AUXILIARY SIGNAL DESIGN IN UNCERTAIN
SYSTEMS WITH KNOWN INPUTS

Ramine Nikoukhah* Stephen L. Campbelf*!

* INRIA, Rocquencourt BP 105, 78153 Le Chesnay Cedex,
France
** North Carolina State University, Department of
Mathematics, Raleigh, NC. 27695-8205 USA.

Abstract: A method of auxiliary signal design for active failure detection based on a
multi-model formulation of normal and failed systems is extended to allow for a-priori
information about initial conditions and the possibility of having a known additional input.
Both theory and numerical algorithms are presen@mpyright(© 2005 IFAC

Keywords: Failure detection, model-based, fault detection, active, linear.

1. INTRODUCTION system, this can now be modeled as a non zero initial
condition at the start of the test period. Even though
This paper considers an extension of the problem ofthe mathematical results needed to obtain a solution in
auxiliary signal design introduced in (Nikoukhat this more general case are somewhat different from
al.,, 2002) for which a complete solution have been those used before, the construction of the solution
givenin (Campbell and Nikoukhah, 2004). In previous follows similar steps. In particular, the complexity of
works, the models considered for normal and failed the solution is the same. Page limitations preclude a
system were linear systems having for inputs the aux-discussion of alternative approaches and applications.
iliary signal and additional on-line measured inputs. In
many cases, however, a-priori information exists about
the initial condition and the models may be subject to 2. PROBLEM FORMULATION
a-priori known signals. In this paper it is shown that
the design problem with a-priori information can be The general models considered are of the form
constructed along the same line as the one developed
for zero initial c'onditio'n and in the absence of a-priori % = Aix; + Biv + My, + Miu,, (1)
information on input signals. _
E;y =C;x; + D;v + Nyvi + Nju; (1b)

This extension is particularly important because it
also allows the consideration of more general typeswherei = 0, 1 correspond to normal and failed system
of failures. For example, if a failure introduces a models respectively. The is the auxiliary signal
bias in the system (something which is encounteredwhich is computed prior to the test whilg is the
often in practice), it could not have been dealt with output that becomes known during the test. The inputs
before. But now, the bias can be considered as au; are assumed to be known in advance.

known constant input of the faulty model. Similarly, Note that in contrast tay, y cannot be used to
if the failure is modeled as a jump in the state of the designv sincev is computelc,i before the test. The only
condition on the system matrices is that I¥gs have

1 Research supported in part by NSF Grants DMS-0101802, bms- full row rank. The unknown initi?—' conditions; (0)
020695, DMS-0404842, and ECS-0114095. and noisew; are assumed to satisfy the bounds




-1

Si = (xi(0) — %) Py (x:(0) — %y)

+/ viJw,dt <1,¥s€[0,T], (2
0

where theJ,;’s are signature matrices. In this formula-
tion, x;'s represent the a-priori information regarding
the initial conditionsx;(0). CoefficientsA, B, C, D,
M, N, M, N can be time varying. Bounds other than
1 are included by rescaling system coefficients.

This formulation includes a number of different prob-
lems. For example, it includes the case of purely addi-
tive noise whereJ; = 1. In that case we need only
considers = T in (2) since the integrand is non-

negative and the maximum value of the integral occurs

ats=1T.

But our problem formulation also includes problems
with model uncertainty including some of those stud-
ied in (Peterseret al, 2000; Petersen and Savkin,
1999). See (Campbell and Nikoukhah, 2004) for more
details.

A signal v is proper if observation ofy provides
enough information to decide from which modetas

been generated. That is, there exist no solution to (1)

and (2) fori = 0 and1 simultaneously. An optimal
properv is sought. The first step is to characterize the
properv.

3. AUXILIARY SIGNAL DESIGN
Let
0

2 - ) o () 2 (1)

Since theN;’s are full row rank, for anyl., functions
v, u andy, there existL, functionsv; satisfying (1).
So, the non-existence of a solution to (1) and (2) for

¢ = 0,1 is equivalent to:
where
o(v,s,u,X) = infymax(So,Sl) (4)
vo,V1,
X0,X1
subjectto (1); = 0, 1. (4) is reformulated as:
X) = ® X 5
o(v,s,u,X) e, s(v,s,u,x)  (5)
where
p(v,s) = inf B8+ (1-AS  (6)
X0,X1

subject to (1) fori = 0,1. The interchange ofnf
and max is valid for the same reasons as given in
(Campbell and Nikoukhah, 2004).

