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1. INTRODUCTION

This paper considers an extension of the problem of
auxiliary signal design introduced in (Nikoukhahet
al., 2002) for which a complete solution have been
given in (Campbell and Nikoukhah, 2004). In previous
works, the models considered for normal and failed
system were linear systems having for inputs the aux-
iliary signal and additional on-line measured inputs. In
many cases, however, a-priori information exists about
the initial condition and the models may be subject to
a-priori known signals. In this paper it is shown that
the design problem with a-priori information can be
constructed along the same line as the one developed
for zero initial condition and in the absence of a-priori
information on input signals.

This extension is particularly important because it
also allows the consideration of more general types
of failures. For example, if a failure introduces a
bias in the system (something which is encountered
often in practice), it could not have been dealt with
before. But now, the bias can be considered as a
known constant input of the faulty model. Similarly,
if the failure is modeled as a jump in the state of the
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system, this can now be modeled as a non zero initial
condition at the start of the test period. Even though
the mathematical results needed to obtain a solution in
this more general case are somewhat different from
those used before, the construction of the solution
follows similar steps. In particular, the complexity of
the solution is the same. Page limitations preclude a
discussion of alternative approaches and applications.

2. PROBLEM FORMULATION

The general models considered are of the form

ẋi = Aixi + Biv + Miνi + M̄iui, (1a)

Eiy = Cixi + Div + Niνi + N̄iui (1b)

wherei = 0, 1 correspond to normal and failed system
models respectively. Thev is the auxiliary signal
which is computed prior to the test whiley is the
output that becomes known during the test. The inputs
ui are assumed to be known in advance.

Note that in contrast toui, y cannot be used to
designv sincev is computed before the test. The only
condition on the system matrices is that theNi’s have
full row rank. The unknown initial conditionsxi(0)
and noisesνi are assumed to satisfy the bounds



Si = (xi(0)− x̄i)T P−1
i0 (xi(0)− x̄i)

+
∫ s

0

νT
i Jiνi dt < 1, ∀s ∈ [0, T ], (2)

where theJi’s are signature matrices. In this formula-
tion, x̄i’s represent the a-priori information regarding
the initial conditionsxi(0). CoefficientsA,B,C,D,
M,N, M̄, N̄ can be time varying. Bounds other than
1 are included by rescaling system coefficients.

This formulation includes a number of different prob-
lems. For example, it includes the case of purely addi-
tive noise whereJi = I. In that case we need only
considers = T in (2) since the integrand is non-
negative and the maximum value of the integral occurs
ats = T .

But our problem formulation also includes problems
with model uncertainty including some of those stud-
ied in (Petersenet al., 2000; Petersen and Savkin,
1999). See (Campbell and Nikoukhah, 2004) for more
details.

A signal v is proper if observation ofy provides
enough information to decide from which modely has
been generated. That is, there exist no solution to (1)
and (2) fori = 0 and1 simultaneously. An optimal
properv is sought. The first step is to characterize the
properv.

3. AUXILIARY SIGNAL DESIGN

Let

x =
(
x0

x1

)
, ν =

(
ν0

ν1

)
, u =

(
u0

u1

)
, x̄ =

(
x̄0

x̄1

)
.

Since theNi’s are full row rank, for anyL2 functions
v, u andy, there existL2 functionsνi satisfying (1).
So, the non-existence of a solution to (1) and (2) for
i = 0, 1 is equivalent to:

σ(v, s,u, x̄) ≥ 1 (3)

where

σ(v, s,u, x̄) = inf
ν0,ν1,y
x0,x1

max(S0,S1) (4)

subject to (1),i = 0, 1. (4) is reformulated as:

σ(v, s,u, x̄) = max
β∈[0,1]

Φβ(v, s,u, x̄) (5)

where

Φβ(v, s) = inf
ν0,ν1,y
x0,x1

βS0 + (1− β)S1 (6)

subject to (1) fori = 0, 1. The interchange ofinf
and max is valid for the same reasons as given in
(Campbell and Nikoukhah, 2004).

