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Abstract: This paper presents a methodology for identifying variable-structure models
of magneto-rheological dampers (MRDs) that are structurally simple, easy to estimate
and well suited for model-based control. Linear-in-the-parameters NARX models are
adopted, and an identification method is developed based on the minimisation of
the simulation error. Both the model structure and the parameters are selected by
the identification method, thus no a priori structural information is needed. Some
validation tests are reported. Copyright c©2005 IFAC
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1. INTRODUCTION

Semi-active control devices have proven effective
in a number of applications, see e.g. (Dupont and
Stokes, 1997): they do not transfer energy to the
controlled system, so they are as reliable as passive
devices, but can approach the performances of ac-
tive ones. In recent years, interesting technological
solutions have been proposed based on the use of
magneto-rheological (MR) fluids, see e.g. (Carlson
et al., 1995; Jolly et al., 1998). These fluids contain
micron-sized, magnetically polarisable particles,
which form chain-like structures when an exter-
nal field is applied, thus changing the damper’s
viscous behaviour. However, the use of such de-
vices for control is hindered by the fact that their
dynamics are inherently hysteretical and highly
nonlinear, so that modeling them in a way suit-
able for control is far from trivial. This work
presents a technique, based on NARX (Nonlinear
AutoRegressive with eXogenous inputs) models
(Leontaritis and Billings, 1985a; Leontaritis and
Billings, 1985b), to describe such devices in a way
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suited for model-based control. Models to be used
in that context must be not only accurate, but
also robust. In fact (contrary e.g. to the predictive
framework) they have to be reliable in simulation,
as most of the measurements required for predic-
tion (e.g., forces) are unavailable. They must be
simple, to improve robustness and simplify con-
trol computations. Also invertibility with respect
to the control variables is a desirable feature.
Notice that explaining complex dynamics with a
small parameter set not only requires structure
selection in the model identification, but makes
that capability the actual core of the identification
itself. The motivation of this research comes from
the fact that several modeling paradigms (briefly
reviewed later on) for MRDs do not appear to
enjoy these properties up to the necessary amount,
so that the models obtained are difficult to use for
control. It will be shown that with the proposed
technique, that has several advantages with ref-
erence to control-orientation, a comparable level
of accuracy can be achieved with respect to stan-
dard, widely accepted modeling approaches.



2. BRIEF REVIEW OF MRD MODELLING

The major modeling techniques proposed so far
for MRDs can be broadly divided in three groups.
First-principle models are written on the basis
of dynamic balance equations: examples are in
(Carlson et al., 1995; Kamath et al., 1996). Due to
the complexity of devices’ geometry and physics,
these models must contain some heuristics, typ-
ically in modeling the fluid flow. Thy can be
accurate and have parameters that can be inter-
preted physically, but they are complex, especially
if control-orientation is an issue, generally difficult
to invert and/or linearise, and also to identify,
as parameters appear in a highly nonlinear way.
Phenomenological mechanical models are
models in which mechanical blocks such as masses,
springs and dampers are assembled, based on the
qualitative interpretation of experimental data.
Several examples, like the Bingham and the Bouc-
Wen models, are in (Dyke et al., 1996; Spencer
Jr. et al., 1997). Such models do have a physi-
cal interpretation but cannot represent nonlinear
and hysteretical phenomena satisfactorily: for ex-
ample, the Bingham model does not reproduce
the preyield/postyield transition well enough. To
overcome these limitations, they are often com-
pleted by nonlinear blocks implemented as fixed-
structure dynamic systems, or the parameters of
the mechanical elements are made dependent on
the inputs, sometimes dynamically (Spencer Jr.
et al., 1997), but this hinders any model inter-
pretation seriously. Local physical models are
designed to catch one of the relevant operating
conditions. The overall model is then obtained by
combining the outputs of the single ones by means
of “shaping functions” chosen heuristically, see
e.g. (Kamath and Wereley, 1997). While parame-
ters of local models can be interpreted physically,
however, this is not true for the shaping functions.
In addition, it is not easy to state in which sense
an operating condition is the “combination” of
two or more others, because the transition from
an operating condition to another is normally due
to the internal dynamics of the device, which are
exactly what is neglected when employing a local
modeling approach. The quality of these models
is strongly dependent on the shaping functions,
that defy a physical interpretation. In all these ap-
proaches, a model structure is typically assumed
a priori and, after a parameter fitting process,
the resulting model is tested and validated. If it is
found to be inaccurate, the structure is modified,
based on more or less heuristic reasoning, and the
whole procedure is repeated. Besides not being op-
timal (in any sense), the model structures adopted
do not naturally fit in an identification framework,
and complex tuning techniques must be employed.

