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Abstract: A method of on-line constructing an optimal feedback control for linear
systems under state and control constraints is suggested. At first, a fast algorithm
of constructing an open-loop control is worked out. It is based on successive
correction of the solution to the optimal control problem with intermediate state
constraints by changing the location of constraints and introducing additional
constraints for identifying contact points and boundary arcs. Then, the scheme of
constructing open-loop solutions is modified in order to generate a realization of
optimal closed-loop control in any control process. Copyright c©2005 IFAC
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1. INTRODUCTION

In realistic control problems state constraints are
as typical as control constraints. By now for
such problems the theory of necessary optimality
conditions of the Maximum Principle type in the
class of measurable functions has been developed
quite completely (Hartl et al., 1995). But the
structure of the optimal control (OC) in the class
of measurable functions can be so complicated
that it could not be implemented with the use of
up-to-date technical facilities. So, it is an actual
problem to compute an optimal open-loop control
in such a class of functions that are practically
implementable and allow to get solutions as close
as is wished to solutions in the class of measurable
functions with respect to performance.

In the paper a method of constructing open-loop
and closed-loop solutions to linear OC problems
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with state constraints is presented. It is based on
the fast algorithm of solving a linear OC problem
with intermediate state constrained (Balashevich
et al., 2001). Methodologically, the suggested im-
plementation of optimal closed-loop control devel-
ops the approach (Gabasov et al., 1995; Gabasov
et al., 2000). According to this approach, before
starting the actual control process preliminary
work to form the framework of the solution is
performed, and then in the course of the control
process preliminary results are getting more pre-
cise on the basis of the realized states. The efforts
on treating other admissible but not realized in
the actual process states are not spent.

2. PROBLEM STATEMENT

On a fixed interval T = [0, t∗] consider an OC
problem for a linear system with a state constraint

c′x(t∗) → max, ẋ = Ax+ bu, x(0) = x0, (1)



d′x(t) ≥ α, |u(t)| ≤ 1, t ∈ T.

Here x = x(t) is an n-vector of system state at an
instant t; u = u(t) is a value of a scalar control;
A ∈ R

n×n; b, c, d ∈ R
n; α ∈ R are given.

An integer k is called an order of state constraint
d′x(t) ≥ α, t ∈ T , if

d′Aib = 0, i = 0, k − 2, d′Ak−1b �= 0.

A piecewise constant function u(t), t ∈ T , is said
to be discrete (with a quantization step h = t∗/N)
if it has the form u(ϑ) = u(t), ϑ ∈ [t, t + h[,
t ∈ Th = {0, h, . . . , t∗ − h}, N is an integer.

A constrained piecewise continuous function
|u(t)| ≤ 1, t ∈ T , is called an admissible control if
it together with a corresponding trajectory x(t),
t ∈ T , of (1) satisfies the relations:

1) an output signal y(t) = d′x(t), t ∈ T , of system
(1) satisfies the state constraint on the set Th:
y(t) ≥ α, t ∈ Th;

2) the ends of boundary arcs of the output signal
belong to Th: T (u) = {t ∈ T : y(t) ≡ α} =
∪r∗

r=1T
r, T r = [θr, θ

r[, θr, θr ∈ Th, r = 1, r∗;
θ1 < θ1 < . . . < θr∗ < θr∗

;

3) on boundary arcs T (u) the control u(t), t ∈ T ,
has the form u(t) = u(x(t)), t ∈ T (u), where
u(x) = d′Akx/d′Ak−1b;

4) on the set T̄ (u) = T \T (u) the control u(t),
t ∈ T̄ (u), is a discrete function.

An admissible control u0(t), t ∈ T , is called
an optimal open-loop control of problem (1) if
it provides the maximum value for performance
index of problem (1).

To define optimal feedback control let us imbed
problem (1) into the family

c′x(t∗) → max, ẋ = Ax+ bu, x(τ) = z, (2)

d′x(t) ≥ α, |u(t)| ≤ 1, t ∈ T τ = [τ, t∗],

depending on τ ∈ Th and z ∈ R
n.