Note thatΦβ(v, s) depends also onu andx̄, but since
they are assumed fixed and known, to simplify the

notations, they have been dropped from the list of
arguments. Let

A =
(
A0 0
0 A1

)
, M =

(
M0 0
0 M1

)
, B =

(
B0

B1

)
,

D = F0D0 + F1D1, M̄ = F0M̄0 + F1M̄1,

C =
(
F0C0 F1C1

)
,N =

(
F0N0 F1N1

)
,

N̄ =
(
F0N̄0 F1N̄1

)
, P−1

β =
(

βP−1
0,0 0

0 (1− β)P−1
1,0

)
,

Jβ =
(

βJ0 0
0 (1− β)J1

)
,

whereX⊥ denotes a maximal row rank left annihilator
of X and

F =
(
F0 F1

)
=

(
E0

E1

)⊥
. (7)

Then reformulate (6) as follows:

Φβ(v, s) = inf
ν,x

(x(0)− x̄)T P−1
β (x(0)− x̄)

+
∫ s

0

νT Jβν dt (8)

subject to

ẋ = Ax + Bv + Mν + M̄u (9a)

0 = Cx + Dv + Nν + N̄u. (9b)

Theorem 1.Let B be the set of allβ such that, for all
s ≤ T , Φβ(v, s) > −∞. Suppose for someβ ∈ [0, 1],
that N⊥

T JβN⊥ > 0, ∀t ∈ [0, T ] and the Riccati
equation

Ṗ = (A− SβR−1
β C)P + P(A− SβR−1

β C)T

−PCT R−1
β CP + Qβ − SβR−1

β ST
β ,

P(0) = Pβ (10)

where (
Qβ Sβ

ST
β Rβ

)
=

(
M
N

)
J−1

β

(
M
N

)T

(11)

has a solution on[0, T ]. Thenβ ∈ B.

It is assumed from here on that the set ofβ satisfying
the two conditions of Theorem 1 is not empty.

3.1 Construction of an optimal proper auxiliary signal

The problem to solve is:

Γβ = min
v
‖v‖2, subject to max

β∈[0,1]
s∈[0,T ]

Φβ(v, s) ≥ 1

(12)
where‖v‖2 =

∫ T

0
|v|2 dt. The maximum value of

Φβ(v, s) does not always occur ats = T , although
it often does.



The Lagrangian for this problem is constructed as

L = Φβ(v, s)− λβ,s‖v‖2, (13)

so that it is necessary to solve

Γβ(s) = max
v

inf
ν,x

(x(0)− x̄)T P−1
β (x(0)− x̄)

+
∫ s

0

νT Jβν − λ|v|2 dt (14)

subject to (9a) and (9b).

If Φβ(0, s) ≥ 1 for anys, then the optimal properv is
just zero.

Theorem 2.Suppose the two conditions of Theorem 1
are satisfied and letλ∗β,s be the infimum of the set of
all λ for which the Riccati equation

Ṗ = (A−Sλ,βR−1
λ,βC)P+P(A−Sλ,βR−1

λ,βC)T

−PCT R−1
λ,βCP + Qλ,β − Sλ,βR−1

λ,βST
λ,β ,

P(0) = Pβ (15)

where(
Qλ,β Sλ,β

ST
λ,β Rλ,β

)
=

(
M B
N D

) (
Jβ 0
0 −λI

)−1 (
M B
N D

)T

(16)
has a solution on[0, s]. Thenλβ,s > λ∗β,swhereλβ,s

satisfies the Lagrange conditions.

The proof of this result is the same as that for Theorem
3.3.2 in (Campbell and Nikoukhah, 2004) for theu =
0 case. It implies, in particular, that forλβ,s satisfying
the Lagrange conditions, Riccati equation (15) with
λ = λβ,s has a solution on[0, s).

The Riccati equation (15) is obtained by noting that
the optimization problem (14) can be expressed as

extx,(ν,v) (x(0)− x̄)T P−1
β (x(0)− x̄)

+
∫ s

0

(
ν
v

)T (
Jβ 0
0 −λI

) (
ν
v

)
dt(17)

subject to

(
ẋ
0

)
=

(
A
C

)
+

(
M B
N D

) (
ν
v

)
+

(
M̄
N̄

)
u. (18)

Here ext stands for extremum.