Also, models are not developed with a control-
oriented implementation in mind, and are not easy
to incorporate in known control frameworks.

3. THE PROPOSED APPROACH

The class of polynomial NARX models (Leontaritis
and Billings, 1985a; Leontaritis and Billings,
1985b) has many appealing features for nonlinear
black-box identification: they are a discrete time
straightforward counterpart of nonlinear differen-
tial equations; they can model purely linear sys-
tems as well as a large class of nonlinearities; they
are linear in the parameters, and the computer
implementation of them and of their identification
is straightforward. In the discrete time domain,
the general form of a polynomial NARX model
(Peyton-Jones and Billings, 1989) is

y(k) =

l∑

m=0

m∑

p=0

ny∑

n1=1

· · ·
nu∑

nm=1

cp,m−p (n1, . . . , nm)

p∏

i=1

y(k − ni)

m∏

i=p+1

u(k − ni)

(1)

where 0 ≤ m ≤ l is the degree of nonlinearity, l
is the maximum degree of nonlinearity, each m-th
order term is the product of a p-th order factor
in y and a (m − p)-th order factor in u and of a
coefficient cp,m−p (n1, . . . , nm) depending on the
delays of the y and u terms considered, ny and
nu being the maximum delays for the y and u
terms, respectively. In practice, identified models
tend to contain a limited subset of all the possible
regressors. In addition to (1), additional terms
may be included for coping with specific modeling
needs, as long as linearity in the parameters is pre-
served. This idea is exploited in this work, where
we consider a simple extension to the notation (1)
to account for multiple elementary regressors: if
multiple inputs u1, . . . , uNu appear in the model,
a suitable number of subscripts and arguments
is added to the c coefficients in analogy to the
notation defined in (1). For example if 2 inputs
are present, terms such as c2,1,1(1, 2, 1, 3)y(k −
1)y(k − 2)u1(k − 1)u2(k − 3) could appear. By
this modification, more complicated functions of
the input signals can be easily introduced, such
as non integer powers and other non polynomial
functions, while the resulting NARX model - in
the native input(s) and output - preserves linear-
ity in the parameters.

4. IDENTIFICATION AND VALIDATION

The identification of NARX models of the type
considered can be done with standard Least



Squares (LS), but once the model structure has
been selected. To overcome this limitation, various
algorithms have been proposed to estimate struc-
ture and parameters together, typically based on
orthogonalisation techniques and simple heuristic
procedures that provide a stop condition when no
further regressor improves the cost function: the
reader can refer to (Billings et al., 1989; Koren-
berg et al., 1987; Leontaritis and Billings, 1987;
Mao and Billings, 1997). To apply an LS based
technique, it is essential that the linear regression
paradigm is preserved; this requires that the 1-
step prediction error variance is minimised. Then,
the order in which parameters are included is rel-
evant for the model selection process (Korenberg
et al., 1987): to this end, a “forward-regression
orthogonal” variant has been developed (Billings
et al., 1989). What is actually maximised by
the most important algorithms, however, is not
the output variance explained by the model, but
rather the increment of explained variance pro-
vided by a new parameter; therefore, there is no
guarantee that the model obtained be optimal
in any sense. Recall that in this context should
be simulation models as accurate as possible are
desired, as in practice it is impossible to employ
a prediction model for control unless accurate
measurements of all the past input/output signals
involved exist. For example, a prediction model
of an MRD would be inappropriate since past
force values are not commonly available. For all
these reasons, we employ an identification algo-
rithm based on the minimisation of the simulation
error which extends that proposed in (Piroddi and
Spinelli, 2003). A search procedure is devised for
the exploration of incremental model structures,
aiming at the minimum simulation error vari-
ance is selected. The algorithm is stopped when
the introduction of a further regressor does not
significantly improve this figure of merit. Note
that this approach prevents unstable models from
being selected, as is often the case with methods
based exclusively on the prediction error variance.
The identification algorithm can be summarised
as follows. To initialise the procedure, it is neces-
sary to provide a set of I/O data and the set of
possible regressors. Optionally, also a first guess of
the model structure can be provided; otherwise,
the model will start out as an empty structure.
If an initial model structure is given, the corre-
sponding parameters are estimated with LS, the
model is simulated and the cost function (mean
square simulation error, possibly weighted if this
is convenient) is computed. At each step, all the
candidate regressors are examined for inclusion in
the model. For each of them, the current model
structure is augmented with it, and the resulting
model is estimated. The regressor is accepted if

