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Abstract: The enumeration of minimal siphons in ordinary Petri nets is fundamental in 
the assessment of behavioral properties and a crucial step in the development of deadlock 
prevention algorithms. A novel recursive algorithm is proposed in the paper for this 
purpose, based on theoretical results that extend well known properties described in the 
literature. The algorithm uses already found solutions to progressively decompose the 
search problem into smaller sub-problems. This recursive decomposition approach is 
combined with the LTUR procedure, which efficiently computes a siphon, based on a 
logical clause description approach. A prototypical version of the search algorithm has 
been developed and an experiment has been carried out on a large set of random test 
instances to evaluate the efficiency of the method.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
In Petri net (PN) modeling of discrete production 
systems (FMS, batch processes, communication sys-
tems, etc.), the assessment of behavioral properties, 
such as reachability, reversibility and liveness is cru-
cial for their correct characterization. Siphons (Mu-
rata, 1989) are structures intimately related to these 
properties (Jeng, and Peng, 1997), and their compu-
tation is important in PN analysis. In addition, dead-
lock prevention algorithms are typically based on si-
phon control policies (Moody, and Antsaklis, 1998). 
 
Briefly, a siphon is a set of places whose input transi-
tions are also output transitions: this implies that, 
once a siphon becomes empty of tokens, it will per-
manently remain empty. Siphons can be characteri-
zed with many different approaches, e.g. inequalities 
(Murata, 1989), logic equations (Kinuyama, and 
Murata, 1986; Minoux, and Barkaoui, 1990), alge-
braic approaches (Lautenbach, 1987), linear equa-
tions with slack variables (Cordone, et al., 2002; 
Ezpeleta, and Couvreur, 1991), structural properties 

(Barkaoui, and Minoux, 1992; Boer, and Murata, 
1994; Jeng, and Peng, 1996). Besides, the problem of 
finding all minimal siphons requires an efficient 
search algorithm to deal with the exponential growth 
of the search space with the size of the PN. For 
example, in (Jeng, and Peng, 1997) a constructive 
algorithm is proposed based on a depth-first search of 
different combinations of places. This algorithm 
builds a branching tree in which the single paths from 
the root to each leaf correspond to the subsequent 
addition of places to a sub-set which is candidate to 
be a siphon. 
 
In the present work, an innovative algorithm based 
on a completely different branching approach is 
proposed. The algorithm exploits the following facts: 
1. A generic siphon of a PN can be rapidly obtained 

by means of the LTUR procedure (Minoux, 
1988), which exploits the Horn logical clauses 
(Horn, 1956) in the problem formulation. 

2. A minimal siphon contained in a non minimal 
siphon can be found by applying the LTUR pro-



cedure to a suitably generated set of smaller sub-
problems. These are obtained from the original 
search problem, by means of a decomposition 
technique, which imposes simple constraints on 
the solutions, such as including or removing 
some specific places. These constraints can be 
described in terms of Horn clauses as well. 

3. When a minimal siphon is obtained, the original 
search problem can be further decomposed in 
sub-problems, that globally exclude the given si-
phon, as well as other siphons strictly containing 
it, from the search space. 

All the minimal siphons of the net can be determined 
by repeatedly applying the decomposition procedure. 
 
Notice that place constraints have also been used in 
other related papers (Yamauchi, et al., 1998; Yamau-
chi, and Watanabe, 1999), but with a different per-
spective, i.e. the search for siphons which are mini-
mal and also contain a given set of places. Here, a 
generic sub-problem aims at the extraction of siphons 
which are minimal with respect to the set of all 
siphons containing a given set of places. In the for-
mer case, place constraints are a part of the problem, 
whereas in the proposed approach they are generated 
on purpose, to reduce the search effort. 
 
 

2. PETRI NETS AND SIPHONS 
 
2.1 Basic notions on Petri nets 
 
A PN is a bipartite graph, where nodes are classified 
either as places or transitions, and directed arcs 
connect nodes of different type. More formally, a PN 
structure is defined as a triplet (P, T, F), where P is a 
set of n places and T is a set of m transitions. 
F ⊆ P×T ∪ T×P represents the flux relation, i.e. the 
relation between places and transitions. Alternatively, 
the flux relation can be given in the form of matrices, 
namely the input (I), output (O) and incidence 
(C = O−I) matrices. The generic element ikj of the 
Im×n matrix represents the weight of the arc from 
place pk to transition tj (0 or 1 for ordinary PNs). 
Correspondingly, the generic element okj of matrix 
Om×n represents the weight of the arc from transition 
tj to place pk. A marking M: P → N = {0, 1, 2, ...} 
defines the distribution of tokens in places. M0: P → 
N is the initial marking. A transition tj∈T is said to be 
enabled in a marking M if M ≥ Ij, where Ij is the j-th 
column of input matrix I. An enabled transition may 
fire, yielding the marking M* = M + Oj − Ij = M + Cj, 
where Oj, Ij and Cj are the j-th columns of the O, I 
and C matrices, respectively.  
 
