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Abstract: Particle filtering, as a new method to solve dynamic system filtering 
problems, has been applied with great success to many scientific and engineering fields. 
Particle filters have the ability to perform state estimation in nonlinear and 
non-Gaussian state space models. However, the standard particle filter algorithm is not 
applicable for time-varying parameter estimation problems, especially incompetent for 
abrupt parameters. In this paper, a variance-adaptive particle filter (VAPF) algorithm is 
proposed, and is applied to time-varying parameter estimation. A simulation example is 
also presented to demonstrate this method.  Copyright © 2005 IFAC 
 
Keywords: particle filter; sequential Monte Carlo; parameter estimation; variance 
adaptive 

 
 
 
 

 
1. INTRODUCTION 

 
The first particle filter (PF) algorithm, or bootstrap 
filter, was proposed by N. J. Gordon in 1993 (Gordon, 
et al., 1993). Since then a number of alternative 
particle filter algorithms have been proposed, such as 
sampling importance sampling (SIS) particle filter, 
auxiliary sampling importance resampling (ASIR) 
particle filter, and regularized particle filter (RPF) 
(Arulampalam, et al., 2001). Particle filters follow 
Bayesian filtering formulae, which provide a rigorous 
general framework for dynamic state estimation. 
They use sequential Monte Carlo methods to 
approximate the optimal filtering by representing the 
probability density function (PDF) with a swarm of 
particles. Particle filters are particularly useful in 
dealing with nonlinear and non-Gaussian problems. 
Particle filter algorithms consist of two steps, 
prediction and update, which enable the particle 
filters to perform online state estimation recursively. 
Convergence results for particle filters have also been 
studied, which are reviewed in (Crisan and Doucet, 
2002). Particle filters have been successfully applied 
to many scientific and engineering fields such as 
tracking problems (Arulampalam, et al., 2001), 
speech enhancement (Vermaak, et al., 2002), fault 

detection (Li and Kadirkamanathan, 2001) and fault 
prediction (Chen and Zhou, 2003). 
 
In some application fields, there are demands to 
estimate the unknown or time-varying parameters 
online. The standard approach is to augment the state 
vector with the parameters, which is often used in 
Kalman filter or extended Kalman filter (EKF). 
However, it is not successful to apply this method 
directly in particle filters for parameter estimation, 
because the augmented state vector is lack of 
ergodicity. In order to solve this problem, several 
methods have been proposed (Andrieu, et al., 2004). 
But these methods are all designed for performing 
static parameter estimation, and the time-varying 
parameter estimation is still an open problem. 
Especially for the abrupt-change parameter 
estimation, there is no effective method at present. 
 
In this paper, a variance-adaptive particle filter 
(VAPF) algorithm is proposed, which is able to 
estimate both slow-change and abrupt-change 
time-varying parameters. The basic idea is to adjust 
noise variance added on the parameters dynamically 
in order to achieve both the estimation accuracy and 
fast tracking ability for the abrupt-change parameters. 



 

 

The paper is organized as follows. In section 2, the 
state-space model description and the problem 
statement are presented. In section 3, the 
variance-adaptive particle filter principle and its 
algorithm are introduced. Simulation results are 
presented in section 4. The last section is conclusions. 
 
 

2. PROBLEM STATEMENT 
 
In this paper, we will consider a class of nonlinear 
systems: 

1 ( , , )k k k k kf+ = +x x θ u w  (1) 
( )k k kh= +y x v  (2) 

where  
n

k ∈x R : state vector; 
l

k ∈θ R : time-varying unknown parameter vector; 
p

k ∈u R : input vector; 
n

k ∈w R : process noise vector independent of 
current state; 

( , , )f ⋅ ⋅ ⋅ : state transition function; 
m

k ∈y R : output measurement vector; 
m

k ∈v R : measurement noise vector independent of 
states and the system noise; 

),( ⋅⋅h : measurement function. 
 
Let kD denote the available information of the 
measurement set at time k,  

{ }: 1,...,k iD i k= =y  
 

kθ  is the time-varying unknown parameter to 
estimate. We augment the state vector with the 
parameter, denoting 
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Because { }kz  is not ergodic, the implementation of 
particle filters in such cases is bound to fail, even 
leads to divergence. In order to implement particle 
filter algorithm, a practical method is to add some 
artificial dynamic noise to the model of the unknown 
parameter kθ : 

1 1k k k
θ

− −= +θ θ w  
where 1k

θ
−w  is the parameter noise. 

 
However, the variance for the artificial dynamic noise 
is difficult to determine. If the variance is too small, it 
will be unable to track abrupt parameter change, 
which is illustrated in Fig. 1. If the variance is too 
large, the parameter estimation will be inaccurate, 
which is illustrated in Fig. 2. To tackle this problem, 
we propose a variance-adaptive particle filter, whose 
variance for the parameter noise is adjusted 
adaptively, ensuring that both the estimation accuracy 
and the parameter tracking ability are achieved. 
 
