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Abstract: A second order sliding mode control algorithm is presented for robust
control of the liquid level in a pair of interconnected tanks. The controller is
implemented on a laboratory rig. The implementation results show robustness
to parameter variations such as tank area, the admittance coefficients of various
pipes, leakage in the tanks and uncertainty in the pump dynamics. The potential
of second order sliding modes for multivariable control is demonstrated.
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1. INTRODUCTION

Sliding Mode Control (SMC) is known to be a
robust control method appropriate for uncertain
systems. High robustness is maintained against
various kinds of uncertainties such as external dis-
turbances and measurement error (Utkin (1992),
Edwards and Spurgeon (1998)). It is also straight-
forward to implement the resulting algorithms.
In such traditional sliding mode control, or First
Order Sliding Mode (FOSM) controller design, an
appropriate sliding variable, s(t), is selected such
that it has relative degree one with respect to the
control. This selection of sliding variable must be
made to ensure that the dynamics of the system
in the sliding mode, i.e. when s = 0, are desirable.
The control then acts on the first derivative (with
respect to time) of the sliding variable (ṡ) to keep
the system trajectories in the sliding set s = 0.
Essentially, the discontinuous control signal acts
on the first derivative of s to ensure the system
trajectories are always directed towards s(t) = 0.
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Higher Order Sliding Modes (HOSM) are the gen-
eralisation of FOSM. In HOSM control, a control
is sought which acts on higher derivatives of the
sliding variable. For example, the case of second
order sliding modes corresponds to the control
acting on the second derivative of the sliding vari-
able, namely s̈ , and the sliding set is defined as
s = ṡ = 0. Higher order sliding mode control
has the advantage, when compared to FOSM con-
trol, that it removes chattering effects, providing
a smooth or at least piece-wise smooth control,
and provides better performance with respect to
switching delays in the control implementation.

This paper considers the application of second
order sliding mode control techniques for MIMO
liquid level control. A second order sliding mode
control has been proposed for MIMO systems by
Chang (1990) where a dynamics is imposed on
the sliding variable but the resulting controller
requires the derivative of the sliding variable for
implementation. Bartolini et. al (2000) extended
a SISO algorithm for a class of nonlinear MIMO
systems. However, the algorithm still requires sin-



gular values of the sliding variable (maxima, min-
ima or flex points) to be detected online. The
method proposed in this paper uses a second order
sliding mode control which does not require the
derivative of the sliding surface vector to be avail-
able. Further, the sliding surface may or may not
be control dependent. In either case, the method
always produces a dynamic controller, contrary to
the work by Lu and Spurgeon (1998) and Sira-
Ramirez (1993). The proposed method combines
elements from Sira-Ramirez (1993) and Lu and
Spurgeon (1998) together with Chang (1990) and
Bartolini et. al (2000) and is applicable to a wide
class of systems which are not necessarily affine in
the control. Section 2 presents a brief review of the
second order sliding mode control design approach
for single input single output (SISO) systems.
The methodology is extended and applied to the
multiple input multiple output (MIMO) situation
in Section 3. Section 4 describes the twin tank
process of interest. The results of controller im-
plementation on an experimental rig are presented
in Section 5. The experimental results validate the
proposed theoretical approach.

2. A SISO PROBLEM FORMULATION

Consider an uncertain SISO nonlinear system

ẋ = φ(t, x(t)) + γ(t, x(t))u(t);

which is affine in the control u and where x ∈ X ⊂
<n is a state vector, u ∈ U ⊂ < is a bounded input
and t is the independent time variable. Select a
sliding surface

s = S(t, x) (1)
such that by zeroing it, the control objective is
achieved. Further assume that the sliding surface,
s, has relative degree two with respect to the
control input i.e. ∂

∂xS(t, x)γ(t, x) = 0. Thus the
system dynamics can be written in the following
form

s̈ = f(t, s, ṡ, x) + g(t, s, ṡ, x)u (2)
The dynamics in equation (2) are assumed to
satisfy the following bounding conditions

0 < Gmin ≤ g(t, s, ṡ) ≤ Gmax
|f(t, s, ṡ)| ≤ F ; |s| ≤ s0 (3)

where Gmin, Gmax, s0 and F are some positive
constants. Given the physical limits of most prac-
tical engineering systems, the assumed bounding
conditions are not unduly restrictive.