2.2 Siphons 
 
Let S be a set of places in a PN. Then, its pre-set •S = 
{tj∈T | okj≠0, with pk∈S}, is the set of input transi-
tions for the places in S, while its post-set, S• = 
{tj∈T | ikj≠0, with pk∈S}, is the set of output 

transitions for the places in S. A siphon is a set S of 
places such that •S ⊆ S•. 

The number of siphons of a PN grows exponentially 
with size (Boer, and Murata, 1994). However, only 
the minimal siphons or the basis siphons are general-
ly of interest. A siphon is said to be a basis siphon if 
it cannot be obtained by the union of other siphons. 
All siphons in a net can be generated operating the 
union of some suitable basis siphons. A siphon is 
said to be a minimal siphon if it does not contain any 
other siphon. A minimal siphon is also a basis si-
phon, but not all basis siphons are minimal. We also 
introduce the notion of subset-minimal siphon, that is 
a siphon including all places in a sub-set Pin of the set 
of places P, and not strictly containing any other such 
siphon. In particular, a place-minimal siphon with 
respect to a place p is a subset-minimal siphon with 
respect to a sub-set Pin = {p}. A siphon is a basis 
siphon if and only if it is place-minimal with respect 
to some place (Boer, and Murata, 1994). 
 
 

3. SEARCHING FOR MINIMAL SIPHONS 
 
The proposed algorithm basically operates as fol-
lows: when a minimal siphon is found, several mul-
tiple sub-problems are generated which have all the 
other minimal siphons as solutions. The procedure is 
recursively applied to each sub-problem, generating 
new minimal siphons. These sub-problems are 
obtained by introducing specific place constraints on 
the original net: a place may be required to belong to 
the computed siphons or, conversely, not to belong to 
them. Both types of place constraints determine a 
simplification of the search problem, as showed in 
the following definitions and theoretical results. 
 
Let Pout ⊂ P and limit the search to the siphons which 
do not contain any place in Pout, i.e. the siphons 
contained in P

~
 = P−Pout. In such a constrained siphon 

search problem, all the places not in P
~

 (and the arcs 
connected with them) can be discarded from the net, 
thus greatly simplifying the problem. 
 
Definition 1 — Let G = (P, T, F) be a PN and P

~
 ⊂P. 

The reduction function red is defined as follows: G
~

 = 
red(G, P

~
), where the reduced net G

~
 = (P

~
, T

~
, F

~
) is 

defined by 

i. T
~

 = {t∈T | (•t ∪ t•) ∩ P
~

 ≠ ∅}, 

ii. F
~

(p,t) = F(p,t), F
~

(t,p) = F(t,p), ∀p∈P
~

, ∀t∈T
~

.  

Lemma 1 — Let G = (P, T, F) be a PN and P
~

 ⊂ P. 
The set of siphons of G contained in P

~
 coincides with 

the set of siphons of the reduced net G
~

 = red(G,P
~

).  

Proof. Consider a set of places S ⊆ P
~

 in G and let S
~

 
be the corresponding set of places in G

~
. Now, •S = 

•S
~

 and S• = S
~

•, since all the transitions connected to 
places in P

~
 are preserved by the red operator in net 

     



G
~

, as well as the corresponding arcs.  
 
On the other hand, a siphon search problem may be 
stated, in which only the siphons containing specific 
places (Pin) of the net are sought. This problem may 
be further simplified, by restricting the search space 
as explained in the following lemma. 
 
Lemma 2 — Let G = (P, T, F) be a PN and Pin ⊂ P, 
Pin ≠ ∅. Assume that there exists a place p∈P−Pin 
and a transition t∈T such that •Pin−Pin• ⊇ {t} and 
•t = {p}. Then, all the siphons of G containing Pin 
contain p as well.  

