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Abstract: A class of interconnected systems with nonlinear interconnections
and nonlinear disturbances is considered. A continuous nonlinear reduced-order
compensator is established by exploiting the structure of the uncertainties. A
sliding surface is proposed in an augmented space formed by the system output
and the compensator variables, and the stability of the corresponding sliding mode
is analysed. Then, a robust decentralised dynamical output feedback sliding mode
controller is designed to drive the system to the composite sliding surface and

maintain a sliding motion on it thereafter. Copyright

© 2005 IFAC.
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1. INTRODUCTION

Sliding mode techniques are employed to study
the stabilization of a class of nonlinear inter-
connected systems. Mismatched uncertainties and
nonlinear interconnections are considered, and the
bounds on the uncertainties take more general
forms as in (Yan et al. 2004),(Yan and Xie 2003).
By using the structure of the uncertainties, a con-
tinuous reduced-order compensator is proposed
based on constrained Lyapunov equations. Then,
a sliding surface is proposed in the augmented
space formed by the compensator and system out-
put. Using an equivalent control approach and a
local coordinate transformation, the sliding mode
dynamics are established and the stability is anal-
ysed. A robust decentralised output feedback slid-
ing mode control scheme is synthesized such that
the interconnected system can be driven to the
pre-designed sliding surface. This approach al-
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lows both the nominal isolated subsystem and the
whole nominal system to be nonminimum phase.
It should be emphasised that methods to deal with
nonlinear interconnections are a key issue in the
control of interconnected systems. So far nearly
all associated work treats such interconnections
as disturbances and then uses an extra stability
margin to reject the effect of the interconnec-
tions. By dealing with uncertain interconnections
and known interconnections separately, the con-
servatism is reduced to some extent as claimed
in (Yan and Xie 2003). However, the interconnec-
tions are still treated as a disturbance in the sense
that the interconnections are not used explicitly
in the control design. In this paper, it is shown
that by employing sliding mode techniques, the
interconnections are directly used in the control
design, which together with the fact that the
sliding mode dynamics are reduced-order systems,
reduces conservatism and enhances robustness.

Notation: For a square matrix A, A\(A) and A\(A)
denote the minimum and maximum eigenvalues



respectively. A > 0 means that A is positive defi-
nite. I,, denotes the unit matrix with dimension n.
The set of n xm matrices with elements defined in
R will be denoted by R™*™. For a function/vector
f(z), Ly denote its Lipschitz constant in an asso-
ciated domain. || - || denotes the Euclidean norm
or its induced norm.

2. SYSTEM DESCRIPTION

Consider a nonlinear interconnected system com-
posed of N subsystems as follows

&y = Ajxi + Biui + Afi(w) +

N

> (Hij(ﬂfj) +AHij(33jvt)), (1)

7
yzzclxla 221,2,7N, (2)

where z; € Q;, C R™ (0 € €;), u; € R™ and
y; € RPi are the states, inputs and outputs of
the i-th subsystem respectively with m; < ny;
(4;, B;, C;) are constant matrices of appropriate
dimensions with B; and C; of full rank; A f; is the
mismatched uncertainty of the i-th isolated sub-
system, Z%l H;j and Z%l AH;; are respectively
J#i J#i

the known and the uncertain interconnections of
the i-th subsystem with H;;(0) = 0. The func-
tions are all assumed to be continuous in their
arguments.

Without loss of generality, suppose that the non-
linear functions H;;(-) have decompositions
Hij(x)) = @ij (),
i, i,j=12....N (3

where ®;;(-) are continuous. The decomposition
(3) is always true for H;;(-) smooth enough in

their domain of definition satisfying H;;(0) = 0.
In order to facilitate the analysis,

e All equations and inequalities involving the
indexes ¢ and/or j are satisfied for all 4,j =

1,2,...,N (i £ j);
e The considered domain is

x = col(x1,x9,...,xN) € Q
EZQl XQQX"'XQN
with z; € Q; C R™i;
e Output matrices
C; = [I;m 0]

Assumption 1. The matrix pairs (4;, B;) and
(4;,C;) are controllable and detectable respec-
tively, and the function H;;(z;) (i # j) satisfies
Lipschitz conditions in the considered domain.

