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Abstract: For hybrid systems which incorporate both dynamical and discrete event
models in process industries, the mass balance models will be changed because of
discrete scheduling events. The redundancy degree of whole sensor network is time
variant so that the conventional data reconciliation is very difficult to be implemented. In
this paper a new approach of data reconciliation for hybrid system is proposed and its
industrial application is discussed. The whole process includes 15 units and more than
100 tanks. Comparing with AspenTech Advisor, the application results demonstrate the
efficiency and consistency of the proposed approach. Copyright © 2005 IFAC
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1. INTRODUCTION

Measurements in a chemical process are subject to
errors, both random and systematic, so that the laws
of conservation of mass and energy are not obeyed.
In order to record the performance of the process,
these measurements are adjusted in order that they
conform to the conservation laws and any other
constraints imposed upon them. This procedure is
known as data reconciliation (Crowe, 1996).

For refinery, the most common technology is based
on steady-state data reconciliation (Crowe, et al.,
1983). But the conventiona steady-state linear data
reconciliation based on mass balance is insufficient
sometimes. For hybrid systems which incorporate
both dynamical and discrete event models in process
industries, the mass balance models will be changed
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because of discrete scheduling events. The
redundancy degree of whole measurement network is
time variant so that the traditional data reconciliation
methods can hardly be applied in practical process.
Some attempts to the problem have aready been
recently presented (Mandel, et al., 1998; Maquin, et
al., 2000). The Aspen Advisor system includes a
powerful Expert system used to calculate missing
stream  flows, identify and reconcile data
discrepancies. But in the practical application, the
reconciliation results are unsatisfactory.

In this paper a new approach of data reconciliation
for hybrid systems is proposed. The new method
includes three partss measurement network
reconstruction, gross error  detection and
reconciliation algorithm. Most importantly, the
proposed approach is employed on a industrial plant.
Comparing with AspenTech Advisor, the application
results demonstrate the efficiency and consistency of
the proposed approach.

This paper is organized as follows. It begins with a
brief description of the process under consideration,



followed by the proposed approach of data
reconciliation for hybrid systems. The application
results are discussed in Section 4 and Section 5
concludes the whole paper.

2. PROCESS DESCRIPTION AND
MASS BALANCE MODEL

The plant includes 15 units and more than 100 tanks.
Tanks containing the same material are treated as one
virtual tank. Each unit or virtual tank is represented
by one node. For each virtual tank, there is a virtual
variable showing its capacity change over one day.
Fig 1 shows the simplified measurement network
from the refinery. Where R1~R15 are units, G1~G12
are virtual tanks, M1~M16 are manifolds that are
used to represent the combination or splitting of
flows in a processing plant. The steady-state linear
model of the process is defined as follows

Ax+Bu=0 (D]

Where A is matrix corresponding to measured
variables, B is matrix corresponding to unmeasured
variables, x is vector of measured variables, u is
vector of unmeasured variables.

As shown in Fig 1, the whole process includes 43
steady-state mass balance equations, 108 measured
and 17 unmeasured variables. There are discrete
scheduling events on nodes M4, M5, M6, M7, M8,
M12, M13. In a reconciliation period (24 hours), the
plant operates at a steady-state. The flows of all
streams are accumul ative values of one day.

3. APPROACH OF DATA RECONCILIATION
FOR HYBRID SYSTEMS

A scheduling event consists of some useful
information and can be taken into account. For those
nodes where the discrete scheduling events may
happen, equations that consist of the information are
established and added to the models. These equations
are defined as random scheduling-equations. In this
way, the redundancy degree of the modd is
improved. Then its optimal solution can be obtained
by applying a reconciliation algorithm with uncertain
models (Maquin, et al., 2000). In order to guarantee
that the measurement errors are normally distributed
with zero mean and known covariance matrix V, the
gross errors are identified and eliminated with the aid
of an adaptation of the NT (Nodal test) (Mah, et al.,
1976) agorithm. The details of the proposed
approach are described as follows.

3.1 Measurement network reconstruction
As shown in Fig 1, the redundancy degree of the

model is too low to use matrix projection method
(Crowe, et al., 1983). The mass balance model

should be reconstructed. Assume there are s
scheduling events on node M, as shown in Fig 2. x,
is measured, u;~ us are all unmeasured and the
reconciliation period is T (24 hours).

T}

Fig 2 Sketch map of scheduling

Suppose

1. When one scheduling event is performed, only
one branch way has mass flow, and the other s-1
branch ways have no flows.

