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Abstract: We present a new numerical procedure for the robust stabilization of linear time-
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of real stability radii. We outline how real stability radii can be computed and maximized
as a function of controller parameters. The latter synthesis problem is solved by a quasi-
continuous shaping of appropriate frequency response plots. Copyright c

�
2005 IFAC.

Keywords: linear time-delay systems, robust stabilization, stability radii

1. INTRODUCTION

We study the robust stabilization of the system

ẋ � t ��� l

∑
i � 1

Aix � t � τi �	� l

∑
i � 1

Biu � t � τi ��
 (1)

where x ��
 n is the state, u ��
 m are the inputs and
0 � τ1 ������� τl are delays in both state and inputs. We
use a controller of the form

u � Kx � t � � (2)

In a previous paper (Michiels et al., 2002), the eigen-
value based continuous pole placement method was
developed to compute a stabilizing feedback matrix
K (if it exists). Because the closed-loop system has
infinitely many eigenvalues (Hale and Verduyn Lunel,
1993), the method consists of controlling only the
rightmost or unstable eigenvalues, which are moved
to the left half plane in a quasi-continuous way by
applying small changes to the feedback gain K, and
meanwhile monitoring the other eigenvalues with a
large real part. The procedure can be applied until the
rightmost eigenvalues cannot be moved further to the
left using the available controller parameters, i.e. when
the function

F � K ��� sup � ℜ � λ � : det � λI �
l

∑
i � 1

� Ai � BiK � e � λτi ��� 0 � (3)

is minimal. For stabilizable systems, this means that
the exponential decay-rate of the closed-loop solutions
is maximal. This may however not be the best solu-
tion from a robustness point of view, as illustrated in
(Michiels and Roose, 2003).

In this work we assume static perturbations on the
system matrices and the feedback gain of the stabil-
ized system (1)-(2) and consider the adaptation of
the feedback gain in such a way that some robust
stability measures are optimized. These measures are
expressed by real stability radii (Qiu et al., 1995),
defined as the norm of the smallest destabilizing real
perturbations. The overall eigenvalue based robust sta-
bilization algorithm then consists of two steps, first
computing a stabilizing gain using the continuous pole
placement method (Michiels et al., 2002) and, second,
optimizing the robustness of the achieved stability by
maximizing real stability radii.

In the literature on DDEs, the robust stabilization
problem has been widely studied in a Lyapunov con-
text, see for instance (Li and de Souza, 1997b; Li



and de Souza, 1997a; Cao et al., 1998; Niculescu,
1998; Mahmoud, 2000). This approach allows to in-
clude easily more general types of perturbations (e.g.
time-varying). However, practical stability results are
in the form of sufficient conditions They are usually
expressed by the feasibility of LMIs or the solvability
of AREs, which in general induces a lot of conservat-
ism, due to the choice of the form of the functional
and the estimates involved in the derivation of the sta-
bility criteria. The results presented in (Michiels and
Roose, 2003) can be considered as a way to tighten
the gap between sufficient and necessary conditions
by an alternative approach, directly related to the po-
sition of the eigenvalues in the complex plane. In
this reference robustness of stability is expressed in
terms of complex stability radii, which are optimized
in function of the controller parameters. Some con-
servatism however remains in the obtained uncertainty
bounds because the allowed perturbations are complex
matrices. This is removed in this paper by restricting
the perturbations to be (realistic) real matrices, at the
price of a higher computational cost.

The structure of the paper is as follows. First we
rehearse the concept of stability radii in the context
of robust stability of time-delay systems, based on
(Michiels and Roose, 2003). Then we describe a nu-
merical procedure to compute real stability radii. Fi-
nally we outline an algorithm for the optimization of
real stability radii and present an example.

2. STABILITY RADII AS ROBUSTNESS
MEASURES

We assume that the controlled system (1)-(2) is
asymptotically stable and consider the stability of the
perturbed system,

ẋ � t � � l

∑
i � 1

� � Ai � δAi ���
� Bi � δBi ��� K � δK ��� x � t � τi � 
 (4)

under various classes of perturbations on the system
matrices. For sake of generality we assume that the
elements of the matrix perturbations belong to a field�

which can be either 
 or � .