 

3. VARIANCE-ADAPTIVE PARTICLE FILTER 
 

Basic sampling importance resampling (SIR) 

algorithm was presented in (Gordon, et al., 1993), 
and other alternative algorithms were reviewed in 
(Arulampalam and et al., 2001). Here we will focus 
on the principle and algorithm of the 
variance-adaptive particle filter. 
 
3.1 Principle 
 
To determine the parameter noise variance, we 
convert this problem to the following optimization 
problem: 
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where 1k +θ  is the actual time-varying parameter,  

1k k k+ = +θ θ η , kη  is the dynamic of kθ  at time  
k, 1|

N N
k k k k k

θλ+ = +θ θ w  is the prediction value 

calculated by our algorithm, N
kθ  is the random 

samples (“particles”) of the unknown parameter 
produced in the algorithm, ε  is a small constant. 
 
Since kη  is unknown at time k, we ignore it. The 
optimization problem becomes the following form: 

2
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For simplicity, we only consider one dimensional 
unknown parameter is in this paper. 
 
Then, the equation (4) is equivalent to the following 
form: 

max Pr
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We obtain three useful results via deduction, and 
summarize them as follows (their proofs are 
presented in the Appendix): 
 
Lemma 1 If stochastic matrices A and B are 
independent, then 
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  ■ 
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(7) 
where iA� is the generalized inverse matrix of 1

i
k k+H F , 

i
kz  is the i th particle of kz , and 1

i
k +y  is output 



 

 

prediction of the i th particle at time k+1 . 
■ 

Theorem 1 If kwθ  has the Gaussian-density function 
2
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for this optimization problem is  
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3.2 Variance-adaptive particle filter algorithm 
 
Step1: Initialization 
Augment the state vector with the unknown 
parameter: 

k
k

kθ
⎡ ⎤
⎢ ⎥
⎣ ⎦

x
z �  

Sampling N particles 0{ , 1,..., }i i N=z  from the 
supposed conditional PDF 0 0( | )p Dz . 
 
Step2: prediction 

( )( ) , ( )
Tx T T

k k k
θ=w w w� , Sample N values 

{ , 1,..., }i
k i N=w�  from the PDF of kw� , where x

kw  
is the system noise and k

θw  is the parameter noise. 
Then calculate 

1| ( , )i i i
k k k k kf+ = +z z u w� . 

Therefore 
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where δ  is the Dirac-delta function. 
 
Step3: Update 
On receipt of the measurement 1k +y , 
Let 

1 ( )i i
k k+=A H F z , 

and iA� is the generalized inverse matrix of 
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k k+H F z . 
Calculate 

1

1 1 1 1
1

1 1
1

( )( )

( )( ) ( )

(2 )( )

i i i T
k k k k k

N
i i i T i T

k k k k
i
N

i T i T
k k

i

+

+ + + +
=

+ +
=

= − −

= − −

− +

∑

∑

P z z z z

A y y y y A

A H QH R A

� �

� �

 

where Q is the process noise covariance matrix and R 
is the measurement noise covariance matrix. 
Let 

i i
k k kb θ θ= − , 

then 

1
1 1

1 1 (dim( ),dim( ))
N N
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where dim( )kz means the dimension of zk 
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Sample new ( )i
kwθ  from kwθ , then let 
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Step4: Resampling 
Resample independently N times from the above 
discrete distribution. The resulting particles 
{ }1 1,...,

i
k i N+ =z  satisfy { }1 1|Pr i j j

k k k ζ+ += =z z , 
1,...,j N= . Then the updated PDF becomes  

1 1 1 1
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k k k k

i
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N
δ+ + + +

=

= −∑z z z  

 
Step5: Iteration  
Replacing k by k+1, go to step 2. 
 
 

4. SIMULATION RESULTS 
 

4.1 System Description 
 
The mathematical model of a continuous stirred tank 
reactor (CSTR) is described as (Zhou and Frank, 
1998): 

0( ) exp( )A
Af A A

dC q EC C k C
dt V RT

= − − −  

0( ) exp( )

( )

f A
p

c
p

dT q H ET T k C
dt V C RT

UA T T
V C

ρ

ρ

−∆
= − + −

         + −
 

 
Denotations are listed as: 

AC :     reactant concentration 

T :      reaction temperature 

cT :      refrigerant temperature 
q :      inflow velocity 

AfC :    inflow concentration 

fT :     inflow temperature 

V :      reactor volume 

0k :      exponential coefficient 

E :      activation energy 
H∆ :    reaction heat 

pC :     thermal capacity 
 
The parameters of standard state are shown in Table 
1. 
 



