

A RECURSIVE METHOD FOR MINIMAL SIPHON ENUMERATION IN PETRI NETS

Arianna Benigno†, Roberto Cordone‡, Luca Ferrarini† and Luigi Piroddi†

† Dip. di Elettronica e Informazione, Politecnico di Milano,
P.za L. Da Vinci, 32, 20133, Milano, Italy

‡ Dip. di Tecnologie dell’Informazione, Università degli Studi di Milano,
Polo Didattico e di Ricerca di Crema, Via Bramante, 65, 26013, Crema, Italy

Abstract: The enumeration of minimal siphons in ordinary Petri nets is fundamental in
the assessment of behavioral properties and a crucial step in the development of deadlock
prevention algorithms. A novel recursive algorithm is proposed in the paper for this
purpose, based on theoretical results that extend well known properties described in the
literature. The algorithm uses already found solutions to progressively decompose the
search problem into smaller sub-problems. This recursive decomposition approach is
combined with the LTUR procedure, which efficiently computes a siphon, based on a
logical clause description approach. A prototypical version of the search algorithm has
been developed and an experiment has been carried out on a large set of random test
instances to evaluate the efficiency of the method. Copyright © 2005 IFAC

Keywords: Petri-nets, Deadlock, Search methods, Recursive algorithms,
Computational methods.

1. INTRODUCTION

In Petri net (PN) modeling of discrete production
systems (FMS, batch processes, communication sys-
tems, etc.), the assessment of behavioral properties,
such as reachability, reversibility and liveness is cru-
cial for their correct characterization. Siphons (Mu-
rata, 1989) are structures intimately related to these
properties (Jeng, and Peng, 1997), and their compu-
tation is important in PN analysis. In addition, dead-
lock prevention algorithms are typically based on si-
phon control policies (Moody, and Antsaklis, 1998).

Briefly, a siphon is a set of places whose input transi-
tions are also output transitions: this implies that,
once a siphon becomes empty of tokens, it will per-
manently remain empty. Siphons can be characteri-
zed with many different approaches, e.g. inequalities
(Murata, 1989), logic equations (Kinuyama, and
Murata, 1986; Minoux, and Barkaoui, 1990), alge-
braic approaches (Lautenbach, 1987), linear equa-
tions with slack variables (Cordone, et al., 2002;
Ezpeleta, and Couvreur, 1991), structural properties

(Barkaoui, and Minoux, 1992; Boer, and Murata,
1994; Jeng, and Peng, 1996). Besides, the problem of
finding all minimal siphons requires an efficient
search algorithm to deal with the exponential growth
of the search space with the size of the PN. For
example, in (Jeng, and Peng, 1997) a constructive
algorithm is proposed based on a depth-first search of
different combinations of places. This algorithm
builds a branching tree in which the single paths from
the root to each leaf correspond to the subsequent
addition of places to a sub-set which is candidate to
be a siphon.

In the present work, an innovative algorithm based
on a completely different branching approach is
proposed. The algorithm exploits the following facts:
1. A generic siphon of a PN can be rapidly obtained

by means of the LTUR procedure (Minoux,
1988), which exploits the Horn logical clauses
(Horn, 1956) in the problem formulation.

2. A minimal siphon contained in a non minimal
siphon can be found by applying the LTUR pro-

cedure to a suitably generated set of smaller sub-
problems. These are obtained from the original
search problem, by means of a decomposition
technique, which imposes simple constraints on
the solutions, such as including or removing
some specific places. These constraints can be
described in terms of Horn clauses as well.

3. When a minimal siphon is obtained, the original
search problem can be further decomposed in
sub-problems, that globally exclude the given si-
phon, as well as other siphons strictly containing
it, from the search space.

All the minimal siphons of the net can be determined
by repeatedly applying the decomposition procedure.

Notice that place constraints have also been used in
other related papers (Yamauchi, et al., 1998; Yamau-
chi, and Watanabe, 1999), but with a different per-
spective, i.e. the search for siphons which are mini-
mal and also contain a given set of places. Here, a
generic sub-problem aims at the extraction of siphons
which are minimal with respect to the set of all
siphons containing a given set of places. In the for-
mer case, place constraints are a part of the problem,
whereas in the proposed approach they are generated
on purpose, to reduce the search effort.