Proof. The hypothesis implies that t∈•Pin and t∉Pin•. 
Therefore, •Pin ⊆/  Pin• and any siphon containing Pin 
must contain at least another place with t in its post-
set. This property holds only for place p and the 
thesis follows.  
 
Given a siphon S of a PN G, all the siphons of G not 
containing S can be found by exploration of suitable 
sub-nets of G, each of which is obtained by removing 
one of the places of S. In each sub-net only siphons 
containing a specific sub-set of S must be sought. 
The decomposition introduced in the following Lem-
ma increases the number of nets to be explored, but 
the individual net size is decreased, turning a com-
plicated problem into several simpler sub-problems. 
 
Lemma 3 — Let G = (P, T, F) be a PN and P

~
 = {p1, 

p2, ..., pn} ⊂ P. The set of siphons of G not contai-
ning P

~
 is equal to Σ1∪…∪Σn, where Σi is the set of 

siphons of the reduced net G
~

i = red(G, P−{pi}), 
i = 1, ..., n, containing {p1, p2, ..., pi−1}.  
Proof. The set of siphons of G not containing P

~
 can 

be divided as Σ1∪…∪Σn, where Σi is the set of 
siphons of G, containing {p1, p2, ..., pi−1} and not pi. 
By Lemma 1, the generic Σi can be computed as the 
set of siphons of the reduced net G

~
i = red(G, P−{pi}), 

containing {p1, p2, ..., pi−1}.  
 
Notice that, when looking for all subset-minimal 
siphons with respect to a sub-set Pin, the subset Σi  for 
which pi belongs to Pin is trivially empty, and can be 
neglected. 

4. A MINIMAL SIPHON ENUMERATION 
ALGORITHM 

 
Consider the problem of finding all minimal siphons 
of a PN G = (P, T, F). The general structure of an 
algorithm which computes the collection Σ of all 
such siphons can be summarized as follows: 

Step 0) G
~

 = G, Pin
Step 1) Search G

~
 for a generic siphon S, such that 

S ⊇ P

 = ∅, Σ = ∅. 

in. If none exists, stop. 

Step 2) Find a siphon S’, such that Pin ⊆ S’ ⊆ S and 
S’ is minimal with respect to all siphons 
containing Pin. Add S’ to Σ. 

Step 3) All other solutions must not include S. 
Apply Lemma 3 to find them, that is define 
a suitable number of sub-nets G

~
i of G

~
 and 

the corresponding place constraints Pin,i. For 
each couple (G

~
i, Pin,i) let G

~
 = G

~
i, Pin = Pin,i 

and goto Step 1. 
 
This structure results into a recursive algorithm. A 
call to the procedure either returns a siphon which is 
minimal with respect to the current place constraints 
Pin or terminates at Step 1. When the algorithm ends, 
the collection Σ contains all the requested minimal 
siphons. The solution set may also include some non-
minimal siphons, since subset-minimal siphons are 
not necessarily minimal. Actually, the decomposition 
technique ensures that all siphons strictly containing 
any of the already obtained solutions will be 
excluded from the search space, but it may allow for 
even smaller solutions to be found in the search 
process. Two simple strategies can be applied to rule 
out non minimal siphons: either the FindMinimal-
Siphon function (see below) is used on each obtained 
solution (setting Pin = ∅), so that the existence of 
smaller siphons can be ascertained, or all the 
solutions are collected and screened a posteriori. 
 
4.1 Searching for a generic siphon 
 
The implementation of Step 1 exploits the relation 
between siphons and predicative logic, which is well 
known in the literature (Murata, 1989). All the 
siphons of a PN G = (P, T, F) must verify a set of 
logical conditions obtained with the following 
rationale. Suppose that S ⊆ P is a siphon and pi∈S. 
Then, S∩•tik ≠ ∅, ∀tik∈T∩•pi. This amounts to the 
following set of implications: 

IF pi∈S THEN (W1 AND ... AND WMi), i = 1, .., n, 

where Wk = ((pk1∈S) OR ... OR (pkNk∈S)), •tik = {pk1, 
pk2, ..., pkNk}, k = 1, ..., Mi, •pi = {ti1, ti2, ..., tiMi}. By 
associating a Boolean variable xi to each place pi, the 
preceding set of relations can be transformed in a set 

of ∑
i=1

n
 Mi logical clauses such that siphons correspond 

one-by-one to the truth assignments xi which satisfy 
them: 

x̄i ∨ ((x11)∨(x12)∨...∨(x1N1)) = 1,  
x̄i ∨ ((x21)∨(x22)∨...∨(x2N2)) = 1, ..., 
x̄i ∨ ((xMi1)∨(xMi2)∨...∨(xMiNMi)) = 1, i = 1, ..., n. 