In Khan et al. (2003), a 2-sliding control al-
gorithm is applied to stabilise the dynamics (2)
without the knowledge of the derivative of the
sliding variable (ṡ). The algorithm is given as
follows

u(t) = −λsign(s) + u2(t) (4)

u̇2 =
{−ku, |u| > u0

−W sign(s), |u| ≤ u0
(5)

The corresponding sufficient conditions for finite
time convergence are

u0 >
F

Gmin
; λ > u0; k,W > 0 (6)

3. A MIMO PROBLEM FORMULATION

Consider a locally observable general MIMO non-
linear system in state space form: ẋ = ψ(x, u, t)
and the output y = h(x, u, t), where x ∈ <n,
u ∈ <m, y ∈ <p and ψ : <n×<m×<+ → <n and
h : <n ×<m × <+ → <p are smooth vector func-
tions. The following locally equivalent differential
I-O form exists

y
(ni)
i = φi(ŷ, û, t), i = 1, · · · , p. (7)

where û = (u, · · · , u(βj)
j ); j = 1, · · · ,m and ŷ =

(y, · · · , y(ni−1)
i ) with

∑p
i ni = n. This represen-

tation is the same as the Local Generalized Con-
troller Canonical Form (LGCCF) in Fliess (1990).
A differential I-O system is called proper if

(a) p = m,
(b) all φi, i = 1, · · · ,m are C1 functions,
(c) the following regularity condition is satisfied

det

[
∂(φ1, ....., φm)

∂(u(β1)
1 , · · · , u(βm)

m )

]
6= 0.

A large class of nonlinear systems, especially
mechanical systems, are naturally in this form.
Additionally, a wider class of nonlinear systems,
termed as ‘differentially flat systems’, can be writ-
ten in this form together with dynamic compen-
sators which may be a chain of integrators in their
simplest sense (Fliess (1988)).

The system (7) is called minimum phase if the
zero dynamics, φi(0, û, t) = 0; i = 1, · · · , p are
uniformly asymptotically stable. Only proper min-
imum phase systems are considered in this paper.

The system (7) can be written in the following
generalised canonical form

ξ̇i1 = ξi2

· · ·
ξ̇ini−1 = ξin1

ξ̇ini = φi(ξ, û, t), i = 1, · · · ,m (8)

where ξi = (ξi1, · · · , ξini) = (yi, · · · , y(ni−1)
i ), i =

1, · · · ,m and ξ = (ξ1, · · · , ξm).

The sliding surface, s, is selected such that when
it is made zero, the control objective is achieved.
In the case of MIMO systems, the sliding surface
is a vector which has the same dimension as



that of the control vector u i.e., s ∈ <m. In
general, the sliding surface can be selected as a
nonlinear function of the system states such as
s = Ψ(ξ, t). However, only linear sliding surfaces
are considered here as follows

si = ξini +
ni−1∑

j=1

cijξ
i
j , i = 1, · · · ,m (9)

where the vector of constants (ci1, c
i
2, · · · , cini−1)

are such that the polynomials

λnii +
ni−1∑

j=1

cijλ
j
i = 0; i = 1, · · · ,m (10)

are Hurwitz.

It should be noted that the sliding surface in equa-
tion (9) is naturally control dependent if βi ≥ 1
for i = 1, · · · ,m. However, as will be seen in this
section, for a dynamic controller to result as is
required for chattering removal, no condition on
β is imposed here. This is contrary to what is
proposed by Sira-Ramirez (1993) where β ≥ 1
is required for the controller to be dynamic, and
thus for chattering avoidance. Moreover, the defi-
nition (9) does not assume that the sliding surface
is control dependent. Therefore, the methodology
is different from what is proposed by Lu and Spur-
geon (1998), where the sliding surface is always
control dependent. The first two successive time
derivatives of the sliding variables (9) along the
system trajectories are given by

ṡi = φi(ξ, û, t) + cini−1ξ
i
ni +

ni−2∑

j=1

cijξ
i
j+1

s̈i =
∂φi
∂t

+
m∑

k=1

nk∑

j=1

∂φi
∂ξkj

ξkj+1 +
m∑

k=1

βk−1∑

j=0

∂φi

∂u
(j)
k

u
(j+1)
k

+cini−1φi(ξ, û, t)

+cini−2ξ
i
ni +

ni−3∑

j=1

cijξ
i
j+2 +

m∑

k=1

∂φi

∂u
(βk)
k

u
(βk+1)
k

i = 1, · · · ,m (11)

Let zi = (zi1, z
i
2, · · · , ziβi) = (ui, u̇i, · · · , u(βi)

i ), z =

(z1, · · · , zm) and u
(βi+1)
i = vi for i = 1, · · · ,m.