2. PETRI NETS AND SIPHONS

2.1 Basic notions on Petri nets

A PN is a bipartite graph, where nodes are classified
either as places or transitions, and directed arcs
connect nodes of different type. More formally, a PN
structure is defined as a triplet (P, T, F), where P is a
set of n places and T is a set of m transitions.
F ⊆ P×T ∪ T×P represents the flux relation, i.e. the
relation between places and transitions. Alternatively,
the flux relation can be given in the form of matrices,
namely the input (I), output (O) and incidence
(C = O−I) matrices. The generic element ikj of the
Im×n matrix represents the weight of the arc from
place pk to transition tj (0 or 1 for ordinary PNs).
Correspondingly, the generic element okj of matrix
Om×n represents the weight of the arc from transition
tj to place pk. A marking M: P → N = {0, 1, 2, ...}
defines the distribution of tokens in places. M0: P →
N is the initial marking. A transition tj∈T is said to be
enabled in a marking M if M ≥ Ij, where Ij is the j-th
column of input matrix I. An enabled transition may
fire, yielding the marking M* = M + Oj − Ij = M + Cj,
where Oj, Ij and Cj are the j-th columns of the O, I
and C matrices, respectively.

2.2 Siphons

Let S be a set of places in a PN. Then, its pre-set •S =
{tj∈T | okj≠0, with pk∈S}, is the set of input transi-
tions for the places in S, while its post-set, S• =
{tj∈T | ikj≠0, with pk∈S}, is the set of output

transitions for the places in S. A siphon is a set S of
places such that •S ⊆ S•.

The number of siphons of a PN grows exponentially
with size (Boer, and Murata, 1994). However, only
the minimal siphons or the basis siphons are general-
ly of interest. A siphon is said to be a basis siphon if
it cannot be obtained by the union of other siphons.
All siphons in a net can be generated operating the
union of some suitable basis siphons. A siphon is
said to be a minimal siphon if it does not contain any
other siphon. A minimal siphon is also a basis si-
phon, but not all basis siphons are minimal. We also
introduce the notion of subset-minimal siphon, that is
a siphon including all places in a sub-set Pin of the set
of places P, and not strictly containing any other such
siphon. In particular, a place-minimal siphon with
respect to a place p is a subset-minimal siphon with
respect to a sub-set Pin = {p}. A siphon is a basis
siphon if and only if it is place-minimal with respect
to some place (Boer, and Murata, 1994).

3. SEARCHING FOR MINIMAL SIPHONS

The proposed algorithm basically operates as fol-
lows: when a minimal siphon is found, several mul-
tiple sub-problems are generated which have all the
other minimal siphons as solutions. The procedure is
recursively applied to each sub-problem, generating
new minimal siphons. These sub-problems are
obtained by introducing specific place constraints on
the original net: a place may be required to belong to
the computed siphons or, conversely, not to belong to
them. Both types of place constraints determine a
simplification of the search problem, as showed in
the following definitions and theoretical results.

Let Pout ⊂ P and limit the search to the siphons which
do not contain any place in Pout, i.e. the siphons
contained in P

~
 = P−Pout. In such a constrained siphon

search problem, all the places not in P
~

 (and the arcs
connected with them) can be discarded from the net,
thus greatly simplifying the problem.

Definition 1 — Let G = (P, T, F) be a PN and P

~
 ⊂P.

The reduction function red is defined as follows: G
~

 =
red(G, P

~
), where the reduced net G

~
 = (P

~
, T

~
, F

~
) is

defined by

i. T
~

 = {t∈T | (•t ∪ t•) ∩ P
~

 ≠ ∅},

ii. F
~

(p,t) = F(p,t), F
~

(t,p) = F(t,p), ∀p∈P
~

, ∀t∈T
~

.

Lemma 1 — Let G = (P, T, F) be a PN and P
~

 ⊂ P.
The set of siphons of G contained in P

~
 coincides with

the set of siphons of the reduced net G
~

 = red(G,P
~

).