Notice that the number of logical clauses actually 
coincides with the number of arcs connecting transi-
tions to places, i.e. the number of non-zero elements 
in the output matrix O. On the other hand, the num-
ber Nk of affirmed literals in each clause is equal to 
the number of arcs connecting places to the transition 
tik originating the clause, i.e. the number of non-zero 

     



elements in the corresponding column of the input 
matrix I. Observe that, if both Oij = 1 and Iij = 1 for 
some i and j (self-loop), the resulting clause for arc 
(i, j) has the same variable both affirmed and 
negated. This makes the clause trivially satisfied. 
Therefore, such clauses are immediately discarded. 
 
At most one variable in each clause is negated: such 
clauses are denoted Horn clauses and are well known 
in the literature (Horn, 1956): efficient algorithms 
exist for finding solutions to sets of Horn clauses in 
linear time (Minoux, 1988). In this view, it is impor-
tant to notice that the introduction of reduced sub-
nets and place constraints modifies the set of clauses 
defined above, but preserves their Horn structure: 

when considering a sub-net some place variables 
are set to 0; these can be eliminated from all the 
clauses in which they appear as affirmed literals 
(x∨0 = x); in addition, all the clauses where the 
variable set to 0 is the negated one are trivially 
verified and can be eliminated (1∨x = 1); 

• 

• if a specific place pi belongs to Pin, the corre-
sponding variable xi must be set to 1; all the 
clauses containing xi are trivially verified and 
can be eliminated, whereas literal x̄i can be 
removed from all clauses in which it appears. 

 
The solution of the resulting (and possibly reduced) 
set of Horn clauses is simple. If any of the clauses 
has a single literal, its value is fixed and is simplified 
from the other clauses. When all unitary clauses have 
been eliminated and no further reduction is possible, 
a trivial solution is obtained by setting all the 
remaining variables to 1. A solution always exists 
unless the simplification process results in inconsi-
stencies of the type 0 = 1, in which case no siphon 
with the requested characteristics exists. An algori-
thm to solve the set of Horn clauses can be imple-
mented by means of the following data structures: 
• X is the set of all variables (X = {xi: pi∈P}); 
• C = {c1, ..., cNC} is the set of all clauses; 
• each clause cj∈C is a set of literals, i.e. affirmed 

(xi) or negated variables (x̄i); 
• F is the set of all literals fixed to 1 (F = {xi: 

pi∈Pin} ∪ {x̄i: pi∈Pout}). 
Obviously, F may not contain complementary lite-
rals. The procedure returns a siphon S or an empty set 
if none exists. In the first case, the set F may also be 
enlarged. The function FindSiphon, here listed in a 
pseudo-code version, implements such an algorithm. 
The sub-procedure fix is used to constrain the value 
of a specific literal. 
 
FUNCTION (S,F) = FindSiphon(C,F) 
FOR ALL l IN F, C = fix(C,l), END 
IF ∃ cj : |cj| = 0, S = ∅, RETURN, END 
WHILE ∃ cj : |cj| = 1 
   l = extract(cj), C = fix(C,l) 
   IF ∃ cj : |cj| = 0, S = ∅, RETURN, END 
   F = F ∪ {l} 
END 

S = P 
FOR ALL xi IN X, IF x̄i∈F, S = S − {pi}, END, END 
 
FUNCTION C = fix(C,l) 
FOR ALL cj IN C 
   IF l∈cj, C = C−{cj}, END 
   IF l̄∈cj, cj = cj−{ l̄}, END 
END 
 
4.2 Searching for a minimal siphon 
 
A minimal siphon can be easily drawn from a generic 
one S. First remove from the net all places not in S: S 
is still a siphon for the remaining net, by Lemma 1. 
Then, remove a place belonging to S, and verify 
whether the net still includes any siphon. If it does, 
this has at least one place less than S, but it could 
even have several places less. Then, a second place is 
removed, and so on, as far as possible. If a place 
cannot be removed, the procedure applies to the 
following ones. The current siphon is minimal when 
all remaining places cannot be removed. Mandatory 
places are not tested for removal. The following 
pseudo-code describes the procedure: 
 