The control u can be implemented using a chain
of integrators with auxiliary input vi which can
be written in Brunovsky canonical form as

żi = Giz
i +Hivi, i = 1, · · · ,m

Using equation (9), the system (8) can be written
as

˙̂
ξi =Aiξ̂i +Bisi (12)

s̈i = fi(ξ, z, t) + gi(ξ, z, t)vi (13)

żi =Giz
i +Hivi, i = 1, · · · ,m (14)

where ξ̂i = (ξi1, · · · , ξini−1) and

fi(ξ, z, t) =
∂φi
∂t

+
m∑

k=1

nk∑

j=1

∂φi
∂ξkj

ξkj+1 +

m∑

k=1

βk−1∑

j=0

∂φi

∂u
(j)
k

u
(j+1)
k + cini−1φi(ξ, û, t)

+cini−2ξ
i
ni +

ni−3∑

j=1

cijξ
i
j+2

gi(ξ, z, t) =

[
∂φi

∂u
(β1)
1

u
(β1+1)
1 , · · · , ∂φi

∂u
(βm)
m

u(βm+1)
m

]

and

Ai =
[

0 In−2

−C
]
, Bi =

[
0
1

]

Gi =
[

0 Iβi−1

0

]
, Hi =

[
0
1

]

The complete MIMO system thus can be written
as

˙̂
ξ =Aξ̂ +Bs (15)

s̈= f(ξ, z, t) + g(ξ, z, t)v (16)

ż =Gz +Hv (17)

where ξ̂ = (ξ̂1, · · · , ξ̂m) ∈ <n−m, s = (s1, · · · , sm) ∈
<m and v = (v1, · · · , vm) ∈ <m and A =
diag(A1, · · · , Am), B = diag(B1, · · · , Bm), G =
diag(G1, · · · , Gm), H = diag(H1, · · · ,Hm), f =
(f1, · · · , fm)T , g = (g1, · · · , gm)T ∈ <m×m.

In this paper, only those system types are consid-
ered where the input gain matrix g is diagonal,
i.e.,

g = diag(gii), where gii(ξ, z, t) =
∂φi

∂u
(βi)
i

Therefore, the original MIMO system produces
three subsystems. The first subsystem is an (n −
m) dimensional linear system driven by the slid-
ing variable vector, s. This linear subsystem is
stable as the polynomials in (9) are Hurwitz by
design. The second subsystem represents the sec-
ond order nonlinear uncertain dynamics of the
m sliding variables. If bounding values of fi and
gii (for i = 1, · · · ,m) satisfy the conditions (3),
the algorithm (4)-(5) can be applied for robust
stabilisation of each channel independently. The
third subsystem is a chain of integrators, the out-
put of which provides the actual control. If the
system is linearizable by coordinate change and
state feedback, the MIMO system representation
in I-O form (7) will be independent of any control
derivative, i.e.,

βj = 0, j = 1, · · · ,m
and therefore, the auxiliary control vector, v,
which drives the sliding surface dynamics (16) is



simply the time derivative of the actual control
vector u. Even though v is discontinuous, the
actual control input, u, to the system will be
smooth because of the integrator dynamics.

Once the sliding surface dynamics in (16) is sta-
bilised to s = 0, the MIMO system dynamics
under sliding motion is given by

˙̂
ξ = Aξ̂ (18)

which is stable because A is a block diagonal
matrix with all diagonal blocks (Ai, i = 1, · · · ,m)
representing the stable dynamics (10).