Note that® (v, s) depends also on andx, but since
they are assumed fixed and known, to simplify the

notations, they have been dropped from the list of

arguments. Let
_(Ap O (M 0 _ (Byg
() e () - ()
D =F,Dy+F,D;, M =F,M, +F M,
C = (F()CO F1C1) ,N = (FoNO FlNl) B

- - - _ P} 0
N o ) et = (R0
0

).
1= (8 o)

whereX 1 denotes a maximal row rank left annihilator
of X and

-1
1,0

E 1
B o 0
F=(FF)= <E1> . @)
Then reformulate (6) as follows:
®s(v, s) =inf(x(0) — X)TPgl(x(O) - X)
+/ VTJBV dt (8)
0
subject to
x=Ax+ Bv + Mv + Mu (9a)
0=Cx+ Dv + Nv + Nu. (9b)

Theorem 1.Let B be the set of alb such that, for all
s <T,®g(v,s) > —oo. Suppose for some € [0, 1],
thatN, 7JsN, > 0, Vt € [0,7] and the Riccati
equation
P =(A-SsR;'C)P+P(A-SsR;'C)"
- PC"R;'CP + Qg — SR 'S},
P(0) =Ps (10)
Qs Sp

<S?J Rﬁ) (1\1\/11) 5! (%)T (11)

has a solution of, T']. Thengs € B.

where

It is assumed from here on that the sepiofatisfying
the two conditions of Theorem 1 is not empty.

3.1 Construction of an optimal proper auxiliary signal

The problem to solve is:

T's = min||v||?, subjectto max ®s(v,s) > 1
v BeE(o,

s€[0,T]

(12)
where||v]]? = fOT |v|? dt. The maximum value of
®4(v,s) does not always occur at = T, although
it often does.



The Lagrangian for this problem is constructed as
L=25(v.5) = Agslv]?, (13)

so that it is necessary to solve
Ts(s) = max Iljn)fc (x(0) — i)TPgl(x(O) - X)
+/ viJsv — \v|*dt (14)
0

subject to (9a) and (9b).
If ®5(0,s) > 1for anys, then the optimal proper is
just zero.

Theorem 2.Suppose the two conditions of Theorem 1
are satisfied and letj; ; be the infimum of the set of
all \ for which the Riccati equation

P = (A8, 4R, ;C)P+P(A-S, R, ,C)"
—PCTR; ;CP + Qx5 — Sy sR; 553 5,
P(0)=Ps (15)
where

Qxp Sap M B\ (J; 0\ ' /MB\"
Sis Rag ND/\0 —AI N D
(16)
has a solution of0, s]. ThenAg s > A} wherelg
satisfies the Lagrange conditions.

The proof of this result is the same as that for Theorem

3.3.2 in (Campbell and Nikoukhah, 2004) for the=

0 case. It implies, in particular, that for , satisfying
the Lagrange conditions, Riccati equation (15) with
A = A\, has a solution off), s).

The Riccati equation (15) is obtained by noting that
the optimization problem (14) can be expressed as

exte w,v) (x(0) — %)TP; (x(0) - %)

) (8 ) () e

subject to

(6)=(6)+(XD)(2)+(X)n

Here ext stands for extremum.

Note that for\ to equalig s (satisfy Lagrange condi-
tions), it is necessary thédtz(v, s) = 1 wherev is the
optimal solution of the optimization problem (14). Itis

essential that this quantity be computed causally by a

filter ass goes fronD to T'. The method which consists
of finding the optimalv(¢), t € [0, 5], for everys, by

solving a two point boundary value problem and using

it to evaluate®z(v,s) and in particular to test if it
crossedl, is extremely costly, inaccurate and almost
impossible to implement.

It turns out that
Ty(s) = @(v,s) — Ag.allv]?, (19)

where v is the optimal solution ovef0, s], can be
evaluated causally because it is the cost of the lin-
ear quadratic optimization problem being solved (see
(Campbell and Nikoukhah, 2004), Section 2.6.2).