it makes the cost function decrease at least by
a specified percentage. If the candidate regressor
set is exhausted, the best regressor is accepted
anyway. When a regressor is added, an iterative
pruning subprocedure is also performed. For each
regressor, the submodel obtained by eliminating it
from the current model is estimated. If the best re-
duced model still makes the cost function decrease
with respect to the previous major iteration, it
becomes the current model. The subprocedure is
repeated until no regressors can be eliminated
without a performance loss. Finally, the overall
procedure is stopped when a prespecified accu-
racy is obtained or after a given maximum num-
ber of iterations. With respect to the algorithm
presented in (Piroddi and Spinelli, 2003), three
main extensions are introduced. First, the model
has more than one input. Then, the elementary
regressors are non-polynomial functions (e.g., sign
and absolute value): this helps a lot at represent-
ing highly nonlinear and hysteretical phenomena.
Finally, the cost function is a weighted sum of
squared simulation errors, namely

J =
1
N

N∑

i=1

(y(i) − ysim(i))2

max(|y(i)|, 0.1)
, (2)

where N is the total number of samples and
ysim the (normalised) output of the model being
evaluated. This reduces the systematic errors at
low output values (typical of this application).

5. APPLICATION TO MRD DEVICES

To assess the validity of the proposed method-
ology, we present a comparison with a “refer-
ence” modeling approach representative of the
relevant literature, namely that of (Spencer Jr.
et al., 1997). The goal is to show that, with no
a priori structural assumptions, a NARX model
can be found which displays a comparable accu-
racy with respect to a phenomenological model,
albeit coming from a procedure which estimates
the model structure and parameters together. A
thorough experimental comparison would require
availability of the same data used in (Spencer Jr.
et al., 1997) for the model tuning, plus several
alternative data sets of the same MRD to ensure
robustness. For the purpose of the work, which
is methodological rather than experimental, it is
then more appropriate to generate identification
and validation data from the reference model and
show that these can be accurately replicated with
the proposed approach. The model considered in-
cludes an algebraic function (a Bouc-Wen model),
has the structure of figure 1, and is made of the
equations



Fig. 1. The reference model by Spencer et al.

f = αz + c0(ẋ − ẏ) + k0(x − y) + k1(x − x0)
ẏ = αz + c0ẋ + k0(x − y)

ż = −γ|ẋ − ẏ|z|z|n−1 − β(ẋ − ẏ)|z|n + A(ẋ − ẏ)
(3)

where x and y have the meaning indicated by
figure 1, f is the force and z is an auxiliary variable
required by the Bouc-Wen model. Parameters α,
c0 and c1 depend dynamically on the applied
voltage E as follows: α = αa + αbηE/(s + η),
c0 = c0a +c0bηE/(s+η), c1 = c1a +c1bηE/(s+η).
Note that the reference model is not easily invert-
ible with respect to the control variable, as the
relationship E = E(x, ẋ, f) is extremely complex
to obtain analytically. The reference model has
been implemented in Simulink and simulated. The
parameters used in the simulations are c0a = 20.2,
c0b = 2.68, k0 = 15, c1a = 350, c1b = 70.7,
k1 = 5.37, x0 = 0, αa = 44.9, αb = 638, γ = 39.3,
β = 39.3, A = 47.2, n = 2, η = 251—values taken
from (Dyke et al., 1996; Spencer Jr. et al., 1997).
The reference model has been fed with sinusoidal
displacement inputs of different amplitudes and
frequencies, and stepwise field inputs covering the
entire range. These inputs and the force signal
resulting from this simulation have been employed
for the NARX identification (40 seconds of data
have been recorded with a 1 ms sampling rate).
Note, incidentally, that these data would be easily
repeatable in an experimental environment. Prior
to identification all signals have been normalised
to the [-1,1] range for numerical reasons. The
choice of the initial candidate regressor set is par-
ticularly important for the identification success.
This implies choosing the elementary regressors
(e.g. the velocity), as well as the powers and delays
each one of them is allowed to appear with in
the model. After a few attempts, some facts have
been noticed. Purely algebraic, and in particular
not autoregressive, models are not adequate. This
means that the estimated force must depend on
its past values (recall that a simulation model
is required). The force does not depend on the
displacement significantly, but rather on the ve-
locity and field terms. The dependence of the force
on the velocity is too complex to be represented
by integer powers precisely enough (switching be-
haviours are observed). Finally, systematic esti-
mation errors were observed at low force values.