Proof. Consider a set of places S ⊆ P
~

 in G and let S
~

be the corresponding set of places in G

~
. Now, •S =

•S
~

 and S• = S
~

•, since all the transitions connected to
places in P

~
 are preserved by the red operator in net

G
~

, as well as the corresponding arcs.

On the other hand, a siphon search problem may be
stated, in which only the siphons containing specific
places (Pin) of the net are sought. This problem may
be further simplified, by restricting the search space
as explained in the following lemma.

Lemma 2 — Let G = (P, T, F) be a PN and Pin ⊂ P,
Pin ≠ ∅. Assume that there exists a place p∈P−Pin
and a transition t∈T such that •Pin−Pin• ⊇ {t} and
•t = {p}. Then, all the siphons of G containing Pin
contain p as well.

Proof. The hypothesis implies that t∈•Pin and t∉Pin•.
Therefore, •Pin ⊆/ Pin• and any siphon containing Pin
must contain at least another place with t in its post-
set. This property holds only for place p and the
thesis follows.

Given a siphon S of a PN G, all the siphons of G not
containing S can be found by exploration of suitable
sub-nets of G, each of which is obtained by removing
one of the places of S. In each sub-net only siphons
containing a specific sub-set of S must be sought.
The decomposition introduced in the following Lem-
ma increases the number of nets to be explored, but
the individual net size is decreased, turning a com-
plicated problem into several simpler sub-problems.

Lemma 3 — Let G = (P, T, F) be a PN and P

~
 = {p1,

p2, ..., pn} ⊂ P. The set of siphons of G not contai-
ning P

~
 is equal to Σ1∪…∪Σn, where Σi is the set of

siphons of the reduced net G
~

i = red(G, P−{pi}),
i = 1, ..., n, containing {p1, p2, ..., pi−1}.
Proof. The set of siphons of G not containing P

~
 can

be divided as Σ1∪…∪Σn, where Σi is the set of
siphons of G, containing {p1, p2, ..., pi−1} and not pi.
By Lemma 1, the generic Σi can be computed as the
set of siphons of the reduced net G

~
i = red(G, P−{pi}),

containing {p1, p2, ..., pi−1}.

Notice that, when looking for all subset-minimal
siphons with respect to a sub-set Pin, the subset Σi for
which pi belongs to Pin is trivially empty, and can be
neglected.

4. A MINIMAL SIPHON ENUMERATION
ALGORITHM

Consider the problem of finding all minimal siphons
of a PN G = (P, T, F). The general structure of an
algorithm which computes the collection Σ of all
such siphons can be summarized as follows:

Step 0) G
~

 = G, Pin
Step 1) Search G

~
 for a generic siphon S, such that

S ⊇ P

 = ∅, Σ = ∅.

in. If none exists, stop.

Step 2) Find a siphon S’, such that Pin ⊆ S’ ⊆ S and
S’ is minimal with respect to all siphons
containing Pin. Add S’ to Σ.

Step 3) All other solutions must not include S.
Apply Lemma 3 to find them, that is define
a suitable number of sub-nets G

~
i of G

~
 and

the corresponding place constraints Pin,i. For
each couple (G

~
i, Pin,i) let G

~
 = G

~
i, Pin = Pin,i

and goto Step 1.

This structure results into a recursive algorithm. A
call to the procedure either returns a siphon which is
minimal with respect to the current place constraints
Pin or terminates at Step 1. When the algorithm ends,
the collection Σ contains all the requested minimal
siphons. The solution set may also include some non-
minimal siphons, since subset-minimal siphons are
not necessarily minimal. Actually, the decomposition
technique ensures that all siphons strictly containing
any of the already obtained solutions will be
excluded from the search space, but it may allow for
even smaller solutions to be found in the search
process. Two simple strategies can be applied to rule
out non minimal siphons: either the FindMinimal-
Siphon function (see below) is used on each obtained
solution (setting Pin = ∅), so that the existence of
smaller siphons can be ascertained, or all the
solutions are collected and screened a posteriori.