Stability radii correspond to the size of the smallest
perturbations which result in a shift of an eigenvalue to
the closed right half plane and, hence, cause instabil-
ity. For instance, we define the stability radius w.r.t.
changes of A1 in

�
(for the Euclidean norm) as

rA1��� inf
δA1 	 � n 
 n

� σ1 � δA1 � : � ω � 
 s � t � det � jωI �
� A1 � δA1 � e � jωτ1 � l

∑
i � 2

� Ai � BiK � e � jωτi 
 � 0 � � (5)

In a similar fashion, one can define rB� 
 rK� etc. When� � 
 resp.
� ��� then (5) is called the real, resp.

complex stability radius w.r.t. changes of A1.

For any of the perturbations in (4), the characteristic
equation of the perturbed system on the imaginary axis
can be written in the form

det � I � MK � jω � ∆ � � 0 

MK � jω � � X � jω ��� jωI � l

∑
i � 1

� Ai � BiK � e � jωτi � � 1

Y � jω � 

(6)

where ∆ � � p � q is the perturbation under considera-
tion and X and Y depend on the type of this perturb-
ation 1 , e.g. for δA1 � ∆ we have X � I, Y � e � jωτ1I
and for δK � ∆, we have X � I 
 Y � ∑l

i � 1 Bie � jωτi .

When defining the matrix function µ � � � � by

µ � � M � ������ ���� 0 
 when det � I � M∆ ���� 0 
�� ∆ � � p � q 
�
inf

∆ 	 � p 
 q � σ1 � ∆ � : det � I � M∆ ��� 0 ��� � 1 

otherwise 


(7)
we can express

r � � 1
sup jω µ � � MK � jω ��� � (8)

Indeed, notice from (6) and (7) that µ � � MK � jω ��� is the
inverse of the size of the smallest perturbation with
elements in

�
, which shifts an eigenvalue to λ � jω,

in case such perturbations exist, and is equal to zero
otherwise.

As a standard result from robust control theory, we
have

µ � �! � � σ1 �" ��
 (9)

see e.g. (Zhou et al., 1995). The main result of (Qiu
et al., 1995) states that µ # �! � can be computed in the
following way:

µ # � M � � inf
γ 	%$ 0 & 1 ' f � M 
 γ � : �

inf
γ 	($ 0 & 1 ' σ2 ) � ℜ � M � � γℑ � M �

γ � 1ℑ � M � ℜ � M � ��* � (10)

Furthermore, in the special case rank ℑ � M � � 1 it
satisfies

µ # � M � � max + σ1 � UT
2 ℜ � M ����
 σ1 � ℜ � M � V2 �-, 
 (11)

where U2 and V2 come from any singular value de-
composition of ℑ � M � :

ℑ � M � �/.U1 U2 0 � σ1 � ℑ � M ��� 0
0 0

�1.V1 V2 0 T �
3. COMPUTATION OF REAL STABILITY RADII

From (8) and (10)-(11) one can determine real stability
radii by searching the maximum of the function

ω � 
3254 µ # � MK � jω ��� � (12)

1 This is also the case for structured perturbations, e.g. δA1 6
S1 7 ∆ 7 S2, and for classes of combined perturbations on several sys-
tem matrices. In the reduction to the standard form (6) the relation
det 8 I 9 GH : 6 det 8 I 9 HG : is useful.
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Fig. 1. Typical behavior of eigenvalues as a function
of perturbed parameters, and the associated curve
ω 4 µ # � ω � . (Left) - perturbation on one para-
meter; (right) - perturbation on multiple paramet-
ers.

For notational convenience we will from now on write
µ# � ω � instead of µ # � MK � jω ��� , when no confusion is
possible.

