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Abstract: For hybrid systems which incorporate both dynamical and discrete event 
models in process industries, the mass balance models will be changed because of 
discrete scheduling events. The redundancy degree of whole sensor network is time 
variant so that the conventional data reconciliation is very difficult to be implemented. In 
this paper a new approach of data reconciliation for hybrid system is proposed and its 
industrial application is discussed. The whole process includes 15 units and more than 
100 tanks. Comparing with AspenTech Advisor, the application results demonstrate the 
efficiency and consistency of the proposed approach. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Measurements in a chemical process are subject to 
errors, both random and systematic, so that the laws 
of conservation of mass and energy are not obeyed. 
In order to record the performance of the process, 
these measurements are adjusted in order that they 
conform to the conservation laws and any other 
constraints imposed upon them. This procedure is 
known as data reconciliation (Crowe, 1996). 
 
For refinery, the most common technology is based 
on steady-state data reconciliation (Crowe, et al., 
1983). But the conventional steady-state linear data 
reconciliation based on mass balance is insufficient 
sometimes.  For hybrid systems which incorporate 
both dynamical and discrete event models in process 
industries, the mass balance models will be changed  
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because of discrete scheduling events. The 
redundancy degree of whole measurement network is 
time variant so that the traditional data reconciliation 
methods can hardly be applied in practical process.  
Some attempts to the problem have already been 
recently presented (Mandel, et al., 1998; Maquin, et 
al., 2000). The Aspen Advisor system includes a 
powerful Expert system used to calculate missing 
stream flows, identify and reconcile data 
discrepancies. But in the practical application, the 
reconciliation results are unsatisfactory. 
 
In this paper a new approach of data reconciliation 
for hybrid systems is proposed. The new method 
includes three parts: measurement network 
reconstruction, gross error detection and 
reconciliation algorithm. Most importantly, the 
proposed approach is employed on a industrial plant. 
Comparing with AspenTech Advisor, the application 
results demonstrate the efficiency and consistency of 
the proposed approach. 
 
This paper is organized as follows. It begins with a 
brief description of the process under consideration, 



     

followed by the proposed approach of data 
reconciliation for hybrid systems. The application 
results are discussed in Section 4 and Section 5 
concludes the whole paper.  
 

2. PROCESS DESCRIPTION AND  
MASS BALANCE MODEL 

 
The plant includes 15 units and more than 100 tanks. 
Tanks containing the same material are treated as one 
virtual tank. Each unit or virtual tank is represented 
by one node. For each virtual tank, there is a virtual 
variable showing its capacity change over one day. 
Fig 1 shows the simplified measurement network 
from the refinery. Where R1~R15 are units, G1~G12 
are virtual tanks, M1~M16 are manifolds that are 
used to represent the combination or splitting of 
flows in a processing plant. The steady-state linear 
model of the process is defined as follows 
 

                0=+ BuAx                     (1) 
 
Where A is matrix corresponding to measured 
variables, B is matrix corresponding to unmeasured 
variables, x is vector of measured variables, u is 
vector of unmeasured variables.  
 
As shown in Fig 1, the whole process includes 43 
steady-state mass balance equations, 108 measured 
and 17 unmeasured variables. There are discrete 
scheduling events on nodes M4, M5, M6, M7, M8, 
M12, M13. In a reconciliation period (24 hours), the 
plant operates at a steady-state. The flows of  all 
streams are accumulative values of one day.  
 
 

3. APPROACH OF DATA RECONCILIATION  
FOR HYBRID SYSTEMS 

 
A scheduling event consists of some useful 
information and can be taken into account. For those 
nodes where the discrete scheduling events may 
happen, equations that consist of the information are 
established and added to the models. These equations 
are defined as random scheduling-equations. In this 
way, the redundancy degree of the model is 
improved. Then its optimal solution can be obtained 
by applying a reconciliation algorithm with uncertain 
models (Maquin, et al., 2000). In order to guarantee 
that the measurement errors are normally distributed 
with zero mean and known covariance matrix V, the 
gross errors are identified and eliminated with the aid 
of an adaptation of the NT (Nodal test) (Mah, et al., 
1976) algorithm. The details of the proposed 
approach are described as follows.  
 
 
3.1  Measurement network reconstruction 
 
As shown in Fig 1, the redundancy degree of the 
model is too low to use matrix projection method 
(Crowe, et al., 1983). The mass balance model 

should be reconstructed. Assume there are s 
scheduling events on node M, as shown in Fig 2. xm 
is measured, u1~ us are all unmeasured and the 
reconciliation period is T (24 hours). 
 