In view of the detectability of (A;, C;), there exists
a matrix L; such that (4; — L;C;) is stable and

thus for any @; > 0 the following Lyapunov
equation has a unique solution P; > 0

(A; — L;C;))" P+ Pi(A; — L;C;) = —Q;  (4)

Assumption 2. The uncertainties have struc-
tural decompositions of the following form

Afi(zi,t) = DiAfi(as,t),
AH;j(zj,t) = E;;AH; (x5, ) (5)
where D;, E;; (i # j) are constant matrices, and
IAFi (@, )| < pilys, t)vi(wi, 1),
IAH;(j, 6)]] < i () Gig (@5, 1) (6)

where ; < Fi(wi,Ollai]l and ¢ < Gy, Ol |
(¢ # j) are Lipschitz with 7; and (;; continuous.

Assumption 3. There exist matrices G; and Fj;
(i # j) such that

DIP, =GiCi,  ELP, = F;C (7)

where P; satisfies (4) and the matrices D;, E;;

(i # j) satisty (5).

It should be noted that Assumption 3 implies that
rank(D] P;) = rank([D] P, C;])
rank(E]; P;) = rank([E]; P; ()

with i, =1,2,...,N (i # j).

The objective of this paper is to use sliding

mode techniques to develop an output feedback

control scheme based on a continuous reduced-

order compensator such that the corresponding
closed-loop system is asymptotically stable.

3. COMPENSATOR DESIGN

Consider system (1)—(2). Following the partition
of C; = [I,, 0], the system can be rewritten

i | _ [ A A | |Ta Bii|

L%Q] B |:Ai3 Ai4:| Lﬂu] * [Bi2:| it

D, ~ Zi\lzl (Hijl + Eileﬁij)

FEnk: )]
2 Z?Z (Hij2 + Ez’jzAHz'j)

Yi = Ti (9)
where z; = col(x;1,z;2) with ;1 € RPi] A;; €
RpiXpi, Bil S Rpixmj; 1)1'17 Eijl and Hijl are the
first p; rows of D;, E;; and H;;(x;) respectively.
Partition P;, @; and L; conformably with the
decomposition (8)—(9) as

| Pa P | Qi Qa2
P’_[Pié H]’Q"[sz Qig]

L;
L= 1) (10)

Then, construct a dynamical system



Zio = (Aia + P53  PLAi2) 20 + (PiglpiB(An
+Aiz — AP35 Ph)y: + (Pi31PiEBi1 + Bi2) u; +

Z[P PhLHij1(y;,05) + Hija(y;, 05)]

J#Z

where 1 = Zjo — P P2y] and Z;0 € R"~Pi The
following conclusmn can be drawn:

Theorem 1. Let &;0 = — P 1P2y2—|—z12 with Z;2 as
given above. Then, under Assumptlons 1-3 there
exist positive constants oy and as such that

[2ia(t) — Zi2()[| < a1 exp{—aat} (11)
if WT+W is positive definite with W = (w;;) N x N
defined by
w»»:{ AMQi3), 1=
+ _Z(HPiQHLHijl + ||Pi3||LHij2) ) Z#J

where H;;; and H;jo are, respectively, the first p;
and the last n; — p; components of H;;(z;), and
Pis, P;3 and ;3 are defined by (10).
Proof: From Assumption 3, C; = [I,
partition (10) of P;, it follows that
P5Diy + Pi3Diz =0, (12)
o Eij1 + PisEijo=0 (i # j) (13)

Introduce a nonsingular coordinate transforma-
tion z; = T;x; defined by

&) Rl = Tt
i { Zzio = P Phai + o (14)