4.1 Searching for a generic siphon

The implementation of Step 1 exploits the relation
between siphons and predicative logic, which is well
known in the literature (Murata, 1989). All the
siphons of a PN G = (P, T, F) must verify a set of
logical conditions obtained with the following
rationale. Suppose that S ⊆ P is a siphon and pi∈S.
Then, S∩•tik ≠ ∅, ∀tik∈T∩•pi. This amounts to the
following set of implications:

IF pi∈S THEN (W1 AND ... AND WMi), i = 1, .., n,

where Wk = ((pk1∈S) OR ... OR (pkNk∈S)), •tik = {pk1,
pk2, ..., pkNk}, k = 1, ..., Mi, •pi = {ti1, ti2, ..., tiMi}. By
associating a Boolean variable xi to each place pi, the
preceding set of relations can be transformed in a set

of ∑
i=1

n
 Mi logical clauses such that siphons correspond

one-by-one to the truth assignments xi which satisfy
them:

x̄i ∨ ((x11)∨(x12)∨...∨(x1N1)) = 1,
x̄i ∨ ((x21)∨(x22)∨...∨(x2N2)) = 1, ...,
x̄i ∨ ((xMi1)∨(xMi2)∨...∨(xMiNMi)) = 1, i = 1, ..., n.

Notice that the number of logical clauses actually
coincides with the number of arcs connecting transi-
tions to places, i.e. the number of non-zero elements
in the output matrix O. On the other hand, the num-
ber Nk of affirmed literals in each clause is equal to
the number of arcs connecting places to the transition
tik originating the clause, i.e. the number of non-zero

elements in the corresponding column of the input
matrix I. Observe that, if both Oij = 1 and Iij = 1 for
some i and j (self-loop), the resulting clause for arc
(i, j) has the same variable both affirmed and
negated. This makes the clause trivially satisfied.
Therefore, such clauses are immediately discarded.

At most one variable in each clause is negated: such
clauses are denoted Horn clauses and are well known
in the literature (Horn, 1956): efficient algorithms
exist for finding solutions to sets of Horn clauses in
linear time (Minoux, 1988). In this view, it is impor-
tant to notice that the introduction of reduced sub-
nets and place constraints modifies the set of clauses
defined above, but preserves their Horn structure:

when considering a sub-net some place variables
are set to 0; these can be eliminated from all the
clauses in which they appear as affirmed literals
(x∨0 = x); in addition, all the clauses where the
variable set to 0 is the negated one are trivially
verified and can be eliminated (1∨x = 1);

•

• if a specific place pi belongs to Pin, the corre-
sponding variable xi must be set to 1; all the
clauses containing xi are trivially verified and
can be eliminated, whereas literal x̄i can be
removed from all clauses in which it appears.

The solution of the resulting (and possibly reduced)
set of Horn clauses is simple. If any of the clauses
has a single literal, its value is fixed and is simplified
from the other clauses. When all unitary clauses have
been eliminated and no further reduction is possible,
a trivial solution is obtained by setting all the
remaining variables to 1. A solution always exists
unless the simplification process results in inconsi-
stencies of the type 0 = 1, in which case no siphon
with the requested characteristics exists. An algori-
thm to solve the set of Horn clauses can be imple-
mented by means of the following data structures:
• X is the set of all variables (X = {xi: pi∈P});
• C = {c1, ..., cNC} is the set of all clauses;
• each clause cj∈C is a set of literals, i.e. affirmed

(xi) or negated variables (x̄i);
• F is the set of all literals fixed to 1 (F = {xi:

pi∈Pin} ∪ {x̄i: pi∈Pout}).
Obviously, F may not contain complementary lite-
rals. The procedure returns a siphon S or an empty set
if none exists. In the first case, the set F may also be
enlarged. The function FindSiphon, here listed in a
pseudo-code version, implements such an algorithm.
The sub-procedure fix is used to constrain the value
of a specific literal.