2. The plant operates at a steady-state, the flow of
Xm IS consistent.

If the ith scheduling event execution time is At; ,

then

u;%xm (i=12---,9 2
SAt =T 3
i=1

Let
0, == (4)

then
U =6Xy, (=129 ®)
6, =1 (6)

i=1

Although the execution time of scheduling events is
definitely known. As other measurements, the
actually execution time is polluted by errors. Suppose
in the absent of gross errors, At; are measured
variables whose covariance matrix is known. Using
this method, the random scheduling-equations of
node M4, M5, M6, M7, M8, M12, M13 are

U7 =07Xg Uz =013Xqg

Uy =0,X5 Ug =0gXy5 Uy, =014X1g
U3 =03X5 Ug =0gX15 Ui =0Oi5X35 @)
Us =04Xg Ug =01pX1g Usg = O1X 35

Us =05Xg Uy =011X15  Usz =017X1p

Ug =0gXg Upp =01pXqg



Combining Equation (7) and (1), we can get the new
steady-state linear model of the process. It is defined
asfollows

M (@)x =0 8)

Where M (0) is a matrix depending on a parameter
vector @ for which the mathematical expectation
6, and the diagonal variance matrix W are assumed

to be known. Obviously Equation (8) consists of
measured variables and parameters of random
scheduling-equations, the unmeasured variables are
eliminated.

3.2 Grosserror detection

The measurement data is in fact subject to random
and possibly gross errors. The presence of gross
errors will corrupt the reconciliation calculation and
spread the errors over al relatively correct data. So
detection of the gross errors is of great importance.
In this paper, the gross errors are identified and
eliminated with the aid of an adaptation of the NT
(Nodal test) (Mah, et al., 1976) algorithm.

Assume the mass balance constrains is M (8)x =0,
then the residual around i nodeis

- i
Z()=—— 9
(D) D ©
r =M (6,)x (10)

H, =M(@y)VM T (6) +G(X)WG T (x)  (11)

Where Z, is statistic criterion based on residuals. r is
the residuals of balance equations. H, is the
covariance matrix of r. The definition of M (#) and

G(x) is

m(e =M% (12
om(e
e - M) -

At 95% confidence level, there is a critical value Z.,
if Z, (i)> Z. it means there could be some gross
errors on i node. Based on the structure of
measurement network, it can point out which stream
data has the gross errors.

3.3 Reconciliation algorithm with uncertain models

For mass balance model M (#)x =0, its optima

solution can be obtained by applying a reconciliation
algorithm with uncertain models (Maquin, et al.,

2000). We conclude the agorithm as the five
following steps.

Step 1: let us define a vector of a posteriori residuals

A
R whose components are

A A
ri =m,(@)x (14)

Then the following deduction factor f; isintroduced.

f= Bir = Am, (O (15)
(mi (go)VmiT(é’o))y2 (16)

B =1-
(s (@o)VmT (65) + g, 0OWgT (X)) 2

Step 2: let us define Weighting factor K and initialise.

K = (17)

This constant ko will be chosen respectively close to
zero or trending towards infinity.

Step 3: for i=1ton (nisrowsof M(#)), the calculus

of the ith weighting factor.
Auxiliary matrices:

r, =m;x (18)
_ 1

T (k-2 T y!
Y :(' ~UMTy (K M VME 'V'(fi))V (20)

Ai = le(_l)mlT (21)
Weighting factor:
K2 = d-4)ri -b; 22)
BirA;

Where M, is equal to the matrix of constraints M
from which the ith row m; has been removed and K (.
is the matrix of the weights from which the ith row
and column have been removed.

Step 4: convergence anaysis. If the relative
variations of al the weighting factors between two
consecutive estimations are greater than a fixed
threshold then return to step 3, otherwise stop the
algorithm.

A
Step 5: the estimation X is

A 1 A
L T (-2 T :
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i=0,-,n-1 23)

Yia = (' —YimiT+1(kf+21+mi+1YimiT+1 lmi+1jyi
i=0,--,n—2 (24)
§o=xand Yo=V (25

4. APPLICATION RESULTSAND
DISCUSSION

The process data of December 10, 2001 are chosen
to be examined. The measured values and known
covariance matrix V are given in Table 5. The
information about the discrete scheduling events on
this day is shown in Table 1. According to the
infformation, we can get the mathematica
expectation 9, and the diagonal variance matrix W

of parameter vector @, as shownin Table 2.

