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1. INTRODUCTION

In the current organisation of Air Traffic Manage-
ment the centralised Air Traffic Control (ATC)
is in complete control of the air traffic and ul-
timately responsible for safety. Before take off,
aircraft receive flight plans which cover the entire
flight. During the flight, ATC sends additional
instructions to them, depending on the actual
traffic, in order to improve traffic flow and avoid
dangerous encounters. The main objective of ATC
is to maintain safe separation. The level of ac-
cepted minimum safe separation can vary with the
density of the traffic and the region of airspace.
For example, a largely accepted value for horizon-
tal minimum safe separation is 5 nmi in general
en-route airspace which is reduced to 3 nmi in
approach sectors for aircraft landing and depart-
ing. A conflict is defined as loss of minimum safe
separation between two aircraft. If it is possible,
ATC tries also to fulfil the, possibly conflicting,
requests of aircraft and airlines (desired path to
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avoid turbulence, desired time of arrivals to meet
schedule, etc.. ).
To improve performance of ATC, mainly in view
of increasing levels of traffic, research effort has
been devoted over the last decade to create tools
for Conflict Detection and Conflict Resolution.
For a review of this aspect of ATC research see
(Kuchar and Yang, 2000). In Conflict Detection
one has to evaluate the possibility of future con-
flict starting from the current state of the airspace
and taking into account uncertainty in the future
position of aircraft while they follow their flight
plans. For this task one needs a model to predict
the future. In a probabilistic setting, the model
could be either an empirical distribution of fu-
ture position or a stochastic differential equation
that describes the aircraft motion and defines
implicitly a distribution for future aircraft posi-
tions. The stochastic part enters the system as
the action of the wind field and several uncertain-
ties in the physics of the aircraft. On the basis
of the prediction model one can evaluate met-
rics related to safety. One example of a possible
metric is conflict probability over a certain time
horizon. Several methods have been developed to



estimate different metrics related to safety for
a number of prediction models, e.g (Blom and
Bakker, 2002; Hu et al., 2003; Irvine, 2001; Paielli
and Erzberger, 1997; Prandini et al., 2000).
Among other methods, Monte Carlo (MC) meth-
ods have the main advantage of allowing flexibility
in the complexity of the prediction model since the
model is used only as a simulator and, in principle,
it is not involved in explicit calculations. In all
methods a trade off exists between computational
effort (simulation time in the case of MC methods)
and accuracy of the model. Techniques to acceler-
ate MC methods especially for rare event compu-
tations are under development, see e.g. (Krystul
and Blom, 2004).
For Conflict Resolution one wants to calculate
suitable maneuvers to avoid a predicted conflict.
A number of Conflict Resolution algorithms has
been proposed for a deterministic setting, see
(Kuchar and Yang, 2000). In a stochastic setting,
the research effort has been concentrated mainly
on Conflict Detection, with only a few resolution
strategies proposed. Simple conflict resolution ma-
neuvers in a stochastic setting have been consid-
ered in (Paielli and Erzberger, 1997; Prandini et
al., 2000).
In this paper we present a Monte Carlo Markov
Chain (MCMC) framework (Robert and Casella,
1999) for Conflict Resolution in a stochastic set-
ting. The approach is borrowed from Bayesian
statistics (Mueller, 1999; Mueller et al., 2002). We
will consider a resolution criterion that takes into
account separation and other factors (e.g. aircraft
requests). Then, the procedure of (Mueller, 1999)
is employed to estimate the resolution maneu-
ver that optimises the expected value criterion
through MCMC simulation. The interesting point
in this approach is that it extends the advantages
of Monte Carlo techniques, in terms of flexibility
and complexity of the problems that can be tack-
led, to Conflict Resolution.
The paper is organised as follows. In the next
section we recall previous work on the modelling
of aircraft motion from the point of view of ATC.
In Section 3 we present our approach to conflict
resolution based on Monte Carlo optimization
techniques. A simulation example is illustrated in
Section 4. Conclusions, in Section 5, complete the
paper.