Theorem 3.The solutionI's(s) of the optimization
problem (14), satisfies

Ls=u"Rysn, Ts0=0, (20
wherep is given by
p=Cx + Nu (21a)

% =A% — S, sR; ;p + Mu, %(0) = % (21b)

andgAﬁ = S,\)g +PCT.

The problem, however, is thdls is not what is
needed, but rathebz which can be expressed as

Dp(v,s) = (x(0) = %)"P;! (x(0) - %)

) e () e

wherex, v andv are optimal solutions of the opti-
mization problem (14). It turns out thdis can also
be computed causally.

Theorem 4.Let x and P be defined by (21b) and
(15), and conside¢ and ¥ defined by the following
equations:

¥ =(A-S, 4R, ,C)¥ + Q
+B(A - S5 sR;5C)7, ¥ (0) = Py (23)
Q=Qs — S\ sR; ;85" — SR, ;ST 5
+85 6R; s RaR; ST 4 (24)

whereQg, Sg andR s are given in (11), and

£=—(A—(Sxs+PC"R;,C+ Q¥ )"¢
—(C"+ ¥ 'QD")R; ;(Cx + Nu), (25)

with £(0) = 0. Then

Bs(v,s) = &(s)T U (s)E(s) + o(s)  (26)

where

0’:< { _ )T (QB Sﬁ)
RX,:,L@(C)A( + Nu) — S{gé Sg R,
13
g (R)\,}a(Ci +Nu) — §§’ﬁ£> ,0(0)=0 (27)

This result is obtained as a special case of the problem
considered in the Appendix.



Computation ofA\g, The computation of the\s

The solution of the boundary value problem can be

can now be implemented using a lambda iteration constructed using various techniques. If the detection
algorithm. Suppose the problem is being solved over interval is short, straightforward techniques such as

the time intervall0, T"). Then to compute the optimal

a shooting method can be used. On long intervals,

As,T, integrate the system of ordinary differential the special properties of th@ matrix (Hamiltonian
equations (ode) (21b), (15), (23), (25) and (27), with properties) can be used to construct numerically stable

the zero crossing teg(t)" ¥ (t)&(t) + o(t) — 1 = 0.
Theorem 8 is used ifr in (25) is not invertible.
Many ode solvers, such dsodar , have a built-in

solutions. This problem which resembles the classical
fixed-interval smoothing problem can be solved both
by a two-filter solution or the extension of Tauch-

mechanism for halting the simulation when a specified Tung-Striebel method (Gelb, 1984).

guantity is zero.\ iterations are performed until the
zero-crossing occurs at= 7'. The corresponding is
theng 7.

In some cases, asvaries, the zero-crossing may jump

from ans < 7' to a point beyond". In such a case, the

time from s to T is useless for reducing the cost of

The Tauch-Tung-Striebel method can be implemented
by using System (21) which corresponds to the “for-
ward Kalman filter” in this method. It is straight-
foward to verify that the solution of the boundary
value problem(x, ¢), satisfyx = x + P¢ whereP is

the solution of the Riccati equation (15) with= \*

the test signal and the test interval can be shortenedand = g*. This can be used to show that

by settingT” = s. In the sequel it is assumed that this

adjustment is always done when applicable.

The above method very efficiently computag .
Thanks to (19) and the fact thdtz(v,T) = 1, it
follows

IvI? = (1 = Ts(T))/As.r
Optimizing ||v||? over 3 is then done by simply dis-
cretizing the interva)0, 1], whereg is confined to, and
computing the cost for each discrete value5ofThe

(28)

optimal 3 is then simply the one corresponding to the

lowest cost. Denote the optimaland the correspond-
ing Ag,7, respectivelyd* and\*.

Computation of the auxiliary signalOnces* and\*

are computed one can proceed with the computation
of the optimal auxiliary signal. This is done by ex-

x=(A -8y Ry 5. C)x
+(M = Sx- Ry . N)u+ (Qu- g —
Sx- g Ry 5. 8% 5 )P H(x — %). (32)

(31) can also be rewritten as

v'=((B" -D"R}! 5.8} 5. )P (x — x)
—DTR;*lﬁ* (Cx + Nu))/\*. (33)

System (32) can be integrated backward using the fi-
nale conditionx(7") = x(7") and the optimal solution
v is obtained from (33).