FUNCTION (S,F) = FindSiphon(C,F)
FOR ALL l IN F, C = fix(C,l), END
IF ∃ cj : |cj| = 0, S = ∅, RETURN, END
WHILE ∃ cj : |cj| = 1
 l = extract(cj), C = fix(C,l)
 IF ∃ cj : |cj| = 0, S = ∅, RETURN, END
 F = F ∪ {l}
END

S = P
FOR ALL xi IN X, IF x̄i∈F, S = S − {pi}, END, END

FUNCTION C = fix(C,l)
FOR ALL cj IN C
 IF l∈cj, C = C−{cj}, END
 IF l̄∈cj, cj = cj−{ l̄}, END
END

4.2 Searching for a minimal siphon

A minimal siphon can be easily drawn from a generic
one S. First remove from the net all places not in S: S
is still a siphon for the remaining net, by Lemma 1.
Then, remove a place belonging to S, and verify
whether the net still includes any siphon. If it does,
this has at least one place less than S, but it could
even have several places less. Then, a second place is
removed, and so on, as far as possible. If a place
cannot be removed, the procedure applies to the
following ones. The current siphon is minimal when
all remaining places cannot be removed. Mandatory
places are not tested for removal. The following
pseudo-code describes the procedure:

FUNCTION S’ = FindMinimalSiphon(C,F,S)
F = F ∪ {x̄i | xi∈X, pi∉S}
WHILE {xi | pi∈S, xi∉F} ≠ ∅

 xi = extract({xi | pi∈S, xi∉F}), F
~

 = F ∪ {x̄i}

 (S
~

,F
~

) = FindSiphon(C,F
~

)

 IF S
~

 = ∅, F = F ∪ {xi} ELSE F = F
~

, S = S
~

, END
END
S’ = S

4.3 Sub-problem generation

Each time a minimal siphon S is found, it is excluded
from further search together with all siphons
containing it. This is obtained, thanks to Lemma 3,
by building a branching tree of sub-problems with
suitable place constraints. In the first sub-problem,
the first free variable in S is fixed to 0. In the second
one, the first free variable is set to 1 and the second
to 0, and so on. In other words, as many sub-
problems are generated as the free places in S, always
fixing one place to 0 and the previous ones to 1. The
algorithm explores the branching tree with a depth-
first strategy. Procedures FindSiphon and FindMini-
malSiphon analyse the current sub-problem to verify
whether it contains a siphon and reduce it to a
minimal siphon. Whenever the current sub-problem
contains no siphons, the algorithm is applied to the
following sub-problem on the same tree level. If
there are no more sub-problems on the same level,
the algorithm back-tracks to the upper level. The
number of levels cannot exceed the number of places
in the net, since at each level at least one variable is
fixed. The search stops when all of the sub-problems
have been solved, that is all minimal siphons have
been determined (Lemma 3).

FUNCTION Σ = FindAllMinimalSiphons(C,F)
Σ = ∅
(S,F) = FindSiphon(C,F)
IF S ≠ ∅
 S’ = FindMinimalSiphon(C,F,S), Σ = Σ ∪ {S’}
 H = {xi | pi∈S’, xi∉F}
 WHILE H ≠ ∅
 xi = extract(H), H = H−{xi}, F = F ∪ {x̄i}
 Σ = Σ ∪ FindAllMinimalSiphons(C,F)
 F = (F−{x̄i}) ∪ {xi}
 END
END

Initially, function FindAllMinimalSiphons is called
with no place constraints (F = ∅).

4.4 An illustrative example

To clarify the behavior of the proposed algorithm,
consider the simple PN in Fig. 1, which has the two
minimal siphons S1 = {p1, p2, p3} and S2 = {p1, p3,
p4}. The set of logical clauses C = {c1, c2, c3, c4, c5}
is readily derived as follows: c1 = {x̄1, x2, x4}, c2 =
{x̄1, x3, x4}, c3 = {x̄2, x1}, c4 = {x̄3, x1}, c5 = {x̄4, x3}.

t1 t2

t3

t4

p1 p2

p3 p4

Fig. 1. The PN Example

Initially, F = ∅ and there are no unitary clauses.
Therefore, function FindSiphon trivially finds a
siphon S = {p1, p2, p3, p4}. Function FindMinimal-
Siphon computes {xi | pi∈S, xi∉F} = {x1, x2, x3, x4}
and operates the following steps:
1) F