Hence, the following elementary regressors have
been selected: y(k) = f(k) (with power 1 to 2,
delay 1), u1(k) = E(k) (powers 1 to 4, delay
0), u2(k) = |v(k)|0.2 (power 1 to 10, delay 0 to
1), u3(k) = sign(v(k)) (power 1, delay 0 to 1),
v(k) being the sampled velocity. The identification
algorithm has been initialised with a linear model
containing only past estimated forces, field and
velocity terms. Cost function weighting has been
used to reduce the errors at low force. The final
model (at iteration 32) is

y(k) =

0.84506u1(k)u2(k)
2
u3(k) + 1.00465y(k − 1)

−0.9934y(k − 1)u2(k − 1)
3

+ 0.22914u2(k)
10

u3(k)
−0.41012u1(k)u2(k)u3(k) + 0.04469u1(k)u3(k)

+0.60627y(k − 1)
2
u1(k)u3(k) + 0.23977u2(k − 1)

7
u3(k − 1)

−0.209y(k − 1)u1(k)
2

+ 0.02209u2(k − 1)
3
u3(k − 1)

+0.10544y(k − 1)u1(k)
4
u2(k)

3
+ 0.12693y(k − 1)u1(k)

4

−0.49617y(k − 1)
2
u1(k)

2
u3(k)

(4)
and the corresponding value of the cost function is
J32 = 0.001596. Note that the parameterisation is
numerically “well-conditioned”, in that the values
of all parameters range in two orders of magni-
tude only. The remarkable performance of this
model can be appreciated by examining figures 2
and 3 (in all the comparison figures the reference
model output is drawn in dash-dot line, and the
estimated model output in solid line). The model
performance on different data sets is also reported.
Figure 4 (top) shows its behaviour in response
to a composite displacement signal containing fil-
tered random series, saturated and non-saturated
ramps and a chirp signal, while the applied volt-
age is a chirp signal in the first 2 seconds, and
piecewise constant at random values thereafter.
Figure 4 (middle) describes a ramp displacement
simulation, with constant voltage at the minimum
(0 V) in the first half of the simulation, and at the
maximum (2.25 V) in the second part. Finally,
an earthquake-like displacement signal is applied
in the simulation of figure 4 (bottom), with a
constant voltage of 2.25 V. For robustness issues
and in view of control purposes, however, this
model may be considered too complex and - which
is worse - it may be affected by overfitting: if the
unweighted cost functions on the validation data
sets (figure 5) are monitored, it appears that after
iteration 20 approximately they do not decrease
with the same rate and regularity as before. The
model at iteration 20 can then be considered a
good compromise between complexity and accu-
racy. This compact model is

y(k) =

0.04081u2(k − 1)
2
u3(k − 1) + 0.53543u1(k)u2(k)

2
u3(k)

+0.90878y(k − 1) − 0.47837y(k − 1)u2(k − 1)
3

+0.24809u2(k)
10

u3(k) − 0.16867u1(k)u2(k)u3(k)

(5)

and corresponds to the cost function value J20 =
0.004768 (about three times J32). In spite of this,
accuracy on the identification data set is not
severely affected, while performance on the vali-
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Fig. 2. Force vs. displacement with the 13-parameters model (V is the applied voltage, Ax and fx the
displacement amplitude and frequency).
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Fig. 3. Force vs. velocity with the 13-parameters model (V is the applied voltage, Ax and fx the
displacement amplitude and frequency).

dation data sets is even improved. The robustness
of this model can be appreciated by evaluating
its performance on the same data sets of figure 4,
as shown in figure 6. As a final (and important)
remark, observe that both models (4) and (5) are
invertible with respect to the control variable E
in a straightforward way.

6. CONCLUDING REMARKS

A technique has been presented for the modeling
of MRDs, based on NARX models and a suitable
identification algorithm. The described work can
be seamlessly extended to the modeling of sim-
ilar damping devices, such as shock absorbers,



Fig. 4. Validation of the 13-parameters model.

Fig. 5. Cost function (log scale) on the three
validation data sets.

Fig. 6. Validation of the 6-parameters model.

suspension systems and so forth. The technique
has been validated on a literature reference model
and has been shown to yield simple, accurate and
robust models, which can be exploited in the de-
velopment of model-based control systems. Future
research will be focused on the development of
control strategies based on the obtained models.
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