FUNCTION S’ = FindMinimalSiphon(C,F,S) 
F = F ∪ {x̄i | xi∈X, pi∉S} 
WHILE {xi | pi∈S, xi∉F} ≠ ∅ 

   xi = extract({xi | pi∈S, xi∉F}), F
~

 = F ∪ {x̄i} 

   (S
~

,F
~

) = FindSiphon(C,F
~

) 

   IF S
~

 = ∅, F = F ∪ {xi} ELSE F = F
~

, S = S
~

, END 
END 
S’ = S 
 
4.3 Sub-problem generation 

Each time a minimal siphon S is found, it is excluded 
from further search together with all siphons 
containing it. This is obtained, thanks to Lemma 3, 
by building a branching tree of sub-problems with 
suitable place constraints. In the first sub-problem, 
the first free variable in S is fixed to 0. In the second 
one, the first free variable is set to 1 and the second 
to 0, and so on. In other words, as many sub-
problems are generated as the free places in S, always 
fixing one place to 0 and the previous ones to 1. The 
algorithm explores the branching tree with a depth-
first strategy. Procedures FindSiphon and FindMini-
malSiphon analyse the current sub-problem to verify 
whether it contains a siphon and reduce it to a 
minimal siphon. Whenever the current sub-problem 
contains no siphons, the algorithm is applied to the 
following sub-problem on the same tree level. If 
there are no more sub-problems on the same level, 
the algorithm back-tracks to the upper level. The 
number of levels cannot exceed the number of places 
in the net, since at each level at least one variable is 
fixed. The search stops when all of the sub-problems 
have been solved, that is all minimal siphons have 
been determined (Lemma 3). 

     



FUNCTION Σ = FindAllMinimalSiphons(C,F) 
Σ = ∅ 
(S,F) = FindSiphon(C,F) 
IF S ≠ ∅ 
   S’ = FindMinimalSiphon(C,F,S), Σ = Σ ∪ {S’} 
   H = {xi | pi∈S’, xi∉F} 
   WHILE H ≠ ∅ 
       xi = extract(H), H = H−{xi}, F = F ∪ {x̄i} 
       Σ = Σ ∪ FindAllMinimalSiphons(C,F) 
       F = (F−{x̄i}) ∪ {xi} 
   END 
END 
 
Initially, function FindAllMinimalSiphons is called 
with no place constraints (F = ∅). 
 
4.4 An illustrative example 
 
To clarify the behavior of the proposed algorithm, 
consider the simple PN in Fig. 1, which has the two 
minimal siphons S1 = {p1, p2, p3} and S2 = {p1, p3, 
p4}. The set of logical clauses C = {c1, c2, c3, c4, c5} 
is readily derived as follows: c1 = {x̄1, x2, x4}, c2 = 
{x̄1, x3, x4}, c3 = {x̄2, x1}, c4 = {x̄3, x1}, c5 = {x̄4, x3}. 
 

t1 t2

t3

t4

p1 p2

p3 p4

 
 
Fig. 1. The PN Example 
 
Initially, F = ∅ and there are no unitary clauses. 
Therefore, function FindSiphon trivially finds a 
siphon S = {p1, p2, p3, p4}. Function FindMinimal-
Siphon computes {xi | pi∈S, xi∉F} = {x1, x2, x3, x4} 
and operates the following steps: 
1) F

~
 = {x̄1}; function FindSiphon simplifies the 

literals x̄1, x̄2, x̄3, x̄4 in this order from C; at the 
end of the process F

~
 = {x̄1, x̄2, x̄3, x̄4} and no 

phon is obtained (S
~

 = ∅); finally, F = {xsi
2) F

~
 = {x

1}. 
1, x̄2}; literals x1, x̄2, x4, x3 are simplified, 

resulting in F
~

 = {x1, x̄2, x3, x4}; a siphon S
~

 = {p1, 
p3, p4} is found and F and S are reset to F

~
 and S

~
, 

respectively. 
3) Since {xi | pi∈S, xi∉F} = ∅ the computed siphon 

is minimal and the execution of function 
FindMinimalSiphon ends. 

