,k(x̂k, t̄)







if s(x̂) ≤ 0
if W (x̂) > 0




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













































νk >
1

ck






CBρ(x̂) +

n
∑

i=1

i6=k

ciρbi(x̂) + ∆j,k(x̂k, t̄)







if s(x̂) > 0

νk < −
1

ck






CBρ(x̂) +

n
∑

i=1

i6=k

ciρbi(x̂) + ∆j,k(x̂k, t̄)







if s(x̂) ≤ 0
if W (x̂) ≤ 0

(20)



and

νi = 0, i = 1, . . . , n, i 6= k (21)

ensures that

sign(xk − x̂k) = −sign(s(x̂)) · sign(W (x̂)) (22)

Proof. Assume first that W (x̂) > 0. One has:

s(x̂) [Cf(x) − Cf(x̂) − CBρ(x̂)sign(s(x̂))+

+CBd(x, t) − C∆̇x
]

> 0

(23)
Consider the case s(x̂) > 0. Since ∆x =
[0 0 . . . xk − x̂k 0 . . . 0]T , it follows that: C∆̇x =
ck(ẋk− ˙̂xk) = ck [fk(x) − fk(x̂) + [Bd(x, t)]k − νk]
and inequality (23) gives the following expression:

n
∑

i=1

i6=k

ci [fi(x) − fi(x̂)] − CBρ(x̂) + CBd(x, t)

−ck[Bd(x, t)]k + ckνk > 0

Adding and subtracting the quantity ck(fk(x) −

fk(x̂)) one has

n
∑

i=1

ci [fi(x) − fi(x̂)] − ck(fk(x) −

fk(x̂)) − CBρ(x̂) +

n
∑

i=1

i6=k

ci[Bd(x, t)]i + ckνk > 0

or, equivalently

n
∑

i=1

i6=j

ci [fi(x) − fi(x̂)]− ck(fk(x)−

fk(x̂))+cj(fj(x)−fj(x̂))−CBρ(x̂)−

n
∑

i=1

i6=k

ci[Bd(x, t)]i

+ckνk > 0, where the component fj(x) of f(x)
satisfies Assumption 2.2. Taking the worst case at
time t = t̄ one gets:

−
n

∑

i=1

i6=j

ciF̄i(x̂k, t̄) − ckF̄k(x̂k, t̄) + cj(fj(x) − fj(x̂))

−CBρ(x̂) −

n
∑

i=1

i6=k

ciρbi(x̂) + ckνk > 0 (24)

It is easy to verify from (24) that, if νk is chosen
such that

−∆j,k(x̂k, t̄) − CBρ(x̂) −
n

∑

i=1

i6=k

ciρbi(x̂) − ckνk > 0

(25)
then (fj(x) − fj(x̂)) is positive since it is greater
than a positive quantity (cj > 0 by assumption).
Since the expression (20) for νk verifies (25) in
the worst case, it follows that fj(x) − fj(x̂) =
Fj(x1, . . . , xk, x̂k, xk+1, . . . , xn) > 0, since xi = x̂i

for i = 1, n, i 6= k. As a consequence (xk− x̂k) < 0
in view of (8).

Assume now that s(x̂) < 0. The inequality

analogous to (23) gives:
n

∑

i=1

i6=k

ci [fi(x) − fi(x̂)] +

CBρ(x̂)+CBd(x, t)−ck[Bd(x, t)]k+ckνk < 0. By
following the same logic as in the case s(x̂) > 0,
and taking the worst case one has:

n
∑

i=1

i6=j

ciF̄i(x̂k, t̄) + ckF̄k(x̂k, t̄) + cj(fj(x) − fj(x̂))

+ CBρ(x̂) +
n

∑

i=1

i6=k

ciρbi(x̂) + ckνk < 0 (26)

so, if νk is chosen such that

∆j,k(x̂k, t̄) + CBρ(x̂) +

n
∑

i=1

i6=k

ciρbi(x̂) − ckνk < 0

(27)
then fj(x)− fj(x̂) is negative since it is less than
a negative quantity. Since the expression (20) for
νk verifies (27) in the worst case, il follows that

fj(x) − fj(x̂) = Fj(x1, . . . , xk, x̂k, . . . , xn) < 0

since xi = x̂i for i = 1, n, i 6= k. As a consequence
(xk − x̂k) > 0 in view of (8). Iterating the same
argument for W (x̂) < 0 in both cases s(x̂) < 0
and s(x̂) > 0, the expression (22) is obtained. 4

4. FAULT TOLERANT ROBUST CONTROL

It is now possible to show that a subset of (20)
exists guaranteeing also the convergence of the
faulty state observer within a finite time, as stated
in the following Theorem.