Note that forλ to equalλβ,s (satisfy Lagrange condi-
tions), it is necessary thatΦβ(v, s) = 1 wherev is the
optimal solution of the optimization problem (14). It is
essential that this quantity be computed causally by a
filter ass goes from0 toT . The method which consists
of finding the optimalv(t), t ∈ [0, s], for everys, by
solving a two point boundary value problem and using
it to evaluateΦβ(v, s) and in particular to test if it
crosses1, is extremely costly, inaccurate and almost
impossible to implement.

It turns out that

Γβ(s) = Φβ(v, s)− λβ,s‖v‖2, (19)

wherev is the optimal solution over[0, s], can be
evaluated causally because it is the cost of the lin-
ear quadratic optimization problem being solved (see
(Campbell and Nikoukhah, 2004), Section 2.6.2).

Theorem 3.The solutionΓβ(s) of the optimization
problem (14), satisfies

Γ̇β = µT R−1
λ,βµ, Γβ(0) = 0, (20)

whereµ is given by

µ = Cx̂ + N̄u (21a)
˙̂x = Ax̂− S̃λ,βR−1

λ,βµ + M̄u, x̂(0) = x̄ (21b)

andS̃λ,β = Sλ,β + PCT .

The problem, however, is thatΓβ is not what is
needed, but ratherΦβ which can be expressed as

Φβ(v, s) = (x(0)− x̄)T P−1
β (x(0)− x̄)

+
∫ s

0

(
ν
v

)T (
Jβ 0
0 0

) (
ν
v

)
dt (22)

wherex, ν andv are optimal solutions of the opti-
mization problem (14). It turns out thatΦβ can also
be computed causally.

Theorem 4.Let x̂ and P be defined by (21b) and
(15), and considerξ andΨ defined by the following
equations:

Ψ̇ = (A−S̃λ,βR−1
λ,βC)Ψ + Q̄

+Ψ(A− S̃λ,βR−1
λ,βC)T ,Ψ(0) = Pβ (23)

Q̄ = Qβ − S̃λ,βR−1
λ,βSβ

T − SβR−1
λ,βS̃T

λ,β

+S̃λ,βR−1
λ,βRβR−1

λ,βS̃T
λ,β (24)

whereQβ , Sβ andRβ are given in (11), and

ξ̇ =−(A− (Sλ,β + PCT )R−1
λ,βC + Q̄Ψ−1)T ξ

−(CT + Ψ−1Q̄DT )R−1
λ,β(Cx̂ + N̄u), (25)

with ξ(0) = 0. Then

Φβ(v, s) = ξ(s)T Ψ(s)ξ(s) + σ(s) (26)

where

σ̇ =
(

ξ

R−1
λ,β(Cx̂ + N̄u)− S̃T

λ,βξ

)T (
Qβ Sβ

ST
β Rβ

)
×

(
ξ

R−1
λ,β(Cx̂ + N̄u)− S̃T

λ,βξ

)
, σ(0) = 0 (27)

This result is obtained as a special case of the problem
considered in the Appendix.



Computation ofλβ,s The computation of theλβ,s

can now be implemented using a lambda iteration
algorithm. Suppose the problem is being solved over
the time interval[0, T ). Then to compute the optimal
λβ,T , integrate the system of ordinary differential
equations (ode) (21b), (15), (23), (25) and (27), with
the zero crossing testξ(t)T Ψ(t)ξ(t) + σ(t)− 1 = 0.
Theorem 8 is used ifΨ in (25) is not invertible.
Many ode solvers, such aslsodar , have a built-in
mechanism for halting the simulation when a specified
quantity is zero.λ iterations are performed until the
zero-crossing occurs att = T . The correspondingλ is
thenλβ,T .

In some cases, asλ varies, the zero-crossing may jump
from ans < T to a point beyondT . In such a case, the
time from s to T is useless for reducing the cost of
the test signal and the test interval can be shortened
by settingT = s. In the sequel it is assumed that this
adjustment is always done when applicable.