Let u0(t|τ, z), t ∈ T τ , be an optimal open-
loop control of problem (2) for a position (τ, z);
T (u|τ, z) = ∪r∗(τ,z)

r=1 [θr(τ, z), θr(τ, z)[ be a set of
boundary arcs corresponding u0(t|τ, z), t ∈ T τ ;
Xτ be a set of z ∈ R

n for which there exists
u0(t|τ, z), t ∈ T τ , and θ1(τ, z) > τ .

A function

u0(τ, z) = u0(τ |τ, z), z ∈ Xτ , τ ∈ Th, (3)

is called an optimal (discrete) feedback of (1).

As a trajectory of the system closed by optimal
feedback (3) and affected by a piecewise continu-
ous disturbance w(t), t ∈ T ,

ẋ = Ax+ bu0(t, x) + w(t), x(0) = x0, (4)

a continuous solution to the equation

ẋ = Ax+ bu∗(t) + w(t), x(0) = x0,

with the control u∗(ϑ) = u0(t, x(t)), ϑ ∈ [t, t+ h[,
t ∈ Th, is accepted.

In a certain control process under a realized dis-
turbance w∗(t), t ∈ T , only the values

u∗(τ) = u0(τ, x∗(τ)), τ ∈ Th, (5)

along a realized isolated continuous trajectory
x∗(t), t ∈ T , are used. Moreover, it is enough to
know how to calculate the current value u∗(τ) at
any current instant τ ∈ Th, on the base of the
current state x∗(τ), in time not exceeding h, i.e.
in real time.

Function (5) is said to be a realization of opti-
mal feedback in a particular control process. Any
device able to calculate values (5) for any par-
ticular control process in real time is an optimal
controller.

Thus, the problem of synthesis of optimal feed-
back is reduced to constructing an algorithm of an
optimal controller. An optimal controller performs
fast corrections of optimal open-loop control of
current problem (2) subject to small variations of
initial state. The realization of the optimal closed-
loop control fed to the system presents a set of
the first signals of optimal open-loop controls for
every realized position.

3. GENERAL SCHEME OF COMPUTING AN
OPTIMAL OPEN-LOOP CONTROL

Below an iterative method of computing OC of
problem (1) is suggested. Its iteration consists
of three procedures: 1) formulation of simplified
OC problem; 2) solution to the simplified problem
(SP); 3) analysis of the solution of SP.

In SP, in contrast with the initial problem, state
constraints are imposed not on the whole interval
T , but only at isolated points. Similar problems
with intermediate state constrains have been stud-
ied in detail in (Balashevich et al., 2001), and the
algorithm of solving such problems forms the basis
of the suggested method.

On the first iteration, choose from Th ∪ t∗ an
arbitrary set S = {s1, . . . , sj∗}, 0 < s1 < . . . <
sj∗ = t∗, and form an initial SP

c′x(t∗) → max, ẋ = Ax+ bu, x(0) = x0, (6)

d′x(s) ≥ α, s ∈ S; |u(t)| ≤ 1, t ∈ T.

OC ũ0(t), t ∈ T , of problem (6) is computed by
the method (Balashevich et al., 2001) and the



behaviour of the output signal y(t) = d′x(t),
t ∈ T , of system (1) under the control ũ0(t),
t ∈ T , is analysed. Detect the first point � ∈ Th

of violation of the state constraint: y(�) < α, and
pass on to the next iteration.

On the follow-up iterations the SPs are formed by
changing the number and place of intermediate
constraints and by revealing boundary arcs T (u).

In general case, SP has the form:

c′x(t∗) → max,

ẋ = Ax+ bu, x(0) = x0, t ∈ T̄ (u),

ẋ = Āx, t ∈ T (u), (7)

d′x(θr) = α, d′Aix(θr) = 0, i = 1, k − 1,

|d′Akx(θr)| ≤ |d′Ak−1b|, r = 1, r∗,

d′x(s) ≥ α, s ∈ S; |u(t)| ≤ 1, t ∈ T̄ (u),

where Ā = A− bd′Ak/d′Ak−1b.