Now S’ = {p1, p3, p4} is added to the solution set Σ 
and 3 sub-problems are generated. H = {x1, x3, x4} 
and function FindAllMinimalSiphons is called with 
F = {x̄1}, F = {x1, x̄3} and F = {x1, x3, x̄4}, respective-
ly. A siphon (S = {p1, p2, p3}) is found only with the 
third set of constraints. Since for this case function 

FindSiphon yields F = {x1, x2, x3, x̄4}, the siphon can-
not be further reduced and it is added to Σ. No further 
branching is performed and the algorithm ends. The 
algorithm evolution is summarized in Figure 2. 
 

F = {x1, x̄3}
S’ = ∅

F = {x̄1}
S’ = ∅

F = {x1, x3, x̄4}
S’ = {p1, p2, p3}

F = ∅
S’ = {p1, p3, p4}

 
 
Fig. 2. Evolution of the FindAllMinimalSiphons 

function for the example 
 
 

4. EXPERIMENTAL RESULTS 
 
The algorithm described in Section 4 has been coded 
in C and tested on a 2.4 GHz Pentium computer. The 
test set consists of 270 randomly generated instances 
of PNs, with variable size and topology. In detail, six 
size classes have been considered, with n = m = 5, 
10, 15, 20, 25, 30, respectively. Each size class inclu-
des 9 sub-classes, whose connectivity has been deter-
mined by setting the density of input (di) and output 
(do) arcs to 0.25, 0.50, 0.75 in all possible combina-
tions. Each sub-class consists of five instances. 
 
The CPU time required to enumerate all the minimal 
siphons, averaged over the PN instances, is given in 
Table 1, together with the average number of mini-
mal siphons for each class size. The results of two 
other algorithms, i.e. a MIP-based approach (Cordo-
ne, et al., 2002) and an exhaustive method, are also 
reported there for comparison purposes. The former 
is implemented in C and employs a commercial MIP 
solver, whereas the latter is realized with a MATLAB 
routine. The results are not reported when the 
average computation time exceeds 30 minutes. 
 

Table 1 Total CPU time required for the minimal 
siphon enumeration 

 
Total CPU time (s) PN 

size
number 
of min. 
siphons

proposed 
algorithm

MIP 
approach 

constructive 
algorithm 

5 2.53 0.01 0.02 0.01
10 10.98 0.01 0.14 0.89
15 60.04 0.02 2.73 300.85
20 302.44 0.16 151.73 -
25 1591.33 4.91 - -
30 8544.67 266.79 - -

Notice that the increase in computational time with 
respect to PN size depends on several factors: 
1. the number of minimal siphons increases 

exponentially, 
2. the total number of nodes generated and exami-

ned increases even more rapidly, 
3. the computational time to examine a single node 

     



increases polinomially with size. 
 
Table 2 reports the average number of nodes 
generated by the algorithm, classified according to 
the results of the siphon enumeration procedure: 
1. minimal siphon nodes – nodes corresponding to 

actual minimal siphons, 
2. redundant nodes – nodes which result in locally 

minimal siphons (i.e. siphons which are minimal 
with respect to the place constraints, but not 
with respect to the original PN),  

3. empty nodes – nodes corresponding to siphon 
computation problems with no admissible result. 

 
Processing of empty nodes is fast, since the function 
FindMinimalSiphon is not executed. On the other 
hand, the reduction of redundant nodes could signifi-
cantly improve the algorithm speed. 
 
Table 2 Nodes examined by the branching procedure 
 

PN 
size 

min. siphon 
nodes 

redundant 
nodes 

empty 
nodes 

total 
nodes 

5 2.53 0.02 1.27 3.82
10 10.98 1.53 9.13 21.64
15 60.04 20.20 59.09 139.33
20 302.44 186.73 413.87 903.04
25 1591.33 1679.51 2992.09 6262.93
30 8544.67 15373.13 25052.29 48970.09

 
 

5. CONCLUSIONS 
 
In the paper, the problem of the enumeration of all 
minimal siphons in a ordinary PN has been addres-
sed. Some theoretical results have been developed 
which lay out the basis for a decomposition techni-
que of the search problem. The sub-problems genera-
ted are progressively more constrained, and globally 
reduce the solution space to the set of minimal si-
phons of the PN. This results in an efficient recursive 
search algorithm which has been shown to perform 
well compared to other known approaches. 
 
Future work will include the development of a full 
software package for the analysis of large-size PNs. 
A computational comparison with other siphon enu-
meration algorithms among the many different ones 
available in the literature will be also considered. 
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