~
 = {x̄1}; function FindSiphon simplifies the

literals x̄1, x̄2, x̄3, x̄4 in this order from C; at the
end of the process F

~
 = {x̄1, x̄2, x̄3, x̄4} and no

phon is obtained (S
~

 = ∅); finally, F = {xsi
2) F

~
 = {x

1}.
1, x̄2}; literals x1, x̄2, x4, x3 are simplified,

resulting in F
~

 = {x1, x̄2, x3, x4}; a siphon S
~

 = {p1,
p3, p4} is found and F and S are reset to F

~
 and S

~
,

respectively.
3) Since {xi | pi∈S, xi∉F} = ∅ the computed siphon

is minimal and the execution of function
FindMinimalSiphon ends.

Now S’ = {p1, p3, p4} is added to the solution set Σ
and 3 sub-problems are generated. H = {x1, x3, x4}
and function FindAllMinimalSiphons is called with
F = {x̄1}, F = {x1, x̄3} and F = {x1, x3, x̄4}, respective-
ly. A siphon (S = {p1, p2, p3}) is found only with the
third set of constraints. Since for this case function

FindSiphon yields F = {x1, x2, x3, x̄4}, the siphon can-
not be further reduced and it is added to Σ. No further
branching is performed and the algorithm ends. The
algorithm evolution is summarized in Figure 2.

F = {x1, x̄3}
S’ = ∅

F = {x̄1}
S’ = ∅

F = {x1, x3, x̄4}
S’ = {p1, p2, p3}

F = ∅
S’ = {p1, p3, p4}

Fig. 2. Evolution of the FindAllMinimalSiphons

function for the example

4. EXPERIMENTAL RESULTS

The algorithm described in Section 4 has been coded
in C and tested on a 2.4 GHz Pentium computer. The
test set consists of 270 randomly generated instances
of PNs, with variable size and topology. In detail, six
size classes have been considered, with n = m = 5,
10, 15, 20, 25, 30, respectively. Each size class inclu-
des 9 sub-classes, whose connectivity has been deter-
mined by setting the density of input (di) and output
(do) arcs to 0.25, 0.50, 0.75 in all possible combina-
tions. Each sub-class consists of five instances.

The CPU time required to enumerate all the minimal
siphons, averaged over the PN instances, is given in
Table 1, together with the average number of mini-
mal siphons for each class size. The results of two
other algorithms, i.e. a MIP-based approach (Cordo-
ne, et al., 2002) and an exhaustive method, are also
reported there for comparison purposes. The former
is implemented in C and employs a commercial MIP
solver, whereas the latter is realized with a MATLAB
routine. The results are not reported when the
average computation time exceeds 30 minutes.

Table 1 Total CPU time required for the minimal
siphon enumeration

Total CPU time (s) PN

size
number
of min.
siphons

proposed
algorithm

MIP
approach

constructive
algorithm

5 2.53 0.01 0.02 0.01
10 10.98 0.01 0.14 0.89
15 60.04 0.02 2.73 300.85
20 302.44 0.16 151.73 -
25 1591.33 4.91 - -
30 8544.67 266.79 - -

Notice that the increase in computational time with
respect to PN size depends on several factors:
1. the number of minimal siphons increases

exponentially,
2. the total number of nodes generated and exami-

ned increases even more rapidly,
3. the computational time to examine a single node

increases polinomially with size.

Table 2 reports the average number of nodes
generated by the algorithm, classified according to
the results of the siphon enumeration procedure:
1. minimal siphon nodes – nodes corresponding to

actual minimal siphons,
2. redundant nodes – nodes which result in locally

minimal siphons (i.e. siphons which are minimal
with respect to the place constraints, but not
with respect to the original PN),

3. empty nodes – nodes corresponding to siphon
computation problems with no admissible result.

Processing of empty nodes is fast, since the function
FindMinimalSiphon is not executed. On the other
hand, the reduction of redundant nodes could signifi-
cantly improve the algorithm speed.