The above method very efficiently computesλβ,T .
Thanks to (19) and the fact thatΦβ(v, T ) = 1, it
follows

‖v‖2 = (1− Γβ(T ))/λβ,T (28)

Optimizing ‖v‖2 over β is then done by simply dis-
cretizing the interval[0, 1], whereβ is confined to, and
computing the cost for each discrete value ofβ. The
optimalβ is then simply the one corresponding to the
lowest cost. Denote the optimalβ and the correspond-
ing λβ,T , respectivelyβ∗ andλ∗.

Computation of the auxiliary signalOnceβ∗ andλ∗

are computed one can proceed with the computation
of the optimal auxiliary signal. This is done by ex-
pressing the necessary conditions of optimality as a
two-point boundary value system:

d

dt

(
x
ζ

)
=

(
Ω11 Ω12

Ω21 Ω22

) (
x
ζ

)
+

(
Ω13

Ω23

)
u (29)

with boundary conditions:

x(0) = x̄ + Pβ∗ζ(0) (30a)

ζ(τ) = 0. (30b)

whereΩ11 = −ΩT
22 = A − Sλ∗,β∗R−1

λ∗,β∗C, Ω12

= Qλ∗,β∗ − Sλ∗,β∗R−1
λ∗,β∗S

T
λ∗,β∗ = ΩT

21, Ω22 =
CT R−1

λ∗,β∗C, Ω31 = M̄ − Sλ∗,β∗R−1
λ∗,β∗N̄, Ω32 =

CT R−1
λ∗,β∗N̄.

Theorem 5.The optimal auxiliary signal is

v∗ = ((BT −DT R−1
λ∗,β∗S

T
λ∗,β∗)ζ

−DT R−1
λ∗,β∗(Cx + N̄u))/λ∗ (31)

wherex andζ are solutions of (29), (30).

The solution of the boundary value problem can be
constructed using various techniques. If the detection
interval is short, straightforward techniques such as
a shooting method can be used. On long intervals,
the special properties of theΩ matrix (Hamiltonian
properties) can be used to construct numerically stable
solutions. This problem which resembles the classical
fixed-interval smoothing problem can be solved both
by a two-filter solution or the extension of Tauch-
Tung-Striebel method (Gelb, 1984).

The Tauch-Tung-Striebel method can be implemented
by using System (21) which corresponds to the “for-
ward Kalman filter” in this method. It is straight-
foward to verify that the solution of the boundary
value problem,(x, ζ), satisfyx = x̂+Pζ whereP is
the solution of the Riccati equation (15) withλ = λ∗

andβ = β∗. This can be used to show that

ẋ = (A− Sλ∗,β∗R−1
λ∗,β∗C)x

+(M̄− Sλ∗,β∗R−1
λ∗,β∗N̄)u + (Qλ∗,β∗ −

Sλ∗,β∗R−1
λ∗,β∗S

T
λ∗,β∗)P

−1(x− x̂). (32)

(31) can also be rewritten as

v∗ = ((BT −DT R−1
λ∗,β∗S

T
λ∗,β∗)P

−1(x̂− x)

−DT R−1
λ∗,β∗(Cx + N̄u))/λ∗. (33)

System (32) can be integrated backward using the fi-
nale conditionx(T ) = x̂(T ) and the optimal solution
v is obtained from (33).

4. CONCLUSION

The methodology for constructing optimal robust
auxiliary signals has been extended. In this new
framework, the system under consideration can have
nonzero initial condition and be driven by known input
signals. This extension allows for the consideration of
more general types of failures such as those which can
be modeled by a bias.

The proposed method for obtaining the auxiliary sig-
nal is constructive and can easily be implemented in
Scilab or Matlab.

The application of the auxiliary signal is performed
in the manner as in Chapter 3 of (Campbell and
Nikoukhah, 2004). Also, the presence of additional
inputs and non zero initial condition does not affect
the implementation of the detection filter obtained in
Chapter 2 of (Campbell and Nikoukhah, 2004).
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5. APPENDIX

Consider the following optimization problem

J(s) = extx(0),ν (x(0)− vx0)T P−1
0 (x(0)− x0)

+
∫ s

0

νT Γν dt (34)

subject to

ẋ = Ax + Bν + a (35a)

b = Cx + Dν. (35b)

MatricesA, B, C andD have piecewise continuous
time entries,D has full row rank,P0 > 0, andΓ
is symmetric and invertible but not necessarily sign
definite. Vectorsa andb are known continuous func-
tions of time. Note that this is not just one optimization
problem but a family of optimization problems for
different values ofs.