 

 

Table 1 normal CSTR parameters 
 

Variable Value 
q 100 L/min 
CAf 1 mol/L 
Tf 400 K 
V 100 L 
ρ 1 kg/L 
Cp 0.239 J/(g•K) 
E/R 5360 K 
UA 11950J/(min•K) 
-∆H 17835.82 J/mol 
Tc 419 K 
k0 exp(13.4) min-1 
dt 0.2 min 

 
Based on prior knowledge on CSTR, system fault is 
most likely to occur in the inflow velocity q. 
Therefore it is necessary to estimate inflow velocity q 
online. 
 

Control variable is cu T= . The state vector is 
augmented with parameter q: 

1 2[ ] [ ]T T
Ax x x q C T q= =  

Output vector is 
1 2[ ] [ ]T T

Ay y y C T= =  
Discretize the continuous state model with Euler 
method, and consider the effects of system noise and 
measurement noise. The CSTR model is described 
as: 

( 1) ( ) ( ( ), ( )) ( )x k x k dt g x k u k w k+ = + × +  
where 
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1 2,( ) ( , , ) , ( ) ( , )T T
A k k kx k C T q w k w w wθ= =  

[ ]1 2( ) ( ) ( ) ( )Ty k x k x k v k= +  
 
Variance matrices for system noise w(k) and 
observation noise v(k) is Q and R, respectively: 

2
2

2
2

2

0.005 0 0
0.005 0

0 0.5 0 ,
0 0.5

0 0
Q R

λ

⎡ ⎤
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The CSTR initial states are: 
1(0) 0.2 /x mol L= , 2 (0) 400x K= , 3 (0) 100 / minx L=  

 
In order to initialize the variance-adaptive particle 
filter algorithm, we suppose the state vector initial 
distribution to be Gaussian with mean and variance 

0.15
(0) 420

100
x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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2

2

2
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0 0.5 0
0 0 0.6

Q
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⎢ ⎥⎣ ⎦

. 

 
The control objective of the system is to track the 
reactant concentration with setpoint x1(k)=0.2. 

Control method for this CSTR model is numerical 
PID control based on state feedback. Control 
algorithm is: 

0 1 2( ) ( 1) ( ) ( 1) ( 2)u k u k A k A k A kε ε ε= − + − − + −  

1 1̂( ) ( ) ( | )dk x k x k kε = − , 0 (1 )d
p

I

TdtA K
T dt

= + +  

1 (1 2 )d
p

T
A K

dt
= + , 2

d
p

T
A K

dt
=  

where 
100 /pK K L mol= i , 0.4 miniT = , 
0.1mindT = , (0) 419u K= . 

 
The inflow velocity q is time-varying as 

100, k<50
100+0.3 (k-50), 50 k<130

( ) 125, 130 k<150
125-12.5 (k-149), 150 k<152
100, k>152

q k

                         ⎧
⎪ ×      ≤⎪⎪=                          ≤⎨
⎪ ×   ≤⎪

                         ⎪⎩

 

 
First, we use standard SIR particle filter algorithm to 
estimate the state and parameter q. In this case, the 
parameter noise variance is set to 20.6 . The result is 
shown in Fig. 1. It is clear that the SIR particle filter 
is able to track the slow-change of the parameter q, 
but is unable to track the abrupt change. After about 
50 steps from the abrupt parameter change, the 
estimation of q is close to the true value. 

 
Fig. 1 State and parameter estimation using SIR 

algorithm 
 
In order to achieve better tracking ability, we increase 
the parameter noise variance, which is set to 210 .  

 
Fig. 2 State and parameter estimation using SIR 

algorithm with large parameter noise variance 



 

 

The result is shown in Fig. 2. Although tracking 
ability is enhanced, the estimation accuracy is 
seriously damaged. The parameter estimation bias 
fluctuates notably, causing poor estimation accuracy. 
 
The variance-adaptive particle filters adjust the 
parameter noise variance adaptively. Therefore, it is 
able to achieve both fast tracking ability and high 
estimation accuracy. Fig. 3 shows the estimation 
result using the variance-adaptive particle filter in 
CSTR. 
 

 
Fig. 3 State and parameter estimation using VAPF 
 
As Fig. 3 shows, the VAPF is able to track both slow 
and abrupt parameter change. At the same time, it 
provides the estimation with high accuracy. 
 
 

5 CONCLUSIONS 
 

In this paper, we have proposed a variance-adaptive 
particle filter algorithm to estimate the unknown 
time-varying parameters. The VAPF is able to track 
both slow-change and abrupt-change parameters. It is 
an improvement on the standard particle filter. 
 
The simulation results demonstrate that the variance 
adaptive particle filter has better performance than 
that of the standard particle filter in both tracking 
ability and estimation accuracy. Therefore this 
method will have many potential applications. In this 
paper, we only consider the case that the parameter is 
one dimensional. How to solve the optimization 
problem efficiently in multidimensional case still 
requires further research. 
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APPENDIX 
 

A. Proof of Lemma 2: 
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Left multiplying equation (A.1) by iA�  and right 
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B. Proof of Theorem 1: 
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