 
Fig 2 Sketch map of scheduling 
 
Suppose 
1. When one scheduling event is performed, only 

one branch way has mass flow, and the other s-1 
branch ways have no flows.  

2. The plant operates at a steady-state, the flow of 
xm is consistent. 

If the ith scheduling event execution time is it∆ , 
then 
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Although the execution time of scheduling events is 
definitely known. As other measurements, the 
actually execution time is polluted by errors. Suppose 
in the absent of gross errors, it∆  are measured 
variables whose covariance matrix is known. Using 
this method, the random scheduling-equations of 
node M4, M5, M6, M7, M8, M12, M13 are 
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Combining Equation (7) and (1), we can get the new 
steady-state linear model of the process. It is defined 
as follows 
 

0)( =xM θ                           (8) 
 
Where )(θM  is a matrix depending on a parameter 
vector θ  for which the mathematical expectation 

0θ and the diagonal variance matrix W are assumed 
to be known. Obviously Equation (8) consists of 
measured variables and parameters of random 
scheduling-equations, the unmeasured variables are 
eliminated.  
 
 
3.2  Gross error detection 
 
The measurement data is in fact subject to random 
and possibly gross errors. The presence of gross 
errors will corrupt the reconciliation calculation and 
spread the errors over all relatively correct data. So 
detection of the gross errors is of great importance. 
In this paper, the gross errors are identified and 
eliminated with the aid of an adaptation of the NT 
(Nodal test) (Mah, et al., 1976)  algorithm. 
 
Assume the mass balance constrains is 0)( =xM θ , 
then the residual around i node is 
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Where Zr is statistic criterion based on residuals. r is 
the residuals of  balance equations. Hr is the 
covariance matrix of r. The definition of  )(θM  and 

)(xG  is  
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At 95% confidence level, there is a critical value Zc, 
if  Zr (i)> Zc, it means there could be some gross 
errors on i node. Based on the structure of 
measurement network, it can point out which stream 
data has the gross errors.  
 
 
3.3  Reconciliation algorithm with uncertain models 
 
For mass balance model 0)( =xM θ , its optimal 
solution can be obtained by applying a reconciliation 
algorithm with uncertain models (Maquin, et al., 

2000). We conclude the algorithm as the five 
following steps. 
 
Step 1: let us define a vector of a posteriori residuals 
Λ
R whose components are 
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Then the following deduction factor iβ  is introduced. 
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Step 2: let us define Weighting factor K and initialise. 
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This constant k0 will be chosen respectively close to 
zero or trending towards infinity.  
 
Step 3: for i=1 to n (n is rows of )(θM ), the calculus 
of the ith weighting factor. 
Auxiliary matrices: 
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Weighting factor: 
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Where M(-i)  is equal to the matrix of  constraints M 
from which the ith row mi has been removed and K(-i) 
is the matrix of  the weights from which the ith row 
and column have been removed.  
 
Step 4: convergence analysis.  If the relative 
variations of all the weighting factors between two 
consecutive estimations are greater than a fixed 
threshold then return to step 3, otherwise stop the 
algorithm.  
 

Step 5: the estimation 
Λ
x  is 
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4. APPLICATION RESULTS AND  
DISCUSSION 

 
The process data of  December 10, 2001 are chosen 
to be examined. The measured values and known 
covariance matrix V are given in Table 5. The 
information about the discrete scheduling events on 
this day is shown in Table 1. According to the 
information, we can get the mathematical 
expectation 0θ and the diagonal variance matrix W 
of parameter vector θ , as shown in Table 2.  
 

Table 1  Information about the discrete scheduling 
events 

 
Node Scheduling events 

M4 
Execution time of 3 scheduling events is: 

1t∆ =8 hours, 2t∆ =8 hours, 3t∆ =8 hours.  

M5 
Execution time of 4 scheduling events is: 

4t∆ =24 hours, 5t∆ =0 hours, 6t∆ =0 hours, 

7t∆ =0 hours.  

M6 
Execution time of 2 scheduling events is: 

8t∆ =0 hours, 9t∆ =24 hours.   

M7 
Execution time of 2 scheduling events is: 

10t∆ =0 hours, 11t∆ =24 hours.   

M8 
Execution time of 3 scheduling events is: 

12t∆ =8 hours, 13t∆ =8 hours, 14t∆ =8 hours. 

M12 
Execution time of 2 scheduling events is: 

15t∆ =24 hours, 16t∆ =0 hours.   

M13 The flows of u17 is approximately equal to 
the flows of x12 .  