Here ext stands for extremum which for the appli-
cation in this paper stands formaxv minx,ν but the
result stated here is more general.

The value ofJ(s) can be computed causally for alls
using a forward running filter. Now let

K(s) = (x(0)−z0)T Π0(x(0)−z0)+
∫ s

0

νT ∆ν dt

(36)
wherex andν are optimal solutions to the optimiza-
tion problem (34), (35). The problem we consider here
is how canK(s) be computed causally as well (not
to fix s, run a backward filter to compute optimal
x and ν and then computeK). HereΠ0 > 0 and
∆ is symmetric but not necessarily invertible or sign
definite. Note that ifz0 = x0, Π0 = P−1

0 and∆ = Γ,
thenK(s) = J(s).

The solution to the optimization problem (34) , (35) is
given by

J(s) =
∫ s

0

µT R−1µ dt (37)

whereµ = Cx̂− b andx̂ satisfies
˙̂x = Ax̂− (S + PCT )R−1µ + a, x̂(0) = x0 (38)

whereP is the solution of the Riccati equation

Ṗ = (A− SR−1C)P + P(A− SR−1C)T

−PCT R−1CP + Q− SR−1ST ,P(0) = P0(39)

with (
Q S
ST R

)
=

(
B
D

)
Γ−1

(
B
D

)T

. (40)

This solution is obtained using the method of dynamic
programming where we solve the optimization prob-
lem (34) by adding the constraintx = x(s). The
optimization problem over[0, s] is solved assuming
the value ofx(s) is given and is equal tox. This
constrained cost is

Jx(s) = (x− x̂(s))T P−1(s)(x− x̂(s))

+
∫ s

0

µT R−1µ dt.

Optimizing it overx to find the optimal solution is
trivial and givesx = x̂(s). The optimal value ofν is
obtained from

min
ν

(ν − Γ−1BT P−1(x− x̂))T Γ

× (ν − Γ−1BT P−1(x− x̂)) (41)

subject tob − Cx = Dν. See the proof of Theorem
2.6.2 in (Campbell and Nikoukhah, 2004). This means
that the optimalν can be obtained using the following
Lagrangian:

L= (ν − Γ−1BT P−1(x− x̂))T Γ

×(ν − Γ−1BT P−1(x− x̂))

+λT (b−Cx−Dv) (42)

The optimality conditions yield

Γν −DT λ = BT P−1(x− x̂) (43)

Dν = b−Cx (44)

from which, thanks to (40), gives

ν = Γ−1(Φ(x− x̂) + DT R−1(b−Cx)) (45)

whereΦ = (B− SR−1D)T P−1.

To construct a causal solution toK, consider the
constrained problem withx = x(s). Then make
the assumption that with this constraint, the value of
K(s), which now is a function ofx, is quadratic inx
and thus can be expressed as follows:

K(s) = (x− z(s))T Π(s)(x− z(s)) + σ(s) (46)

wherez(0) = z0 andΠ(0) = Π0. Variablesz(s), Π,
andσ are to be determined.

To verify the assumption and determinez(s), Π and
σ, note that from (36) that

K̇ = νT ∆ν (47)

where ν is given in (45). On the other hand (46)
provides that



K̇ = (ẋ− ż)T Π(x− z) + (x− z)T Π(ẋ− ż)

+(x− z)T Π̇(x− z) + σ̇. (48)

Note that from (35a) and (45),

ẋ = Ax+BΓ−1(Φ(x− x̂)+DT R−1(b−Cx))+a

which can also be expressed as

ẋ = Ax + Q̃P−1(x− x̂) + SR−1(b−Cx)) + a

whereQ̃ = Q− SR−1ST . Setting (47) equal to (48)
gives

(Φ(x− x̂) + DT R−1(b−Cx))T Γ−1∆Γ−1

× (Φ(x− x̂) + DT R−1(b−Cx)) =

((Ax + Q̃P−1(x− x̂)

+ SR−1(b−Cx)) + a− ż)T Π(x− z)+

(x− z)T Π((Ax + Q̃P−1(x− x̂)

+ SR−1(b−Cx)) + a− ż)+

(x− z)T Π̇(x− z) + σ̇. (49)

Note that both sides of (49) are quadratic inx.