Table 1 Information about the discrete scheduling

01, 13 0.01
O3 13 0.01
Or4 13 0.01
015 1 0.01
016 0 0.01
07 1 1.1

events
Node Scheduling events
M4 Execution time of 3 scheduling eventsis:

At;=8 hours, At, =8 hours, At;=8 hours.

Execution time of 4 scheduling eventsis:
M5  At, =24 hours, At;=0 hours, Atg =0 hours,

At =0 hours.
Execution time of 2 scheduling eventsis:

M6 Atg=0 hours, At =24 hours.

Execution time of 2 scheduling eventsis:

M7 At 10 =0 hours, At,; =24 hours.

M8 Execution time of 3 scheduling eventsis:
At,, =8 hours, At,53=38 hours, At,, =8 hours.
Execution time of 2 scheduling eventsis:

MI2 At 15 =24 hours, At =0 hours.
M13 The flows of uy;is approximately equal to

the flows of x5

According to Equations (9)~(13), the dsatistic
criterion Z, are got, as shown in Table 3. At 95%
confidence level, assume the critical value Z. is equal
to 30. We can find that the Z, (i) of nodes R2, M1

are greater than 30, it means there are gross errors on
nodes R2, M1. According to the structure of
measurement network, the stream xy; is the only pipe
that connects the node R2 and M1. It can be
concluded that the stream data x4, has the gross errors.
Based on mass balance equations, the measured
values of x,; is adjusted from 315.51 to 115.51.

Table 3 Results of the statistic criterion Z, of each

Table 2 Mathematical expectation and the diagonal
variance matrix W of parameter vector

7] & Diagonal elements of W
o, 1/3 0.01
0, 1/3 0.01
A 13 0.01
0, 1 0.02
05 0 0.02
b6 0 0.02
6, 0 0.02
Og 0 0.013
A 1 0.015
610 0 0.01
0y 1 0.01

node
Node Z.(i) Node Z.(i)
Gl 0 R12 6.9
R1 25.83 R13 10
R2 86.3 R14 1.1
M9 8.0 R15 52
R3 7.4 M1 33
M10 104 M2 11
M1l 0.34 M3 0.1
R4 6.2 G2 0.8
M13 0.01 G3 0.6
R5 12.9 G4 14
M14 9.5 G5 0.4
R6 10.7 G6 35
R7 2.2 G7 14.9
R8 15 G8 4.1
M15 0.15 G9 0
M16 4.2 G10 1.0
R9 7.5 Gl11 0.003
R10 4.3 G12 2.8
R11 0.08

The reconciliation results are shown in Table 5. In
order to compare and analysis, the residuals of the
model are calculated, as shown in Table 4. Where R;
is the residuals of the model before reconciliation,
R, is the residuals of the model after reconciliation
using AspenTech Advisor, Rs is the residuals of the
model after reconciliation using the proposed
approach. It can be indicated that the reconciliation
results of the proposed approach are more reasonable.

5. CONCLUSIONS
The conventional  steady-state linear data

reconciliation is insufficient sometimes, especially
when discrete scheduling events are performed in the



process industry. In this paper a new approach of
data reconciliation for hybrid system is proposed.
The information about the scheduling events is taken
into account. So the random scheduling-equations
are established and added to the models. Then its
optimal solution can be obtained by applying a
reconciliation algorithm with uncertain models.
Before reconciliation, the gross errors are identified
and eliminated with the aid of an adaptation of the
NT (Nodal test) algorithm. Comparisons between the
proposed approach and the AspenTech Advisor are
made in the industrial application. The application
results demonstrate the efficiency and consistency of
the proposed approach. However, the assumptions
that the execution time of scheduling events is
measured variable whose covariance matrix is known
are the limitation of the proposed approach. This
problem will be the focus of our future work.
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Fig1l Simplified measurement network from the refinery
Table4 Results of the residuals of the model
Node R: R, R; Node R; R, R;
Gl 0 25.6 0 R12 7.7 0 0
R1 89.8 0 0.2 R13 20 0 0
R2 85.8 0 0 R14 155 0 0
M9 224 0 0 R15 1.6 0 0
R3 20.1 0 0 M1 6.6 0.3 0
M10 15.0 0.2 0 M2 3.8 0 0