 
Table 2  Mathematical expectation  and the diagonal 

variance matrix W of parameter vector  
 
θ  0θ  Diagonal elements of W 

1θ  1/3 0.01 

2θ  1/3 0.01 

3θ  1/3 0.01 

4θ  1 0.02 

5θ  0 0.02 

6θ  0 0.02 

7θ  0 0.02 

8θ  0 0.013 

9θ  1 0.015 

10θ  0 0.01 

11θ  1 0.01 

12θ  1/3 0.01 

13θ  1/3 0.01 

14θ  1/3 0.01 

15θ  1 0.01 

16θ  0 0.01 

17θ  1 1.1 
 
According to Equations (9)~(13), the statistic 
criterion Zr  are got, as shown in Table 3. At 95% 
confidence level, assume the critical value Zc is equal 
to 30. We can find that the )i(Zr  of nodes R2, M1 
are greater than 30, it means there are gross errors on 
nodes R2, M1. According to the structure of 
measurement network, the stream x11 is the only pipe 
that connects the node R2 and M1. It can be 
concluded that the stream data x11 has the gross errors. 
Based on mass balance equations, the measured 
values of x11 is adjusted from 315.51 to 115.51.  
 

Table 3  Results of the statistic criterion Zr of each 
node 

 
Node )i(Zr  Node )i(Zr  
G1 0 R12 6.9 
R1 25.83 R13 10 
R2 86.3 R14 1.1 
M9 8.0 R15 5.2 
R3 7.4 M1 33 

M10 10.4 M2 1.1 
M11 0.34 M3 0.1 
R4 6.2 G2 0.8 

M13 0.01 G3 0.6 
R5 12.9 G4 1.4 

M14 9.5 G5 0.4 
R6 10.7 G6 3.5 
R7 2.2 G7 14.9 
R8 1.5 G8 4.1 

M15 0.15 G9 0 
M16 4.2 G10 1.0 
R9 7.5 G11 0.003 

R10 4.3 G12 2.8 
R11 0.08   

 
The reconciliation results are shown in Table 5. In 
order to compare and analysis, the residuals of  the 
model are calculated, as shown in Table 4. Where R1 
is the residuals of  the model before reconciliation, 
R2 is the residuals of  the model after reconciliation 
using AspenTech Advisor, R3 is the residuals of  the 
model after reconciliation using the proposed 
approach. It can be indicated that the reconciliation 
results of the proposed approach are more reasonable.  
 
 

5. CONCLUSIONS 
 
The conventional steady-state linear data 
reconciliation is insufficient sometimes, especially 
when discrete scheduling events are performed in the 



     

process industry. In this paper a new approach of 
data reconciliation for hybrid system is proposed. 
The information about the scheduling events is taken 
into account. So the random scheduling-equations 
are established and added to the models. Then its 
optimal solution can be obtained by applying a 
reconciliation algorithm with uncertain models. 
Before reconciliation, the gross errors are identified 
and eliminated with the aid of an adaptation of the 
NT (Nodal test) algorithm. Comparisons between the 
proposed approach and the AspenTech Advisor are 
made in the industrial application. The application 
results demonstrate the efficiency and consistency of 
the proposed approach. However, the assumptions 
that the execution time of scheduling events is 
measured variable whose covariance matrix is known 
are the limitation of the proposed approach. This 
problem will be the focus of our future work. 
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Fig 1   Simplified measurement network from the refinery 
 

Table 4  Results of the residuals of the model 
 

Node R1 R2 R3 Node R1 R2 R3 
G1 0 25.6 0 R12 7.7 0 0 
R1 89.8 0 0.2 R13 20 0 0 
R2 85.8 0 0 R14 15.5 0 0 
M9 22.4 0 0 R15 1.6 0 0 
R3 20.1 0 0 M1 6.6 0.3 0 

M10 15.0 0.2 0 M2 3.8 0 0 



     