Table 2 Nodes examined by the branching procedure

PN
size

min. siphon
nodes

redundant
nodes

empty
nodes

total
nodes

5 2.53 0.02 1.27 3.82
10 10.98 1.53 9.13 21.64
15 60.04 20.20 59.09 139.33
20 302.44 186.73 413.87 903.04
25 1591.33 1679.51 2992.09 6262.93
30 8544.67 15373.13 25052.29 48970.09

5. CONCLUSIONS

In the paper, the problem of the enumeration of all
minimal siphons in a ordinary PN has been addres-
sed. Some theoretical results have been developed
which lay out the basis for a decomposition techni-
que of the search problem. The sub-problems genera-
ted are progressively more constrained, and globally
reduce the solution space to the set of minimal si-
phons of the PN. This results in an efficient recursive
search algorithm which has been shown to perform
well compared to other known approaches.

Future work will include the development of a full
software package for the analysis of large-size PNs.
A computational comparison with other siphon enu-
meration algorithms among the many different ones
available in the literature will be also considered.

REFERENCES

Barkaoui, K. and M. Minoux (1992). A Polynomial-

Time Graph Algorithm to Decide Liveness of
Some Basic Classes of Bounded Petri Nets.
Application and Theory of Petri Nets, pp. 62-75.

Boer, E.R. and T. Murata (1994). Generating basis

siphons and traps of Petri nets using the sign
incidence matrix. IEEE Trans. on Circuits and
Systems I: Fundamental Theory and Applica-
tions, 41 (4), pp. 266-271.

Cordone, R., L. Ferrarini and L. Piroddi (2002).
Characterization of Minimal and Basis Siphons
with Predicate Logic and Binary Programming.
IEEE Int. Conf. on Computer Aided Control
System Design, Glasgow, Scotland, pp. 193-198.

Ezpeleta, J. and J.M. Couvreur (1991). A new tech-
nique for finding a generating family of siphons,
traps and st-components. Application to colored
Petri nets. Proc. of 12th Conf. on Applications
and Theory of Petri Nets, pp. 126-147.

Jeng, M.D. and M.Y. Peng (1996). Generating
minimal siphons and traps for Petri nets. Proc. of
IEEE Int. Conf. on Systems, Man and Cyberne-
tics, Beijing, China, pp. 2996-2999.

Jeng, M.D. and M.Y. Peng (1997). Petri nets liveness
analysis by minimal siphons. Proc. of 6th Int.
Conf. on Emerging Technologies and Factory
Automation, UCLA, Los Angeles, pp. 315-320.

Horn, A. (1956). On Sentences which are True of
Direct Unions of Algebras. Journal of Symbolic
Logic, 16, pp. 14-21.

Kinuyama, M. and T. Murata (1986). Generating
siphons and traps by Petri net representation of
logic equations. Proc. of 2th IECE Conf. on Net
Theory, pp. 93-100.

Lautenbach, K. (1987). Linear algebraic calculation
of deadlocks and traps. In: Concurrency and
Nets – Advances in Petri Nets (Voss, Genrich
and Rozenberg., Eds.), pp. 315-336, Springer-
Verlag, New York.

Minoux, M. (1988). LTUR: A Simplified Linear-
Time Unit Resolution Algorithm for Horn
Formulae and Computer Implementation.
Information Processing Letters, 29, pp. 1-12.

Minoux, M. and K. Barkaoui (1990). Deadlocks and
traps in Petri nets as Horn-satisfiability solutions
and some related polynomially solvable
problems. Discrete Applied Mathematics, 29, pp.
195-210.

Moody, J.O. and P.J. Antsaklis (1998). Supervisory
Control of Discrete Event Systems using Petri
Nets. Kluwer Academic Publishers, Norwell,
MA.

Murata, T. (1989). Petri nets: properties, analysis and
application”, Proc. of the IEEE, 77 (4), pp. 541-
580.

Yamauchi, M., S. Tanimoto and T. Watanabe (1998).
Extracting siphons containing a specified set of
places in a Petri net. IEEE Int. Conf. on Systems,
Man and Cybernetics, pp. 142-147.

Yamauchi, M. and T. Watanabe (1999). Algorithms
for extracting minimal siphons containing spe-
cified places in a general Petri net. IEICE Trans.
Fundamentals, E82-A (11), pp. 2566-2575.