Matching coefficients of second order terms ofx gives
the following Lyapunov equation forΠ,

(Φ−DT R−1C)T Γ−1∆Γ−1(Φ−DT R−1C) =

(A + Q̃P−1 − SR−1C)T Π

+ Π(A + Q̃P−1 − SR−1C) + Π̇ (50)

with Π(0) = Π0.

Matching the linear terms inx, gives

(Φ−DT R−1C)T Γ−1∆Γ−1(−Φx̂+DT R−1b) =

Π(SR−1b− Q̃P−1x̂ + a− ż)−
((A + Q̃P−1 − SR−1C)T Π + Π̇)z (51)

which gives

ż = Az + (Q̃P−1 −ΩΦ)(z− x̂)

−(S−ΩDT )R−1(Cz− b) + a (52)

whereΩ = Π−1(Φ−DT R−1C)T Γ−1∆Γ−1.

Finally matching the terms which are independent of
x, after a long computation, yields

σ̇ = µ̄T Γ−1∆Γ−1µ̄ (53)

µ̄ = Φ(z− x̂) + DT R−1(b−Cz). (54)

Theorem 6.Let x̂ andz be defined by (38) and (52),
whereP is defined in (39) andΠ is the solution of the
Lyapunov equation (50). Then

K(s) = (x̂(s)− z(s))T Π(s)(x̂(s)− z(s))

+
∫ s

0

µ̄T Γ−1∆Γ−1µ̄ dt (55)

whereµ̄ is given in (54).

The result of Theorem 6 can givesK(s) as long as
P remains non-singular. This would be the case, in
particular, if the optimization problem (34) were a
pure min or pure max problem. In the application here
though, it is a a max-min problem and theP matrix is
not necessarily sign-definite and can become singular
at a point on the interval. In this case,Π diverges at
this point, even thoughK does not.

To avoid this problem, it is necessary to perform a
change of variable in such a way as to avoidP−1 in
all the equations of the system. This can be done as
follows. LetΨ = PΠP andξ = P−1(x̂ − z). Note
thatΨ̇ = ṖΠP + PΠ̇P + PΠṖ, which using (39)
and (50) can be expressed as follows

Ψ̇ = (A− (S + PCT )R−1C)Ψ

+Ψ(A− (S + PCT )R−1C)T

+JΓ−1∆Γ−1JT (56)

J = B− (S + PCT )R−1D. (57)

Similarly, ξ̇ = P−1( ˙̂x−ż)−P−1ṖP−1(x̂−z), which
using in addition to (39) and (50), (38) and (52), can
be expressed as follows

ξ̇ = −(A− (S + PCT )R−1C

+ JΓ−1∆Γ−1JT Ψ−1)T ξ

− (CT + Ψ−1JΓ−1∆Γ−1DT )

×R−1(Cx̂− b). (58)

note thatξ(0) = 0 andΨ(0) = P0.

Theorem 7.Let x̂ andξ be defined by (38) and (58),
whereP is defined in (39) andΨ is the solution of the
Lyapunov equation (56). Then

K(s) = ξ(s)T Ψ(s)ξ(s) +
∫ s

0

µ̃T Γ−1∆Γ−1µ̃ dt

whereµ̃ = −JT ξ + DT R−1(b−Cx̂).

However (58) still has aΨ−1 in it. The actual integra-
tion that is implemented is given in the next theorem.

Theorem 8.K(s) can be evaluated by integrating
the system of differential equations in the variables
K,Ψ,θ = Ψξ given by (56) and

θ̇ = (A− (S + PCT )R−1)θ

−Ψ(CT + JΓ−1∆Γ−1DT )R−1(Cx̂− b) (59)

K̇ = (b−Cx̂)T R−1DΓ−1∆Γ−1DR−1(b−Cx̂)

− (Cx− b)T R−1Cθ − θT CT R−1(Cx̂− b).
(60)