M11 14 0 0 M3 254.9 30.0 104
R4 22.2 0 0 G2 12 12 0
M13 286.0 0 6.2 G3 969.8 38.7 21.6
R5 43.8 0 0 G4 577.2 12 0
M14 2.0 0 0 G5 841.7 9.2 1.0
R6 21.2 0 0 G6 540.2 0 0
R7 38 0 0 G7 90 14.6 0.2
R8 31 0 0 G8 677.2 52.5 141
M15 0.3 0 0 G9 0 0 0
M16 20 0 0 G10 5018.6 21.7 22.8
R9 26.6 0 0 Gl1 1165 17 0.1
R10 9.1 0 0 G12 2471.3 76.4 13.0
R11 0.2 0 0
Table5 Measured values and reconciliation results
Var X V )A( Var X V Q Var X \% Q
X1 30928.8 0.5 30928  Xg7 768.50 0.9 77151 X3 220.4 0.99 213.2
X2 116780 0.5 11670  Xasg 179.19 19 17451  Xya 151.8 0.99 1495
X3 19250.8 0.5 19258  Xa3g 60.53 21 59.75 X75 277.77 0.99 275.39
Xa 71.868 3.0 120.35 Xyo 83.65 0.5 77.12 X76 50796 099  505.58
X5 1809.0 0.2 18123 Xy 6036.3 0.5 6032.3 X7y 36.322 0.99 33.945
X6 994.0 05 99348 Xgo 1149.8 05 11468 Xv7g 610.13 0.5 607.64
X7 31227 099 31216 X43 26364 26 27619 X9 7378 02 7527
Xg 2693.8 12 2716.9 Xy 514.78 18 52459 Xgp 397.03 0.115 395.98
X9 26419 03 26472 X45 25272 039 25284 Xg 1824 009 1823
Xi1p 25498 02 25834 X»5 77232 004 77267 Xg, 88392 02 88625
X171 31551 30 72933 X47 26826 009 26833 Xg3 4177 099 2725
X12 284.07 0.9 270.23  Xyg 329.08 0.5 32936 Xgg 37.951 0.99 42309
X13 26884 04 26404 X49 33624 06 33951 Xg5 24713 05 24744
X1a 28428 08 2830.1 Xsp 19728 005 19706 Xgg 9000 09 11369
X15 2591.5 0.03 2591 X51 577.0 0.2 57561 Xg7 22164  0.08 22159
X1 50848 009 50838 Xsp 22047 007 22049 Xgg 27694 17 26404
X17 43683 012 43669 Xs3 6150 09 54851 Xgg 7000 02 5822
Xi1g 2855 03 28449 X5, 8564 03 8602 Xgp 36034 085 357.89
X19 34952 005 34946 Xs5 11100 012 11042 Xg; 75635 05 75781
Xpo 28705 002 28727 Xgg 12397 12 12179 Xg, 28310 099 28211
Xp1 27150 007 27147 Xs7 57535 0.6 57298 Xgz 27.377 025 26481
X22 131.3 2.3 121.87 Xsg 1470.3 0.014 14703 Xog4 354.73 0.99 357.26
Xp3 73083 05 69.506 Xsg 5528 10 4892  Xg5 24415 019 244383
X24 1241.0 0.1 12416 Xgo 351.42 0.5 353.67 Xgg 1527.5 0.78 1532.4
Xo5 896.92 0.22 898.28 Xg1 61.495 1.09 65.61 Xo7 2728.0 0.025 27281
Xo¢ 61986 077 61719 Xg 1211 099 1233 Xgg 6400 003 6395
Xp7 6000 11 5346 Xg3 16501 0.7 16476 Xgg 4100 001 4100
Xo2g 1943.0 0.4 19421 Xgu 1056.9 0.025 1056.9 Xjgp 7789.2 0.09 7789.9
Xpg 19992 012  197.81 Xg; 3461 13 3143 X5y 136008 0.025 13601
X3p 7001 26 60.92 Xgg 9245 11 9036  Xygp 3058 0.025 3058
X31 22503 055 22484 Xg; 1399 099 1337  Xjo3 19183 003 19175
X3 10698 20 11239 Xgg 209 105 181 X104 4203 0012 4209
X33 3984 039 3977 Xgg 8707 176 9077  Xy95 24221 087 24302
X3a 27455 03 27411 Xy9 98080 015 98072 X0 23500 003 23498
X35 851.07 0.8 851.19 X711 192.82 2.9 17727  Xyg97 844.37 1.2 845.12
X3 25715 045 26039 X7, 95084 0.04 95075 Xip3 1856 10 1593