Properties of the function (12) carry over from the
results of (Qiu et al., 1995) on finite-dimensional sys-
tems. Of major importance from a computational point
of view is the fact that it is not continuous, yet only
upper semi-continuous. More precisely, discontinuit-
ies can occur at frequencies where ℑ � MK � jω ��� � 0.
At such point we have µ #�� µ � , while in general we
have µ # � µ � (the set of real perturbations form a
subset of the set of complex perturbations). As follows
intuitively from the interpretation (7) discontinuities
in the curve ω 4 µ # � ω � generically occur in specific
cases only. In case of one parameter being perturbed,
i.e. ∆ � 
 , the root locus of eigenvalues as a func-
tion of ∆ consists of a number of curves. By chan-
ging ∆ eigenvalues can only cross the imaginary axis
at a countable number of frequencies. Therefore, µ #
only differs from zero at these frequencies, see Fig. 1
(left). In case of multiple parameters being perturbed
simultaneously, the situation of Fig. 1 (right) applies.
The multiple degrees of freedom allow eigenvalues to
cross the imaginary axis at several adjacent frequen-
cies. An exception however holds for to the case ω �
0, because an isolated real eigenvalue cannot leave the
real axis under any sufficiently small real perturbation.
Indeed, since eigenvalues occur in complex-conjugate
pairs, this would require the interaction with another
real eigenvalue.

When there is one uncertain parameter, searching the
maximum of the function (12) requires to compute
the frequencies where a discontinuity occurs, being
the zeros of the scalar function ω 4 ℑ � MK � jω ��� ,
and to evaluate µ # at these frequencies. Following
their definition real stability radii can alternatively
be computed using a continuation procedure, where
the uncertain parameter is changed quasi-continuously

and the rightmost eigenvalues are monitored mean-
while until a crossing of the imaginary axis occurs.
This can be done using the package DDE-BIFTOOL
(Engelborghs et al., 2001).

For multiple uncertain parameters parts of the function
(12) need to be computed. The positive ω-axis is
screened from ω � 0 on, while computing µ # at points
ωi of a frequency grid and storing the maximum over
the interval . 0 
 ωi 0 . Regarding discontinuities only
ω � 0 deserves special attention, but to detect a non-
generic case we also monitor � ℑ � MK � jω ��� along the
ω-axis. The efficiency of the algorithm is improved in
the following way:

� The function to be minimized in the right-hand
side of (10), f � M 
� � , is unimodal (Qiu et al.,
1995), which makes a golden search method
appropriate.� The computation of r # based on (8) and (10) is
in fact a mini-max problem, which is exploited as
follows: when for ω2 � ω1 and some γ

� � � 0 
 1 0 ,
we have

f � MK � jω2 ��
 γ � � � µ# � ω1 ��
 (13)

then µ # � ω2 � � µ # � ω1 � . Thus if we have com-
puted µ # � ω1 � and � 13 � holds, then the know-
ledge of µ # � ω2 � is not required to find the
maximum of the curve ω 4 µ # � ω � . Therefore,
the optimization in (10) is not needed anymore
and, while further screening the ω-axis, γ can
be frozen temporarily until f � MK � jω ��
 γ � � �
µ # � ω1 � .
Note that when MK (and the perturbations) are
vectors one can use (11) to directly compute µ # ,
instead of (10).� A frequency grid with adaptive steplength is
used.� The maximum frequency of the grid is adapted
during computations. It is easy to show that
µ # � ω � � ξ for some ξ � 0, if

ω �
l

∑
i � 1

� Ai � BiK � � 1
ξ
� X � jω ��� ∞ � Y � jω ��� ∞ �

(14)
The maximum frequency of the grid is ini-
tially determined from (14) with ξ � µ # � 0 � . This
bound can be refined by using

ξ � max
ω 	�� 0 & ω̄ ' µ# � ω �

after having screened the frequency axis over. 0 
 ω̄ 0 .
Remark 1. The fast iterative methods to calculate sta-
bility radii of finite-dimensional systems, as (Streedhar
et al., 1996), are not directly applicable in the DDE
case. Although the frequencies ω where a singular
value of MK � jω � equals a constant value also coin-
cide with the imaginary eigenvalues of a Hamiltonian
system, the latter is now infinite-dimensional and de-
scribed by a functional differential equation with both



delayed and advanced terms. For a given dimension
n of the system, even arbitrarily many crossing fre-
quencies are possible, which prevents a fast direct
calculation, see (Michiels and Roose, 2003) for an
illustration.