0] and the

Since (12)-(13) implies Pz' PLD;; + Diz = 0 and
P 'PLE ;1 + Eijo = 0, it follows from (8)—(9)
that in the new coordinates z = col(z1, ..., ziN),

system (1)—(2) is described by
21 = (Ail — APy S ) 21 + Ai2zi2 + Biug +
N
D Afi + Z(Hijl + Eij1AH;j )
j=1
J#i
Zio = (P,-EIP{E(AM - Ai2P£1PZ’7—2) + Az —
A P P )le + ( 4 + P'LElPZEAlQ)ZlQ

+ (PiglP,-BBu + Bi2) u; +

N

Z [PiEIPiEHiﬂ(yjan) + Hiﬁ(?!ja”j)}

j=1

J#i

Yi = Zi1
where v; = zjngjglegzﬂ. From the above, (14),
and &0 = — P Phy; + Zi2, it follows that
Tiz — Bi0 = Tio + P Phys — 2o = zi2 — %2

It is only required to prove that [|zi2 — Zi2|| <
ay exp{—aat} for positive constants a; and .

Let e; = z;5—Z;2. Substituting from the dynamics,

~ AnP5'Pp)

éi= (A + P35 ' PLA»n) e +
N 17 .
Zi;l_{PlePzQ (Hij1(ys,v;) — Hiji(ys, 75)]
Ve
+Hija(y5,v5) *Hijz(ijﬁj)} (15)
where v; = zj» — P 1P2y] and 7; = Zj2 —

P Lpr yj. For system (15), consider a Lyapunov

functlon candidate V] = Zi:l el Pise;. Then, the
time derivative of V; along the trajectories of
system (15) is described by

N

Vi = Zef( [Ais + P3' PhAi] " Pis
i=1

+P;3 [A14 + P31P12A12} )ei

+QZZ (12 i1 (5, v5) — Hija(y5, 05)] +

=1 j=1

i
Pi3 [Hija(yj,vi) — Hija(yj, 17])]) (16)

From (4), (10) and C; = [I,, 0] it follows that
(PgllglgAzZ + A7,4) 13 +

K2

P (P3'PhAw + Au) = —Qiz (17)

Since Assumption 2 implies that both H;;; and
H;j> are Lipschitz in their domain of definition,
Ly,,, and Ly, ,, are well defined. Then, substitut-
ing (17) into (16), it is observed from v; — I; = ¢;
that

vi<- Ze Qise: +2ZZ (1P2lLi,, +

=1 j=1

I Pisll L,y ) el les |

1 B} i
< —llleall -+ lewl1W +WH)llesll -+ el
AW +WT)
= W
2maxi {)\(Pzg)}
This lmphes 1 < (Vl |t:0) exp{_%t}.
max; i3

Then, from

N
miiIl{A(Bg)}H@iHQ < e Pize; < Zezpzﬁei =W

i=1

the conclusion follows if o > ,/% and

A(WHWT)
az 2 2max1{)\ Lg)} .

4. SLIDING MODE ANALYSIS

For system (1)—(2), consider the sliding surface
o=:col(o1,02,...,0n) =0 (18)
0i(Yi, Ti2) = Si1yi + Siadio (19)
where Z;9 is the compensator state in Theorem 1,

and S;; € R™i*Pi and S;5 € R™Mix(ni=Pi) are the
design parameters.



As in the proof of Theorem 1, let e; = ;o — o
and define S; = [S;1 Si2]. In the new coordinate
system (x;, e;), the sliding function matrices

;=[S Sie]xi — Sise; = Siw; — Size;. (20)

The matrices S; can be chosen using any existing
state feedback sliding mode design approach on
the pairs (A4;, B;) such that:

i) the matrices S;B; are nonsingular;

ii) the matrices Aqq; =: A; — B; (Sl-Bi)f1 S; A;
have n; —m; eigenvalues which lie in the open
left-half plane.