Problem (7), unlike (6), contains fixed intervals
T (u) of allocation of the output signal on the
boundary of the state constraint. OC ũ0(t), t ∈
T̄ (u), of problem (7) is computed and the be-
haviour of the output signal y(t), t ∈ Th, under
the control

u(t) =
{
ũ0(t), t ∈ T̄ (u),
u(x(t)), t ∈ T (u), (8)

is analysed to detect the minimal � ∈ T̄h(u) =
T̄ (u)∩Th, wherein the state constraint is violated.

The method finishes when y(t) ≥ α, t ∈ Th. Thus,
as a result of transforming and solving SPs we
form a set T (u) and OC ũ0(t), t ∈ T̄ (u), of (7),
which determine OC (8) of problem (1).

4. SOLUTION TO SIMPLIFIED PROBLEM

Let us describe key elements of the method
(Balashevich et al., 2001) of constructing OC for
problem (6).

Write down problem (6) in the functional form:∑
t∈Th

c(t)u(t) → max,

α(s) ≤
∑
t∈Th

d(s, t)u(t), s ∈ S; |u(t)| ≤ 1, t ∈ Th.

Here c(t) =
∫ t+h

t ψ′
c(ϑ)b(ϑ)dϑ,

d(s, t) =




t+h∫
t

G(s, ϑ)b(ϑ)dϑ, s > t,

0, s ≤ t,

α(s) = α−G(s, 0)x0,

ψc(t), t ∈ T , is a solution to the adjoint equation

ψ̇ = −A′ψ, ψ(t∗) = c; (9)

G(s, t), t ∈ [0, s], s ∈ S, is a 1×n-vector-function,
a solution to the equation

∂G(s, t)/∂t = −G(s, t)A, G(s, s) = d. (10)

Following (Balashevich et al., 2001), choose from
sets S, Th arbitrary subsets Ssup, Tsup such that
|Tsup| = |Ssup|. Form the matrix

Dsup =
(
d(s, t), t ∈ Tsup

s ∈ Ssup

)
.

A set Ksup = {Ssup, Tsup} is called a support of
problem (7) if detDsup �= 0.

A supportKsup characterizes controllability of the
output signal y = d′x(s), s ∈ Ssup, by impulses
applied at support instants t ∈ Tsup.

A support Ksup is accompanied by the following
elements:
1) the Lagrange multipliers ν(s), s ∈ S. Nonsup-
port components of multipliers are assigned to be
zero: νn = (ν(s), s ∈ Sn = S\Ssup) = 0; support
components νsup = (ν(s), s ∈ Ssup) are computed
as a solution to the equation

ν′supDsup = c′sup,

where csup = (c(t), t ∈ Tsup);
2) a cotrajectory ψ(t), t ∈ T , is a solution to the
equation

ψ̇ = −A′ψ, ψ(t∗) = c−H ′ν; (11)

3) a cocontrol (switching function)

∆(t) =

t+h∫
t

ψ′(ϑ)bdϑ, t ∈ Th;

4) a pseudocontrol ω(ϑ) = ω(t), ϑ ∈ [t, t + h[,
t ∈ Th, and an output pseudosignal ζ(s), s ∈ S.
At first, assign nonsupport values ωn = (ω(t), t ∈
Tn = Th\Tsup), of a pseudocontrol:

ω(t) = sign∆(t), if ∆(t) �= 0;

ω(t) ∈ [−1, 1], if ∆(t) = 0, t ∈ Tn,

and support values ζsup = (ζ(s), s ∈ Ssup) of an
output pseudosignal:

ζ(s) = α, if ν(s) < 0, s ∈ Ssup;

ζ(s) ≥ α, if ν(s) ≥ 0, s ∈ Ssup.

Support components ωsup = (ω(t), t ∈ Tsup) are
computed from the equation

Dsupωsup =
(
ζ(s) − d′x0(s),

s ∈ Ssup

)
,

where x0(t), t ∈ T , is a trajectory of the system

ẋ = Ax+ bu, x(0) = x0, t ∈ T (u) (12)



with a discrete control u(t) =
{
ω(t), t ∈ Tn,
0, t ∈ Tsup.

Nonsupport components ζn = (ζ(s), s ∈ Sn) are
computed as ζ(s) = d′xω(s), s ∈ Sn, where xω(t),
t ∈ T , is a trajectory of (12) with u(t) = ω(t),
t ∈ T .