Though the system in (16) is coupled with the
states of the system in (15), it can be decoupled
if the vector field f(ξ, z, t) and the gain matrix
g(ξ, z, t), even if uncertain, satisfy the following
bounding conditions in any bounded domain

|fi(ξ, z, t)| < Fi

Gmi ≤ gii(ξ, z, t) ≤ GMi
(19)

and the system can be written as

ẏ1i = y2i

ẏ2i = fi(ξ, z, t) + gii(ξ, z, t)vi (20)

This representation contains all those uncertain-
ties which do not violate the bounding condi-
tions (19). The algorithm (4) can be applied be-
cause the control vi always appears linearly. The
controller parameters are selected as follows

u0i > supFi/Gmi
λi > u0i , ki > 0,Wi > 0 (21)

Sometimes, the controller (21) may be conser-
vative. To improve the conservatism, the condi-
tions (19) imposed on the sliding surface dynamics
can be relaxed as

|fi(ξ, z, t)| < Fi1 + Fi2 |y1i |
Gm1i +Gm2i |y1i | ≤ gii(ξ, z, t) ≤ GM1i +GM2i |y1i |(22)

and the controller parameters can be selected as
follows

u0i >
Fi1 + Fi2 |y1i |

Gm1i +Gm2i|y1i |
λi > u0i , ki > 0, Wi > 0 (23)

4. LIQUID LEVEL CONTROL IN
COUPLED-TANKS

The twin-tanks system consists of two small tanks
mounted above a reservoir which provides storage
for the water. Water is pumped into the bottom

of each tank by two independent pumps. The
pump only increases the liquid level and is not
responsible for pumping the water out of the tank.
It is assumed that the back pressure created by
the water-head does not affect the flow rate of the
pump significantly. The separating wall between
the two tanks has two circular holes which to-
gether form the connecting pipe with admittance
coefficient k1; this will be referred to as pipe
k1. Each tank in the twin tanks configuration is
equipped with two outlet pipes of different radius.
These two outlet pipes have admittance coeffi-
cients of k2 and k3 where k3 > k2 and will be
referred to as pipe k2 and pipe k3, respectively.
The admittance coefficients of various pipes are
assumed constant. The pump cannot fill the tank
if both pipes k2 and k3 are opened simultane-
ously. Therefore, only pipe k2 is considered open
for designing the controller. A leak is simulated
by opening pipe k3 (and pipe k2 closed) which
allows more outflow than pipe k2. The schematic
diagram of the system is shown in Fig. 1.

C1, h1 C2, h2

q1
q2

u1 u2

Tank 1 Tank 2

k1 k2

Fig. 1. The liquid-level control system

The twin-connected tanks system is a nonlinear
dynamical system and the governing dynamical
equations can be written as (Chang (1990))

ḣ1 =− k1

A1

√
|h1 − h2|sign(h1 − h2) +

1
A1

q1

ḣ2 =
k1

A2

√
|h1 − h2|sign(h1 − h2)− k2

A2

√
h2 +

1
A2

q2

where h1 and h2 are the total water heads in
Tank 1 and Tank 2 respectively, which are the two
outputs of interest and q1, q2, are the two inflows
into the tanks. It is assumed that the capacities,
A1 and A2, of Tank-1 and Tank-2 respectively
remain bounded as follows

Aim ≤ Ai ≤ AiM , i = 1, 2.

where Aim and AiM are some positive constants.
For the rig in the laboratory both tanks have the
same cross-sectional area i.e. A1 = A2 = A.

It has been seen in the work of Kantor (1989)
and Clark and Vinter (2003) that in chemical
plants, selecting the flow rate as an input is more



effective than using flow as the input. Thus, if the
flow rates are considered as the inputs, i.e. q̇1 = u1

and q̇2 = u2, the system dynamics can be written
in I-O form as

ḧ1 = f1(h1, h2, ḣ1, ḣ2) +
1
A
u1 (24)

ḧ2 = f2(h1, h2, ḣ1, ḣ2) +
1
A
u2 (25)

where

f1(·) = − k1

2A
ḣ1 − ḣ2√
|h1 − h2|

f2(·) =
k1

2A
ḣ1 − ḣ2√
|h1 − h2|

− k2

2
√
h2

ḣ2 (26)

It seems from equations (24) and (25) that there
is a singularity in the trajectories at h1 = h2. In
fact, this is not so because at h1 = h2, the system
model is decoupled. The fluid flow into the tanks
(q1 and q2) cannot be negative because the pumps
can only pump water into the tanks. Therefore
constraints on the inflow are given by

q1 ≥ 0 (27)

and
q2 ≥ 0 (28)

In the steady state, for constant water level set
points, the respective derivatives must be zero
separately i.e., ḣ1 = ḣ2 = 0. Therefore, in the
steady state, the steady state inflows (Q1, Q2) are
given by