But despite of the infinite-dimensional nature of
DDEs, they describe an evolution in the finite- dimen-
sional space 
 n , and the dimensions of MK � jω � are
of order n. Hence, when n is small, the computation
of parts of (12) is reasonable and it will be hard to
find an alternative which performs better than this
’rough’ approach. Notice that a small dimension oc-
curs in many applications and that high dimensional
systems (e.g. described by PDEs) may be approxim-
ated precisely by low-order models with delays, see
(Niculescu, 2001; Kolmanovskii and Myshkis, 1999).

4. OPTIMIZATION OF REAL STABILITY RADII

Following from (8) maximizing stability radii as a
function of the gain K corresponds to the minimization
problem:

min
K

sup
ω � 0

µ # � MK � jω ��� � (15)

To solve this highly complex optimization problem
(e.g. a non-convex, non-differentiable objective func-
tion), we propose an iterative numerical procedure,
which applies a local strategy consisting of a quasi-
continuous reduction of the objective function by
making small changes to the feedback gain per iter-
ation step. The latter is important because it assures
the asymptotic stability of (1)-(2) during the iteration
process when the initial gain in stabilizing, as the
robustness of stability is enlarged all the time. Notice
at this point that the objective function is defined for
all gain values, where (1)-(2) has no eigenvalues on
the imaginary axis, and that a large change of the
gain could eventually lead to a local minimum of (15),
where the corresponding gain is not stabilizing.

The basic algorithm is similar to the algorithm of
(Michiels and Roose, 2003) for the optimization of
complex stability radii, which was in turn inspired by
the continuous pole placement algorithm for the (non-
robust) stabilization of DDEs (Michiels et al., 2002):

Algorithm 1. [Minimization supω µ# � MK � jω ���
as a function of K]

A. Initialize m � 1.
B. Compute supω µ# � ω � and the frequencies ωi 
 i �

1 
 m with µ # � ωi � � supω µ # � ω � .
C. Compute the sensitivity of the peak values,

µ# � MK � jωi � K ������
 i � 1 
 m w.r.t. changes in the
feedback gain K.

D. Reduce the m peaks µ # � ωi � by applying small
changes to the feedback gain, using the com-
puted sensitivities.

E. Regularly check the presence of other frequen-
cies ωe with µ # � ωe ��� supω µ # � ω � . If necessary,

increase the number of controlled peak values in
the � ω 
 µ# � -plot, m. Stop when the available con-
troller parameters do not allow to further reduce
supω µ# � ω � . In the other case, go to step B.

We now outline some of the steps in more depth.

Performing step C. can be reduced by the chain rule
for differentiation to the computation of the sensitivity
of singular values of parametrized matrices. A com-
plication is the minimization over γ in expression (8).
According to (Qiu et al., 1995) several generic situ-
ations characterizing the minimum of f � M 
� � occur.
When it correspond to a smooth minimum of

σ2 ) � ℜ � M � � γℑ � M �
γ � 1ℑ � M � ℜ � M � �(* (16)

at some value γ
� � � 0 
 1 � the multiplicity of this second

singular value is generically equal to one. When the
minimum is reached for the limit γ 4 0, one can
show that expression (11) holds. When it is reached
for γ � 1, then the multiplicity is generically equal to
two, but one shows that µ # � M � � σ1 � M � , the largest
singular value of M being isolated. In all of these cases
the problem of computing the derivative of a peak
value w.r.t. a parameter ultimately relies on taking the
derivative of an isolated singular value of a matrix,
which smoothly depends on a parameter. This is a
standard problem, see (Michiels and Roose, 2003) for
mathematical expressions. In case µ # � ωi � corresponds
to a non-smooth minimum of (16) at some γ

� ��� 0 
 1 � ,
typically two intersecting branches of singular values
as a function of γ are involved. When this configura-
tion is structurally stable w.r.t. changes of the control-
ler parameter, standard calculus allows to compute the
sensitivity of the position of the intersection point. In
the other case a bifurcation to the smooth case may
occur 2 .

When collecting the sensitivities of the peak values
w.r.t. the components k j of the gain K in a matrix S,

Si & j � ∂µ # � ωi � K ���
∂k j


 (17)

and with ∆h the desired reduction of supω µ# � ω � per
iteration step, one can compute the necessary change
of the feedback gain as

∆K � � S†
m

�
1  � " 1 � T ∆h � (18)

For the new feedback gain, a correction has to be
made on both ωi and µ # � ωi � , because (18) is based
on linearization. When no reduction of the objective
function is achieved the steplength ∆h is automatically
decreased in our algorithm. Vice versa a reduction
leads to a larger steplength in the next iteration.