Theorem 1. It is given the plant (1) under the
Assumptions 2.1, 2.2, 3.1. Assume that a sensor
failure on the k-th component of the state vector
has occurred at the time t̄. Define:

Gk(x̂, t̄)
def
=

(

F̄k(x̂k, t̄) + ρbk(x̂) + η
)

(28)

with η > 0. The following input for the observer
(12): νk =


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
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




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
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
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



νk < min











−
1

ck






CBρ(x̂) +

n
∑

i=1

i6=k

ciρbi(x̂)+

+∆j,k(x̂k, t̄)) , −Gk(x̂, t̄)}
if s > 0

νk > max











1

ck






CBρ(x̂) +

n
∑

i=1

i6=k

ciρbi(x̂)+

∆j,k(x̂k, t̄)) , Gk(x̂, t̄)}
if s ≤ 0

if W (x̂) > 0
(29)




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



νk > max











1

ck






CBρ(x̂) +

n
∑

i=1

i6=k

ciρbi(x̂) +

+ ∆j,k(x̂k, t̄)) , Gk(x̂, t̄)}
if s > 0

νk < min











−
1

ck






CBρ(x̂) +

n
∑

i=1

i6=k

ciρbi(x̂)+

∆j,k(x̂k, t̄)) , −Gk(x̂, t̄)}
if s ≤ 0

if W (x̂) ≤ 0
(30)

and
νi = 0, i = 1, . . . , n, i 6= k (31)

ensures the vanishing of the observation error
(xk − x̂k) within an arbitrary finite time ∆t <
M(t̄)

η
.

Proof. With reference to the following sliding
surface:

σ = xk − x̂k (32)

the achievement of a sliding motion on (32) in a
finite time, corresponding to the condition

σσ̇ < −η|σ| (33)

guarantees the vanishing of the observation error
within an arbitrary finite time (depending on η).
The inequality (33) yields:

σ (fk(x) − fk(x̂)+[Bd(x, t)]k−νk+ηsign(σ))<0
(34)

Assume first that W (x̂) > 0 and s(x̂) > 0. From
Lemma 2 it follows that σ < 0, hence inequality
(34) provides, taking the worst case:

−F̄k(x̂k, t̄) − ρbk(x̂) − νk − η > 0 (35)

i.e.
νk < −

(

F̄k(x̂k, t̄) + ρbk(x̂) + η
)

(36)

For Lemma 2 to hold, the previous inequality has
to be coupled with the first condition of (20), and
the first case of (29) immediately follows. Iterating
the same argument for the case s(x̂) < 0, and for
W (x̂) < 0 in both cases s(x̂) < 0 and s(x̂) > 0,
the expression (29) is obtained. 4

Lemma 2 and Theorem 4 can be easily com-
bined to design a control law ensuring robustness
against sensor failures. The following Corollary, in
fact, directly follows from previous results.

Corollary 3. It is given the plant (1) under the
Assumptions 2.1-3.1. Assume that a sensor failure
on the k-th component of the state vector can
occur. The following fault-tolerant control law:

(1) u is set equal to (15);
(2) as soon as the fault occurs, the observer (12)

is invoked. Its convergence is achieved within

the arbitrary finite time ∆t (depending on
the choice of η);

ensures the achievement of a sliding motion on
(9). Hence system global stabilization and perfor-
mance recovery are achieved regardless of the fault
affecting state measurement.

Remark 4.1. Note that Corollary 3 implicitly as-
sumes that no extra failures are allowed to occur
within the convergence time ∆t. Anyway, this re-
quirement is not restrictive since ∆t can be chosen
arbitrarily small.

Remark 4.2. Both Lemma 2 and Theorem 4 have
been derived using Sliding mode control, and
could produce chattering in the neighborhood of
s(x) = 0. This drawback can be easily overcome
using the well known Boundary Layer Method
(Slotine and Sastry, 1983).

5. SIMULATION RESULTS

Theoretical results described in Section 4 have
been validated by simulation using the following
plant taken from (Khalil, 2002):

ẋ =−
x

1 + x2
+ u + d (37)

with d = x sin(x) and initial condition x(0) = 0.5.
Though the system considered for simulations
may appear scarcely realistic from a practical
viewpoint, it has been chosen in view of the fact
that the nominal plant is not input-to-state stable
(Khalil, 2002), hence the fault-tolerant controller
recently proposed by (Qu et al., 2003) cannot be
applied.

The failure model (3) has been used, with δmax =
3. A severe sensor failure has been considered to
occur on x at time t̄ = 1.45 s, when the sensor
jumps from its current value to the maximum
value of its range. A fault detection module is
supposed to activate the observer (12) at that time
t̄. Using the fault tolerant controller (15), plant
asymptotic stabilization has been achieved within
∆t ' 0.8 s from the occurrence of the failure.
The (straightforward) surface s = x has been
chosen, and a boundary layer of width ε = 0.001
has been used to avoid chattering. The following
controller settings has been adopted: c1 = 1,
η = 1, ρ(x̂) = |x̂|.

Simulations show that the proposed control main-
tains robust stability during the fault, and is
capable to restore the normal operation a short
time after the failure. Results are shown in Fig.1
(Measured variable x̄2 and true variable x2), Fig.2
(Observation error), Fig.3 (Control input).
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