2. MODELLING OF AIRCRAFT MOTION

In earlier work we developed an air-traffic simu-
lator that simulates adequately the behaviour of
a set of aircraft from the point of view of ATC.
The simulator implements realistic models of cur-
rent commercial aircraft described in the Base
of Aircraft Data (BADA) (EUROCONTROL Ex-
perimental Centre, 2002). The simulator contains
also realistic stochastic models of the wind dis-

turbance (Cole et al., 1998). The aircraft mod-
els contain continuous dynamics, arising from the
physical motion of the aircraft, discrete dynamics,
arising from the logic embedded in the Flight
Management System, and stochastic dynamics,
arising from the effect of the wind and incomplete
knowledge of physical parameters (for example,
the aircraft mass, which depends on fuel, cargo
and number of passengers). The simulator has
been coded in Java and can be used in different
operation modes either to generate accurate data,
for validation of the performance of conflict detec-
tion and resolution algorithm, or to run faster sim-
ulations of simplified models. The nominal path
for each aircraft is entered in the simulator as a
sequence of way-points. The actual trajectories
of the aircraft are then a perturbed version of
the nominal path, depending on the particular
realizations of wind disturbances and uncertain
parameters. The reader is referred to (Glover and
Lygeros, 2003) for a more detailed description of
the simulator.

3. MONTE CARLO OPTIMIZATION OF AN
EXPECTED VALUE CRITERION

In our approach we formulate conflict resolution
as a constrained optimization problem. Given a
set of aircraft involved in a conflict, the conflict
resolution maneuver is determined by a param-
eter ω (e.g. a sequence of way points or vector
commands) which defines the nominal paths of the
aircraft. The actual execution of the maneuver is
affected by uncertainty. Therefore, the sequence
of actual positions of the aircraft (for example:
the sequence of positions every 6 seconds which
is a typical time interval between two successive
radar sweeps) during the resolution maneuver is,
a-priori of its execution, a random variable de-
noted by X. A conflict is defined as the event that
the positions of two aircraft during the execution
of the maneuver get too close. The objective is to
select ω in order to maximise the expected value
of some measure of performance associated to the
execution of the resolution maneuver while ensur-
ing a small probability of conflict. In this section
we introduce the formulation of the problem in a
general fashion.

3.1 Penalty formulation of an expected value
optimization problem with constraints

Let X be a random variable whose distribution
depends on some parameter ω. The distribution
of X is denoted by pω(x) with x ∈ X. The set
of all possible values of ω is denoted by Ω. We
assume that a constraint on the random variable
X is given in terms of a feasible set Xf ⊆ X.
We say that a realization x, of random variable
X, violates the constraint if x 6∈ Xf . Moreover,



we assume that for a realization x ∈ Xf some
definition of performance of x is given. In general
performance can depend also on the value of ω,
therefore performance is measured by a function
perf(ω, x), x ∈ Xf , ω ∈ Ω. We assume that
perf(ω, x) takes values in (0, 1]. The probability
of satisfying the constraint is denoted by P(ω)

P(ω) =

∫

x∈Xf

pω(x)dx . (1)

The probability of violating the constraint is de-
noted by P̄(ω) = 1 − P(ω). The expected perfor-
mance for a given ω ∈ Ω is denoted by Perf(ω),
where

Perf(ω) =

∫

x∈Xf

perf(ω, x)pω(x)dx . (2)

Ideally one would like to maximise the perfor-
mance over all ω, subject to a bound on the prob-
ability of constraint satisfaction. Given a bound
P̄ ∈ [0, 1], this corresponds to solving the con-
strained optimization problem

Perfmax |P̄ = sup
ω∈Ω

Perf(ω) (3)

subject to P̄(ω) < P̄. (4)

Clearly, a necessary condition for the problem to
have a solution is that there exists ω ∈ Ω such
that P̄(ω) < P̄, or, equivalently,

P̄min = inf
ω∈Ω

P̄(ω) < P̄. (5)

This optimization problem is generally difficult
to solve, or even to approximate by randomised
methods. Here we approximate this problem by
an optimization problem with penalty terms. We
show that with a proper choice of the penalty term
we can enforce the desired maximum bound on the
probability of violating the constraint, provided
that such a bound is feasible, at the price of sub-
optimality in the resulting expected performance.
Let us introduce the function u(ω, x) defined as

u(ω, x) =







perf(ω, x) + Λ x ∈ Xf

1 x 6∈ Xf ,

(6)

where Λ > 1. The parameter Λ represents a
reward for constraint satisfaction. The expected
value of u(ω, x) is given by