During a sliding motion, both ¢; = 0 and &; = 0.
From (1), (15), (20) and &; = 0, the equivalent
control (Utkin 1978) necessary to maintain a
sliding motion is given by

Uieq = —(SiBi) ™! {SiAizi — Sio (Aia + P PLA) e
+SiAfi + Z%%Si (Hz‘j(%‘) + AHij) -
ﬂZ] 1 ( 5 Ph (Hijl(ijxﬂ) —Hijl(iji‘ﬂ))
+Hij2(yj, w52) — Hij2(y;, ijz)) }

When system (1)—(2) is restricted to the sliding

surface (18), it follows by applying the control
above to system (1) that the associated dynamics

are given by
|:ii:|_ Acqi Bi(SiBi)™'Si2 <A¢4 + P,L"_leiEAiQ) [a:l]
é; - €

0 Aia+ P PL A
n [(In, — Bi(SiBi)_lsi) (Afi + Zj\]:l (Hij + AHij)) ]
J#i
0

+{ (m —p; } ZN:{P_IP ( Hiji(yj, zj2) —
=

Hij1(yj, ijz))+Hij2(yj7 $j2)_Hij2(yj753j2)}

where Aeqi =A;— Bi(SiB,-)*lS,-Ai. Since S;B; is
nonsingular, matrix S; is full row rank and thus
there exist nonsingular matrices T;; € R™*™ and
Tio € R™MiX™i gych that

T:28:Ti1 = [Im, 0] (21)

In order to further analyse the stability of the
sliding mode, it is required to derive a reduced
order representation. The coordinate transforma-
tion col(&;,n;) = Tila:i is introduced, where §; €
R™i and T}, is determined by (21). Then, noticing
the condition ii), it follows that in the new coor-
dinates (&, n:,e;), the system is described by the
equations

3 0 0 * &
| = | A A2 Ais 7
é; 0 0 Au+Pz'PLAn] |e

=+ Ale + Z
]7’51

l] + Z igl (22)

@m2

where A, € R(ni—mq)x(n;—m;) A€ R(i=mi)x(ni=pi)
and 0 0
{Ail Az’2:|
The notation * denotes items which do not play
a role in the subsequent analysis; A f;1, 1I;; and

;1 are the last n; — m; components of
Tt (In, — Bi(SiBi) ™' S:) Afi,
Ti' (In, — Bi(SiB;)™'S;) (Hij + AH,;)

K2

=T, AcyiTi (23)

and
T;1 ' Bi(SiB;) ™' Sio{ Py3 ' P (Hijl(yj; Tj2) —

Hiji(yy, ij2)> + Hijo(ys, vj2) — Hija(yj, Tj2)}

respectively, and
Oyj2 = P P (Hiji (yj, wj2) — Hiji (Y7, 252))
+Hij2(yj, 52) — Hija(ys, 252) (24)
From (21), it follows that
0= Six; — Sie; = Tig' [In, 0] [gz} — Sise;
=Ty & — Sizes (25)
This implies that in the new coordinate system
(&5 14, €:), 0 = 0 can be depicted by & = T2 Sioe;.
Consequently, when the system is restricted to
the sliding surface (18), it can be described in

coordinate system (&;,7;, ;) by

|:7h:| — |:A12 Az3 +A11T12S'LQ :| |:771:|
& 0 Au+Py'PLAz] Lei

|:Afi1]+§N:[Hij:| _i_zN:[@zﬂ}
0 o 262

J#i J#i

From condition ii) and (23), the matrix A has
n; —m; negative eigenvalues. This implies that for
any @; > 0, the Lyapunov equations

fzqgﬁi + PAin = —Q; (26)

have unique solutions E > 0.

From (3) and Assumption 2, there exist continu-
ous functions ¢;1, @42, ¥i; and x;; such that

1PAfirll < @in(ni, e |mall + iz (i, eq) llesl]
1P (L5 + ©451) || < %aj(ms,e5) sl

+xi5 (5, €5)le;
where P; satisfies (26).