Theorem. For optimality of a support Ksup it
is necessary and sufficient that the accompanying
pseudocontrol ω(t), t ∈ Th, and output pseudosig-
nal ζ(s), s ∈ S, satisfy the inequalities |ω(t)| ≤ 1,
t ∈ Tsup, α(s) ≤ ζ(s), s ∈ Sn.

A pseudocontrol ω(t), t ∈ Th, accompanying the
optimal support is OC of problem (6): ũ0(t) =
ω(t), t ∈ Th.

In the course of iterations of the method trans-
formations of support are performed to obtain an
optimal support K0

sup.

Thus, in accordance with algorithm (Balashevich
et al., 2001) an optimal support K0

sup of problem
(6) will be constructed and auxiliary data accom-
panying this support will be formed. OC ũ0(t),
t ∈ T̄h(u), of problem (6) is a pseudocontrol ω(t),
t ∈ T̄h(u), accompanying K0

sup.

The amount of computation required for con-
structing an optimal support K0

sup depends on
proximity of the initial support to the optimal one.
The most computational expenses are required for
solving initial SP (6), as before its solution there
is no any accompanying information. Further, for
solving SPs an optimal support and accompanying
data stored after the previous SP are used. This
allows to construct the optimal support of the
current problem by refining the optimal support
of the previous problem.

5. ANALYSIS OF SOLUTION AND
FORMULATION OF SIMPLIFIED PROBLEM

Having solved initial SP (6), we get OC ũ0(t),
t ∈ T , and accompanying data. Compute the
trajectory x̃0(t), t ∈ Th, the values of the output
signal y(t) = d′x̃0(t), t ∈ Th, and its derivatives
y(i)(t), i = 1, k, t ∈ Th. As the values y(i)(t),
t ∈ Th, are computed, the sets

T i(t) = {ϑ ∈ {h, 2h, . . . , t} :

y(i)(ϑ− h)y(i)(ϑ) < 0}, i = 1, k,

are formed and additional data accompanying
points of T i(t), i = 1, k, is stored.

Let at any instant � ∈ Th the state constraint
is violated: y(�) < α. Below we distinguish a
point �∗ ∈ Th, until which the system has been
integrated, and the minimal instant � ∈ Th ∩
[0, �∗], wherein the state constraint is violated.

Put �∗ = �. Store the sets T i(�∗), i = 1, k,
and verify the condition of activation of the state
constraint at the point �:

|d′Aix̃0(�)| ≤ ε, i = 1, k − 1; (13)

|d′Akx̃0(�)| ≤ |d′Ak−1b|,
where ε > 0 is a small number.

If condition (13) holds, put θ1 = �, θ1 = �+h and
get SP of type (7). Otherwise we include � into
S and get the problem of type (6). At the same
time, from the set S\{t∗, � − h, � + h)we delete
points, wherein intermediate constraints of solved
problem (6) are passive.

As a new SP differs from the solved one only
by constraints at the instant �, the method
(Balashevich et al., 2001) uses the optimal sup-
port of the solved problem and stored additional
data. The optimal support of the new SP is con-
structed by refining the available support.

Let the Kth SP have been formed. Before solving
it, on the base of the solution of theK−1th SP the
following elements are known: 1) point �∗ ∈ Th;
2) sets T i(�∗), i = 1, k; 3) accompanying data of
K − 1th problem.

Having solved the Kth SP,examine the interval
[0, �∗] for violation of the state constraint. The
state constraint can be violated at some point
� ∈ T̄h(u) left to �∗ if:

1) � = s−h or � = s+ h where s ∈ S is a contact
point;

2) � ∈ T 1(�∗) or �+ h ∈ T 1(�∗);

3) � = θr − h or � = θr + h where [θr, θ
r] is a

boundary arc.

Thus, to detect a point � it is enough to compute
the values

y(ϑ− h), y(ϑ), ϑ ∈ T 1(�∗);

y(s− h), y(s+ h), s ∈ S ∩ [0, �∗[, (14)

y(θr − h), y(θr + h), θr < θr < �∗, r = 1, r∗.