4. CONCLUSION

pressing the necessary conditions of optimality as aThe methodology for constructing optimal robust

two-point boundary value system:

d (x o Qi1 Q19 X Q13
dt (C) B <Q21 922) (C) * (QQS) u (29

with boundary conditions:

x(0)=x+ P3-¢(0) (30a)
¢(r)=0. (30b)
where; = QQTQ = A - SA*,[,»*RXE,B*C, Q12

CTR/\%*C, Q= M - Sy Ry, N, 25 =
C'R;! ;. N.

Theorem 5.The optimal auxiliary signal is

v =(B" -D"R}! ;.81 5. )¢
-D'R;! ;.(Cx+Nu))/x*  (31)

wherex and( are solutions of (29), (30).

auxiliary signals has been extended. In this new
framework, the system under consideration can have
nonzero initial condition and be driven by known input
signals. This extension allows for the consideration of
more general types of failures such as those which can
be modeled by a bias.

The proposed method for obtaining the auxiliary sig-
nal is constructive and can easily be implemented in
Scilab or Matlab.

The application of the auxiliary signal is performed
in the manner as in Chapter 3 of (Campbell and
Nikoukhah, 2004). Also, the presence of additional
inputs and non zero initial condition does not affect
the implementation of the detection filter obtained in
Chapter 2 of (Campbell and Nikoukhah, 2004).
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5. APPENDIX

Consider the following optimization problem

J(8) = exty(o),v (x(0) — va)TPgl(x(O) —Xp)

+ / vITw dt (34)
0
subject to
x=Ax+Bv+a (35a)
b=Cx+ Dv. (35b)

MatricesA, B, C andD have piecewise continuous
time entries,D has full row rank,Py > 0, andT’

is symmetric and invertible but not necessarily sign
definite. Vectorsx andb are known continuous func-
tions of time. Note that this is not just one optimization
problem but a family of optimization problems for
different values of.

Here ext stands for extremum which for the appli-
cation in this paper stands fenax, miny , but the
result stated here is more general.

The value ofJ(s) can be computed causally for all
using a forward running filter. Now let

(x(0) — 20) T Ty (x(0) — z0) + ) v Av dt

(36)
wherex andv are optimal solutions to the optimiza-
tion problem (34), (35). The problem we consider here
is how canK (s) be computed causally as well (not
to fix s, run a backward filter to compute optimal
x andv and then computd(). HereII, > 0 and
A is symmetric but not necessarily invertible or sign
definite. Note that ity = xo, ITy = P; ' andA =T,
thenK (s) = J(s).

The solution to the optimization problem (34) , (35) is
given by

K(s)

J(s) / TR dt
0

whereu = Cx — b andx satisfies
x=Ax— (S+PCHR ' +a, x(0) =x, (38)

whereP is the solution of the Riccati equation

(37)

P=(A-SR'C)P+P(A-SR!C)”
~PCTR™!CP + Q - SR™'S”,P(0) = Py(39)

with
(-G 6)
s’ R)  \D D) -
This solution is obtained using the method of dynamic
programming where we solve the optimization prob-
lem (34) by adding the constraint = x(s). The
optimization problem ovef0, s| is solved assuming

the value ofx(s) is given and is equal t. This
constrained cost is

(40)

(x = x(s)"P 7 (s)(x — %(s))

+ / R pdt.
0

Jx(8)

Optimizing it overx to find the optimal solution is
trivial and givesx = x(s). The optimal value ob is
obtained from

min(y — r'B"P!(x - )T
x (v-T'BTP 1(x— %)) (41)

subject tob — Cx = Dv. See the proof of Theorem
2.6.2 in (Campbell and Nikoukhah, 2004). This means
that the optimais can be obtained using the following
Lagrangian:

L= -T'BTP }(x-%))TT
x(v—-T'BTP 1(x — %))

+A7(b — Cx — Dv) (42)
The optimality conditions yield
Tv -D'A=B'P!(x - %) (43)
Dv=b-Cx (44)
from which, thanks to (40), gives
v=T"'(®(x-%)+DTR'(b-Cx)) (45)

where® = (B — SR !'D)TP~L.

To construct a causal solution t&, consider the
constrained problem withx = x(s). Then make
the assumption that with this constraint, the value of
K (s), which now is a function ok, is quadratic inx
and thus can be expressed as follows:

K(s) = (x — z(s))"T(s)(x — z(s)) + o(s) (46)

wherez(0) = zo andII(0) = II,. Variablesz(s), II,
ando are to be determined.