Theorem 2. Under Assumptions 1-3, the sliding
mode dynamics are asymptotically stable if there
exists a domain of the origin O; C R2mi—mi—pi
such that for col(n1,e1,...,nn,en) € O1 X -+- X
Op, the matrix M™ 4+ M is positive definite with
M € RZVN*2N (defined by



[ A@Q1) — 2011 —2912 —2Y1N —2(p12 + @1) —2x12 —2X1N
—2t2 A(Q2) — 2021 —2x21 —2(p22 + w2)
. —2Y(N-1)N —2X(N-1)N
—29N1 e *QwN(N 1 AQN) —20N1 —2XN1 e *QXN(N 1) —2(en2 + @N)
—2(p12 + @1) —2x12 —2X1N A(Q13) —2K12 —2KIN
—2x21 —2(p22 + w2) —2K21 A(Q23)
: . —2X(N-1)N . : —2R(N-1)N
—2xN1 e —2xN(N-1) —2(eN2 +@N) —28N1 e —2KN(N-1) A(QN3)
where ©;1, 2, ¥;; and y;; are determined by the Hence, the conclusion follows by the positive def-
initeness of M7™ + M. |

equations above, ) Kij i= ([| Pi2l| L e

and w; := || Py(Aiz + AjTiaSin) |-

Proof: Consider a Lyapunov function V =
N D T

Dz (771- Pin; + €] Pi3€i)

tive of V along the trajectories of the system is

given by

V=- ZmQ1m+2Zm (13+A11T22312)

N
+2 ZZ”ZR (ILij + ©4j1) + 2277;151'Afi1
=1 j=1 i=1
J#i

N N N
- Z el Qize; + 2 Z Z e; Pi30;jo

=1 j=1

j#i

+HP15||LH”2)

i1

. Then, the time deriva-

<g(
2

Q)llmil* + MQi)lesl|?)

( i3+ A11Tv2572>‘

lleall flm:ll

\||m|\+222{

J#Z
P (s + ©i0) | Imill + 1 Pis®isell sl (27)

where (17) and (26

) are used above. From (24),
1 Pia®ija|l = HPZé Hiji(yj, j2) —

Hija(yj, 252) ) +

Pi3 (Hij2(9j7$j2) - Hij2(yj,5€j2)) ‘
< (Pi2lle 1 + 1Pisllmg ) llesll = wijlle; ]|

Then, from the above, and the definitions of the
functions @;1, iz, ¥i; and xij:

N N
V<= D@ = 20m)Imil2 = 30 AQis)lles]?
i=1 =1
N
+2 Z(%Q + @) |7 | [l ]|
=1
N N
#2357 S L lmall sl + sl les |
i=1 j=1
i#i
el e}
1
= Sl = Nl leall -+ el
(7 + M) [l =+ Nl fleall - llew )"

5. SLIDING MODE CONTROLLER

For the system (1)—(2) with the designed com-
posite sliding surface (18), construct the following
sliding mode control

u;=—(S;B;) 7" { (Si1Air + Si2Aiz) yi + (SilAi2 +
SizAm)f?iQ + (I|S¢Dini(yi7t)%(yi7iz‘z,t)

N ~
VKt + Y (nsjEﬁnﬂﬁ(yi, O (ir dia, ) +
JF#i

1S; Hjl(yl’m22)||)) ||gl||}

where o; is defined by (19), and K;(y;,t) is the
control gain to be determined later. The control
law is decentralised and only depends on the
22 and the system output y;. It is necessary to
show that the above control can drive the system
(1)-(2) to the sliding surface (18) and maintain
sliding. It is required to prove that the composite
reachabllggy condition (see (Hsu 1997))

Z (yz,mﬂ)gz(yuxﬂ)

P loi(yi, Za2) |l

is satisfied, where o;(y;, #;2) defined by (19) is the
sliding function for the i-th subsystem.