Values (14) are computed with the use of the
stored auxiliary data without additional integra-
tion of the system.

In the cases 1), 2), we verify condition (13) and
in the K + 1th problem either include point �
into S, or form the boundary arc [�, � + h]. In
the case 3), we extend the boundary arc putting
θr := θr − h or θr := θr + h. Delete from the set
S\{t∗, � − h, � + h} points in which intermediate
constraints of the Kth problem are passive.

If there are boundary arcs [θr, θ
r], r = 1, r(�∗), on

the interval [0, �∗] and after solving the Kth prob-
lem there are no violation points left to [θr, θ

r],



then in parallel with the K + 1th problem over
the interval [θr, θ

r], problems for refining the ends
of this interval are solved. In a SP instead of
[θr, θ

r] an interval [θr + h, θr] or [θr, θ
r − h] is

considered. If as a result of solving mentioned
problems there is no violation of the constraints
at the point θr or θr, then the boundary arc is
shortened respectively.

Thus, by solving a series of SPs we achieve fulfill-
ment of the state constraint on the interval [0, �∗].
After that, integrate the system from �∗ to the
right with the use of OC of the last solved problem
and detect a new point �∗ = � of violation. Repeat
operation of the algorithm for the new �∗.

If in the course of operating the algorithm we
obtain problem (6), which doesn’t have a solu-
tion, then there not exists the solution to initial
problem (1).

In problem (7) the solution may not exist because
of inconsistency between current boundary arcs
and true boundary arcs of problem (1). In this
case, we successively shorten boundary arcs, in-
clude released points of these arcs into the set S
and solve new SPs. As a result, we either get a
solvable problem and further deal with it, or get
an unsolvable problem (6) and draw a conclusion
about insolvability of initial problem (1).

6. REALIZATION OF OPTIMAL FEEDBACK

Before the beginning of the control process the
controller constructs the optimal support K0

sup(0)
by solving problem (6) without limitation on com-
puter time and put u∗(0) = u0(0, x0). At any
current τ ∈ Th the system reaches the state x∗(τ)
from the state x∗(τ − h) under the action of the
control u∗(t) = u∗(τ − h), t ∈ [τ − h, τ [, and the
disturbance w∗(t), t ∈ [τ − h, τ [. By assumption,
at the previous instant τ−h the optimal controller
solved problem (2) for the position (τ − h, x∗(τ −
h)) and knows the pair {K0

sup(τ −h), T τ−h(u)} of
the optimal support and the set of boundary arcs.
To compute {K0

sup(τ), T τ (u)} the controller uses
{K0

sup(τ − h), T τ−h(u)} as an initial approxima-
tion and performs computations by the described
above method with the use of accompanying data
stored at the instant τ−h. Due to the short quan-
tization step h and a bounded disturbance w∗(t),
t ∈ [τ − h, τ [, the difference between the nominal
state and the realized state x∗(τ) is small and to
refine {K0

sup(τ − h), T τ (u − h)} small amount of
computation is required.

The main computational expenses while solving
OC problem are caused by integration of primal
and adjoint systems. So the effectiveness of the
method is evaluated not by a number of iterations,
but by the length of intervals used for integration

of a primal or adjoint system to construct OC.
Estimates of complexity of operating an optimal
controller for OC problem with endpoint con-
straints are given in (Gabasov et al., 2000).

A specific feature of a control system under a state
constraint is that in the case of an active state
constraint for a position (τ, x∗(τ)), the next posi-
tion (τ + h, x∗(τ +h)) could be infeasible because
of the action of disturbance w∗(t), t ∈ [τ, τ + h[.
To avoid activation of the state constraint in the
course of control process, let us assume that at an
instant τ ∈ Th the controller knows bounds of dis-
turbances w(t) ∈ W = {w ∈ Rn : w∗ ≤ w ≤ w∗},
t ∈ [τ, τ + h[, one step ahead and instead of SPs
of type (6), (7) strengthened SPs (6), (7) with
additional constraint

d′x(τ + h) ≥ α− min
w∈W

h∫
0

d′F (h− s)wds,

where Ḟ = AF , F (0) = I, are considered.