Q1 = k1

√
|h1 − h2|sign(h1 − h2) (29)

Q2 =−k1

√
|h1 − h2|sign(h1 − h2) + k2

√
h2 (30)

Using equation (29), the constraint (27) on the
input can be reformulated as a constraint on the
output set point as follows√

|h1 − h2|sign(h1 − h2) ≥ 0⇒ h1 ≥ h2 (31)

Similarly, constraint (28) can be reformulated
using (30) as follows

k2

√
h2 ≥ k1

√
|h1 − h2|sign(h1 − h2)

(k2
1 + k2

2)h2 ≥ k2
1h1

⇒ h2 ≥ k2
1

k2
1 + k2

2

h1 (32)

Therefore, in order to satisfy the constraints (27)
and (28) on the inflows for given values of the
plant parameters k1, k2, the desired liquid levels
in the tanks must satisfy the constraints (31) and
(32) which can be combined as follows

k2
1

k2
1 + k2

2

≤ h2

h1
≤ 1 (33)

For the plant available in laboratory, the water
level in Tank 2, h2, must not be theoretically less

than 63.89% that of h1 to satisfy positive flow
constraints.

For the laboratory rig, both tanks have the same
area of 155.44cm2 and k1 = 23.45 and k2 = 17.62.
The set point water level is selected as h1d =
h2d = 12cm. For the given plant, bounding values
for the functions Af1(·) and Af2(·) are calcu-
lated by maximising all the possible variations as
A|f1(·)|max = 23.4 and A|f2(·)|max = 33.7.

5. CONTROLLER DEVELOPMENT

For both the tanks, the error in the water level is
selected as the sliding surface i.e.,

si = hi − hid ; i = 1, 2. (34)

The sliding surface variable, si, in equation (34)
has relative degree two with respect to the control,
vi. The complete MIMO system according to the
equations (15-17) can be written as

s̈i = fi(hi, ḣi) + gi(hi, ḣi)vi (35)

u̇i = vi i = 1, 2. (36)

where f1(·) and f2(·) are according to equa-
tion (26) and g1(·) = g2(·) = 1/A. The control
algorithm (4) is then applied to stabilise the de-
coupled dynamics (35).

The controller parameters u01 and u02 should be
greater than A|f1(·)|max and A|f2(·)|max respec-
tively. The controller parameters selected for the
simulation study shown in the following figures
are u01,2 = [25, 35], λ1,2 = [100, 150], k1,2 = [1, 1]
and W1,2 = [10, 10], which satisfy the selection
criteria discussed in the previous section. Using
equations (29) and (30), the inflows at equilibrium
are Q1 = 0 and Q2 = 61.07.

The implementation results are shown in the
following figures. Note that a digital output of
150 corresponds to a liquid level of 12cm. It has
been noticed that the pumps do not respond to
digital inputs less that 25 in the case of Tank 1
and 30 in the case of Tank 2. To counter this
dead zone, a lower saturation limit of 25 and 30
is applied to both motor inputs respectively. The
controller parameters selected are λ = [150, 200],
u0 = [75, 100], k = [37, 37] and W = [300, 300].

To simulate a leak in Tank 1, the outlet pipe with
admittance coefficient equal to k2 is opened. In
the case of Tank 2, a leak condition has been
simulated by opening the outlet pipe with wider
cross sectional area (admittance coefficient k3 =
26.26) than that of the pipe which has been used
to model the system (k1 = 23.45). The controller
robustly stabilises the water levels to the desired
level in both cases.
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Fig. 2. Stabilisation to the same water level (150
units) in both tanks
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Fig. 3. Stabilisation to different water levels (150
and 135 units) in both tanks
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Fig. 4. Stabilisation with a leak in tank 1

6. CONCLUSIONS

A second order sliding mode control algorithm
has been presented for robust control of the liquid
level in a pair of interconnected tanks. The algo-
rithm does not require the derivative of the sliding
surfaces, thus eliminating the requirement of de-
signing an observer or peak detector, contrary to
many other sliding mode control strategies. The
system has been modelled and implementation of
the controller has been carried out on an experi-
mental rig. The implementation results show ro-
bustness to parameter variations such as tank area
and the admittance coefficients of various pipes.
The implementation results verify the potential of

second order sliding modes for control of MIMO
systems.
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