Theorem 3. Under Assumptions 1-3 with (11
satisfied, the controller drives the system (1)—(2
to the composite sliding surface (18) and maintain
a sliding motion thereafter if the control gains K;
are chosen such that

K;(y;,t) > a1 exp{—aat}

< 0. (28)

{HSiIAi2 + Si2 Aia|| +
Ly, 1SiDillpi (yir t) + || Sia Pyt (PR Aiz + PisAi)||

N
Yo (18502, + 1, Byutsil gy, +
’L
1525 | (I1PialLiy, + I1PalLi,,0) ) b

with the constants a; and ay determined by (11).
Proof: From the proof of Theorem 1 the error
dynamics in (15) can be rewritten

é; =Pt (PLAin + PisAi) e + ZPZSI
7
{sz (Hij1(yj,wj2) — Hiji(y;, 252))
+ P (Higa(yjs 052) — Higa(ys, 352) | (29)

From (20), (1) and (29)



6y = SiAszi + S Biug + S; Af; + Z;V:ugi (Hij(xj) +
J#i
AHij(xj, t)) - Si2P£1 (PS5 A0 + PisAia) e
S iSinP
J#i

Pi3 (Hij2(yj, zj2) — Hij2(y;, 252)) } (30)

El{Pzg (Hij1(yjszj2) — Hiji(ys, 252)) +

Then, substituting the proposed control u; into
the above equatlon

g; l g; {(
E SA 2 (Szl 11 12 7l3)yi

(Si1Ai2 + SizAzA)im)

N
*S¢2Pi§1(szAi2 + P¢3Ai4)€¢} + Z (H 17 Af;
—HSiDiHPi(yi:t)'Yi(yi7§7i27t)) - ZKi

N N
ol o
+§ E t <S~ Hij + AH;j] — —= X
; llo| o ] lloll
=1 j=1
J#i

(1155 Hyji(yi, 2a2) || + HSjEjillﬂﬁ(ymt)Cji(yi,ﬁiz,t)])

2P1§1{PZE[Hij1(ijxj2) — Hij1(y;, &52)]

+P;3 [Hij2(yj, Tj2) — Hija(yj, Tj2)] }

Using the previous partition of A4; in (8) and
S;=1[Si1 Sial, it follows that

SiAsxs — (Si1Aqr + SiaAiz)ys — (Ss1Asa + SinAsa) T2
=[Si1  Si2l [2‘; ﬁzﬂ {i:ﬂ — (Si1Ai1 + SizAiz)zin
—(Si1Ai2 + Si2 Aia) 2
= (Si1Aiz2 + SizAia)e;

From Assumption 2
SiAfi = 1S Dillps (yir t)vi (ys, Tiz, ) < (1S Dsl| %
IASill = 11S:Dsllpi (i )vi (i B2, )
< pi(Yis 1)y, 1S5 Dil [lesl]

and as Zz 127 1‘“] Zl 127 1“11
ZZ (S [Hij(zj) + AH;j(xj,1)] -
lloll IIUZII

.7

[I1S; Hji(yis Zi2) |l + ||5jEji||19jiCji(yi,i¢2,t)])

DHR(EE

|I<7 I

Hij(x;) — 1S5 Hji(ys, 2a2) || +

1=1 j=1

J#i
ol ~
mSiEijAHij — IS5 Ejill 19ji<ji(yivii27t)}

1
N N
<3 L Isillesl + 1185 Bl 951 i, 0) x

i—1 j—1

J#i

Gi@ist) = 1S Ejil ﬁjiCjz‘(yi,iizi)}
N N
<3N (ISilLy, + 1S5 Esilld iy )Le;, ) leill3D)
T
Using the above, it follows from (11) that

N .
>
vn :

ol

N
§ Z {Ozl exp{fagt} (HSHAQ + SZQAZ4H +
i=1
w/)iHS‘D'II + [1Si2 P (PhAiz + PisAi) ||

5> (1S5 1L, + 1185
j#i
1025 | (1Peal| Ly + 11 Pesl| L) ) )

~Kily 1)) } (32)

Hence, from the conclusion follows. o

HﬁﬂLCﬂ

6. CONCLUSION

A dynamical decentralised output feedback con-
trol has been presented using sliding mode tech-
niques. Equivalent control theory and a local co-
ordinate transformation are exploited to establish
the stability of the reduced-order sliding mode.
Known interconnections are used in the control
design which insures the composite reachability
condition can be satisfied by the control law. The
approach allows both nominal isolated subsystems
and the overall nominal interconnected system
to be nonminimum phase. The uncertainties are
mismatched and have nonlinear bounds.
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