7. EXAMPLE

As an example, a problem of OC of a two-mass
oscillating system is considered:

x3(12) −→ max, ẋ1 = x3, ẋ2 = x4,

ẋ3 = −x1 + x2 − u, ẋ4 = 0.1x1 − x2 + 0.1u,

x1(0) = x2(0) = 0, x3(0) = 2, x4(0) = 1, (15)

y(t) = x2(t) − x1(t) ≥ −0.5,

|u(t)| ≤ 1, t ∈ T = [0, 12].

Solve SP with intermediate constraints y(s) ≥
−0.5 at points s = 2i, i = 1, 6. The corresponding
output signal y(t), t ∈ T , is given in Fig. 1,a.
The first point � ∈ Th = {kh, k = 0, 299}, of
violation of the constraint y(t) ≥ −0.5, t ∈ Th, is
� = 2.04. Refine the solution to the SP replacing
the constraint y(2) ≥ −0.5 by y(2.04) ≥ −0.5.
After that, the first point of violation is � = 2.08.

Repeat the procedure, moving the constraint of
SP one step to the right and checking the place of
the first point of violation of the state constraint.
With the constraint y(2.72) ≥ −0.5 the first point
of violation is 2.64 and ẏ(2.64) = 0.019, which
means the chance of placing the output signal y(t),
t ∈ T , on the boundary of the state constraint.

As an initial boundary arc we take an interval
[θ1, θ1] of the length h putting θ1 = 2.64. Af-
ter procedure of refining we get a boundary arc
T1(u) = [2.72, 3.04]. The function y(t), t ∈ T , is
presented in Fig. 1, b.

Successively check the values y(t) at points of Th

and detect the violation of the constraint y(t) ≥



Fig. 1. Behaviour of the output signal

−0.5 at the point � = 7.08. In 19 steps a contact
point s = 7.84 is found and a boundary arc
[2.76, 3.56[ is identified which provide the solution
to problem (15). In Fig. 1, c the corresponding
output signal y(t), t ∈ T , is presented; in Fig. 2
OC is given. Thus, the solution to problem (15) is

Fig. 2. Optimal open-loop control

equivalent to the solution of the SP

x3(12) −→ max,

ẋ1 = x3, ẋ2 = x4, ẋ3 = −x1 + x2 − u,

ẋ4 = 0.1x1 − x2 + 0.1u, t ∈ [0, 2.76[∪[3.56, 12],

x1(0) = x2(0) = 0, x3(0) = 2, x4(0) = 1,

−x3(2.76) + x4(2.76) = 0,

| − 1.1x1(2.76) − 2x2(2.76)| ≤ 1.1,

ẋ1 = x3, ẋ2 = x4, ẋ3 = −0.9x2/1.1,

ẋ4 = −0.9x2/1.1, t ∈ [2.76, 3.56[,

x2(7.84)− x1(7.84) ≥ −0.5,

|u(t)| ≤ 1, t ∈ [0, 2.76[∪[3.56, 12[.

Assume that in the course of control process
the oscillating system is affected by disturbance
presented in the fourth equation ẋ4 = 0.1x1 −
x2 + 0.1u + w and the realizing disturbance has
the form

w∗(t) =
{ |0.3 sin 2t|, t ∈ [0, 3[∪[6, 12[;
−|0.3 sin2t|, t ∈ [3, 6[.

This disturbance is unknown to the optimal con-
troller but at any instant τ ∈ Th it knows that
|w(t)| ≤ 0.3, t ∈ [τ, τ + h[, and a current state
x∗(τ) is measured.

Fig. 3. Realization of the optimal feedback

The realization of the optimal feedback is pre-
sented in Fig. 3. The corresponding output signal
is given in Fig. 4.

Fig. 4. Realized output signal

As a unit of complexity one complete integration
of a primal or adjoint system on interval T is
taken. The complexity of computing a value u∗(τ)
at each instant τ ∈ Th does not exceed 0.12.

Let η be the time required for a microprocessor
to integrate a system on interval T . Then using
these microprocessors one can realize the feedback
if 0.12η ≤ h. Based on this inequality one can
choose a quantization step h for a given micro-
processor, and on the other hand, take a suitable
microprocessor for a given h.
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