To verify the assumption and determinés), IT and
o, note that from (36) that

K=v"Av (47)

where v is given in (45). On the other hand (46)
provides that



K=Gx-2)TI(x-2)+ (x—2)TI(x — 2)
+(x—2z)TTI(x —2) + 5. (48)
Note that from (35a) and (45),
x = Ax+BI'" ! (®#(x—%)+D'R7}(b—-Cx)) +a

which can also be expressed as

x=Ax+ QP '(x—%)+SR !(b—Cx)) +a
whereQ = Q — SR!S. Setting (47) equal to (48)
gives
(®(x —%x) + DR (b - Cx))'T'AT!

x (®(x— %)+ DR (b - Cx)) =
(Ax+ QP (x — %)
+SR!(b—Cx))+a—2)"TI(x—z)+
(x —2)TTI((Ax + QP (x — %)
+SR'(b—-Cx))+a—2z)+

(x —2)TTI(x —2z) + 5. (49)
Note that both sides of (49) are quadraticxin

Matching coefficients of second order termsdafives
the following Lyapunov equation fdr,

(® -DTR!C)'r'Ar (@ -DT'RIC) =
(A+QP'—SR'C)'11
+II(A+QP ' —SR™!C)+1II (50)
with TI(0) = TI,.
Matching the linear terms iR, gives
(@-D'R!C)'T AT (—®%x+D'R'b) =
II(SR 'b—- QP 'k +a—2)—
(A+QP ' —SR'C)'II+1II)z (51)

which gives

z=Az+ (QP ! — Q®)(z — X)
—(S-ODT)R™'(Cz—b)+a (52
whereQ =TI *(® - D'R-'C)'T'AT 1.

Finally matching the terms which are independent of
x, after a long computation, yields

s=p’T'AT '
p=%®(z—-%)+ DR (b - Cz).

(53)
(54)
Theorem 6.Let x andz be defined by (38) and (52),

whereP is defined in (39) andl is the solution of the
Lyapunov equation (50). Then

K(s) = (x(s) — z(s)) " H(s)(X(s) — z(s))
+/‘ AT AT dt (55)
0

wherep is given in (54).

The result of Theorem 6 can givds(s) as long as

P remains non-singular. This would be the case, in
particular, if the optimization problem (34) were a
pure min or pure max problem. In the application here
though, it is a a max-min problem and tRematrix is

not necessarily sign-definite and can become singular
at a point on the interval. In this casH, diverges at
this point, even thouglk” does not.

To avoid this problem, it is necessary to perform a
change of variable in such a way as to avBid! in

all the equations of the system. This can be done as
follows. Let ¥ = PIIP and¢ = P~ 1(x — z). Note
that¥ = PIIP + PIIP + PIIP, which using (39)
and (50) can be expressed as follows

¥=(A-(S+PCHR'C)¥
+¥(A - (S+PCHR'C)”
+JT AT 1T

J=B-(S+PCR'D.

(56)
(57)
Similarly,é = P~'(x—2)—P~'PP~!(x—z), which
using in addition to (39) and (50), (38) and (52), can
be expressed as follows
E=—-(A-(S+PCHRIC
+Ir AT T hHTe
—(CT+eJgrtAar'n7)
x R71(Cx —b).

note thatt(0) = 0 and ¥ (0) = Py.

(58)

Theorem 7.Let x and€ be defined by (38) and (58),
whereP is defined in (39) and’ is the solution of the
Lyapunov equation (56). Then

K(s) = €6 (e)g(s) + [ AT AT s

wherefy = —J7¢ + DTR~!(b — Cx).

However (58) still has & ! in it. The actual integra-
tion that is implemented is given in the next theorem.

Theorem 8.K(s) can be evaluated by integrating
the system of differential equations in the variables
K, ¥ 6 = ¥¢ given by (56) and
6=(A-(S+PC"R )6
—v(CT +Jr'Ar'D"R}(Cx—b) (59)

K= (b-Cx)TR'DI 'Ar 'DR ! (b-Cx)
—(Cx—b)TR™'CH - 6"CTR™(Cx —b).
(60)