M11 1.4 0 0 M3 254.9 30.0 10.4 
R4 22.2 0 0 G2 1.2 1.2 0 

M13 286.0 0 6.2 G3 969.8 38.7 21.6 
R5 43.8 0 0 G4 577.2 1.2 0 

M14 2.0 0 0 G5 841.7 9.2 1.0 
R6 21.2 0 0 G6 540.2 0 0 
R7 3.8 0 0 G7 90 14.6 0.2 
R8 3.1 0 0 G8 677.2 52.5 14.1 

M15 0.3 0 0 G9 0 0 0 
M16 90 0 0 G10 5018.6 21.7 22.8 
R9 26.6 0 0 G11 1165 1.7 0.1 

R10 9.1 0 0 G12 2471.3 76.4 13.0 
R11 0.2 0 0     

 
Table 5  Measured values and reconciliation results 

 
Var x V Λ

x  Var x V Λ
x  Var x V Λ

x  
x1 30928.8 0.5 30928 x37 768.50 0.9 771.51 x73 220.4 0.99 213.2 

x2 11678.0 0.5 11670 x38 179.19 1.9 174.51 x74 151.8 0.99 149.5 

x3 19250.8 0.5 19258 x39 60.53 2.1 59.75 x75 277.77 0.99 275.39 

x4 71.868 3.0 120.35 x40 83.65 0.5 77.12 x76 507.96 0.99 505.58 

x5 1809.0 0.2 1812.3 x41 6036.3 0.5 6032.3 x77 36.322 0.99 33.945 

x6 994.0 0.5 993.48 x42 1149.8 0.5 1146.8 x78 610.13 0.5 607.64 

x7 3122.7 0.99 3121.6 x43 263.64 2.6 276.19 x79 73.78 0.2 75.27 

x8 2693.8 1.2 2716.9 x44 514.78 1.8 524.59 x80 397.03 0.115 395.98 

x9 2641.9 0.3 2647.2 x45 2527.2 0.39 2528.4 x81 18.24 0.09 18.23 

x10 254.98 0.2 258.34 x46 772.32 0.04 772.67 x82 88.392 0.2 88.625 

x11 315.51 3.0 72.933 x47 2682.6 0.09 2683.3 x83 4.177 0.99 2.725 

x12 284.07 0.9 270.23 x48 329.08 0.5 329.36 x84 37.951 0.99 42.309 

x13 268.84 0.4 264.04 x49 336.24 0.6 339.51 x85 2471.3 0.5 2474.4 

x14 2842.8 0.8 2830.1 x50 197.28 0.05 197.06 x86 9.000 0.9 11.369 

x15 2591.5 0.03 2591 x51 577.0 0.2 575.61 x87 2216.4 0.08 2215.9 

x16 5084.8 0.09 5083.8 x52 2204.7 0.07 2204.9 x88 276.94 1.7 264.04 

x17 4368.3 0.12 4366.9 x53 61.50 0.9 54.851 x89 7.000 0.2 5.822 

x18 285.5 0.3 284.49 x54 85.64 0.3 86.02 x90 360.34 0.85 357.89 

x19 3495.2 0.05 3494.6 x55 111.00 0.12 110.42 x91 75.635 0.5 75.781 

x20 287.05 0.02 287.27 x56 123.97 1.2 121.79 x92 283.10 0.99 282.11 

x21 2715.0 0.07 2714.7 x57 575.35 0.6 572.98 x93 27.377 0.25 26.481 

x22 131.3 2.3 121.87 x58 1470.3 0.014 1470.3 x94 354.73 0.99 357.26 

x23 73.083 0.5 69.596 x59 55.28 1.0 48.92 x95 244.15 0.19 244.83 

x24 1241.0 0.1 1241.6 x60 351.42 0.5 353.67 x96 1527.5 0.78 1532.4 

x25 896.92 0.22 898.28 x61 61.495 1.09 65.61 x97 2728.0 0.025 2728.1 

x26 619.86 0.77 617.19 x62 121.1 0.99 123.3 x98 64.00 0.03 63.95 

x27 60.00 1.1 53.46 x63 165.01 0.7 164.76 x99 4100 0.01 4100 

x28 1943.0 0.4 1942.1 x64 1056.9 0.025 1056.9 x100 7789.2 0.09 7789.9 

x29 199.92 0.12 197.81 x65 34.61 1.3 31.43 x101 13600.8 0.025 13601 

x30 70.01 2.6 60.92 x66 92.45 1.1 90.36 x102 3058 0.025 3058 

x31 2250.3 0.55 2248.4 x67 13.99 0.99 13.37 x103 191.83 0.03 191.75 

x32 106.98 2.0 112.39 x68 20.9 1.05 18.1 x104 42.03 0.012 42.09 

x33 39.84 0.39 39.77 x69 87.07 1.76 90.77 x105 2422.1 0.87 2430.2 

x34 274.55 0.3 274.11 x70 9808.0 0.15 9807.2 x106 235.00 0.03 234.98 

x35 851.07 0.8 851.19 x71 192.82 2.9 177.27 x107 844.37 1.2 845.12 

x36 257.15 0.45 260.39 x72 9508.4 0.04 9507.5 x108 18.56 1.0 15.93 