There are generally two types of optima. One can have
a smooth optimum, where for some i � � 0 
 ����� 
 m � ,

δµ � ωi � K ���
δk j

� 0 
�� j 

2 In our experiments we have so far not encountered this situation



or a nonsmooth optimum, where all peak values can be
reduced but there is no common descending direction.
For instance, for m � 2 this occurs when for some
α � 0,

δµ � ω1 � K ���
δk j

� � α
δµ � ω2 � K ���

δk j

 � j �

Since it is hard to check whether such criteria are
(approximately) satisfied, a more practical criterion
is implemented in our algorithm: it terminates when
the adaptive steplength ∆h has become smaller than a
threshold.

Remark 2. Discontinuities in the the derivative of
the objective function due multiple peaks in the µ #
plot are dealt with by monitoring and reducing the
peaks simultaneously. As alternative a random gradi-
ent bundle method (Burke et al., 2002) may be used to
find a descending direction of the objective function.

The computationally intensive step of Algorithm 1 is
Step B, the computation of a real stability radius. In
the similar algorithm of (Michiels and Roose, 2003)
for optimizing complex stability radii this step is re-
placed by the computation of a complex stability ra-
dius. This is less expensive, especially when the per-
turbation is not a vector, as comparing (10) and (9)
reveals that no optimization is needed to evaluate µ � .
As a consequence, the overall computational cost can
often be reduced when optimizing complex stability
radii as a pre-processor for Algorithm 1, i.e. to gener-
ate a starting value for the gain K.

5. NUMERICAL RESULTS

We take the system (4) with l � 2 
 τ1 � 0 
 τ2 � 5,
A2 � 0, B1 � 0 and

A1 �
�� � 0 � 08 � 0 � 03 0 � 2

0 � 2 � 0 � 04 � 0 � 005� 0 � 06 0 � 2 � 0 � 07

��

 B2 �

�� � 0 � 1� 0 � 2
0 � 1

��



(19)
which was also considered in (Michiels et al., 2002;
Michiels and Roose, 2003). In the first reference the
continuous pole placement method was applied, yield-
ing K � . 0 � 471 0 � 504 0 � 607 0 and F � K � � � 0 � 15 in the
optimum of (3). We wish to improve the robustness
of stability w.r.t. (real) perturbations of A1. To have
a better starting value for K in Algorithm 1, hence
to reduce the number of iterations required, we first
optimize the complex stability radius rA1� using the
algorithm of (Michiels and Roose, 2003), see Figure
2. This results in K � . 0 � 649 1 � 05 0 � 741 0 . Then we
apply Algorithm 1. Some iterations are shown in Fig-
ure 3, where we display the full µ # plot for illustrative
purposes - as explained in Section 3 it is sufficient to
compute only parts of the plot. Notice the discontinu-
ity of the function µ # � ω � at zero. As a result we find
that rA1# is maximal for K �/. 0 � 832 1 � 12 0 � 705 0 .
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Fig. 4. Rightmost eigenvalues for gain values corres-
ponding to a minimum of F , maxima of rA1� and
rA1# , as well as the open loop eigenvalues.

Table 1 compares the results of optimizing F � K � , rA1�
and rA1# , whereas Figure 4 shown the corresponding
rightmost eigenvalue configuration. As expected they
reveal the classical trade-off between performance and
robustness.

opt. rA1� rA1� supℜ 8 λ :
F 8 K : 0 7 0130 0 7 0130 � 0 7 13
rA1� 0 7 0343 0 7 0351 � 0 7 061
rA1� 0 7 0296 0 7 0450 � 0 7 074

Table 1. Comparison of results of different
optimization criteria.

6. CONCLUSIONS

Procedures to compute and optimize real stability radii
of stable time-delay systems were presented. Com-
bined with previous work on computing stabilizing
feedback controllers (Michiels et al., 2002) an overall
eigenvalue based solution for the robust stabilization
problem is obtained.
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