U(ω) =

∫

x∈X

u(ω, x)pω(x)dx ω ∈ Ω . (7)

Instead of the constrained optimization prob-
lem (3)–(4) we solve the unconstrained optimiza-
tion problem:

Umax = sup
ω∈Ω

U(ω). (8)

Assume the supremum is attained and let ω̄ de-
note the optimum solution, i.e. Umax = U(ω̄).
The following proposition introduces bounds on

the probability of violating the constraints and
the level of sub-optimality of Perf(ω̄) over
Perfmax |P̄.

Proposition 3.1. The maximiser, ω̄, of U(ω) sat-
isfies

P̄(ω̄)≤
1

Λ
+

Λ − 1

Λ
P̄min

Perf(ω̄)≥Perfmax |P̄ − (Λ − 1)(P̄ − P̄min)

Proof: see (Lecchini et al., 2005).

Proposition 3.1 suggests a method for choosing Λ
to ensure that the solution ω̄ of the optimization
problem will satisfy P̄(ω̄) ≤ P̄. In particular
it suffices to know P̄(ω) for some ω ∈ Ω with
P̄(ω) < P̄ to obtain a bound. If there exists ω ∈ Ω

for which P̂ = P̄(ω) is known, then any

Λ ≥
1 − P̂

P̄ − P̂
(9)

ensures that P̄(ω̄) ≤ P̄. If we know that there
exists a parameter ω ∈ Ω for which the constraints
are satisfied almost surely, a tighter (and poten-
tially more useful) bound can be obtained:

Λ ≥
1

P̄
(10)

ensures that P̄(ω̄) ≤ P̄. Clearly to minimise the
gap between the optimal performance and the
performance of ω̄ we need to select Λ as small as
possible. Therefore the optimal choices of Λ that
ensure the bounds on constraint satisfaction and
minimise the sub-optimality of the solution are

Λ = 1−
ˆP

P̄−
ˆP

and Λ = 1
P̄

respectively.

3.2 Simulation-based optimization

In this subsection we recall a simulation-based
procedure, to find approximate optimisers of
U(ω). The only requirement for applicability of
the procedure is to be able to obtain realizations
of the random variable X with distribution pω(x)
and to evaluate u(ω, x) point-wise. This optimiza-
tion procedure is in fact a general procedure for
the optimization of expected value criteria. It has
been originally proposed in the Bayesian statistics
literature (Mueller, 1999).
The optimization strategy relies on extractions
of a random variable Ω whose distribution has
modes which coincide with the optimal points
of U(ω). These extractions are obtained through
Monte Carlo Markov Chain (MCMC) simulation
(Robert and Casella, 1999). The problem of opti-
mizing the expected criterion is then reformulated
as the problem of estimating the optimal points
from extractions concentrated around them. In
the optimization procedure, there exists a tunable
trade-off between estimation accuracy of the opti-
miser and computational effort. In particular, the
distribution of Ω is proportional to U(ω)J where
J is a positive integer which allows the user to



increase the “peakedness” of the distribution and
concentrate the extractions around the modes at
the price of an increased computational load. If
the tunable parameter J is increased during the
optimization procedure, this approach can be seen
as the counterpart of Simulated Annealing for a
stochastic setting. Simulated Annealing is a ran-
domised optimization strategy developed to find
tractable approximate solutions to complex deter-
ministic combinatorial optimization problems. A
formal parallel between these two strategies has
been derived in (Mueller et al., 2002).
The MCMC optimization procedure can be de-
scribed as follows. Consider a stochastic model
formed by a random variable Ω, whose distri-
bution has not been defined yet, and J con-
ditionally independent replicas of random vari-
able X with distribution pΩ(x). Let us de-
note h(ω, x1, x2, . . . , xJ ) the joint distribution of
(Ω, X1, X2, X3, . . . , XJ ). It is straightforward to
see that if

h(ω, x1, x2, . . . , xJ ) ∝
∏

j

u(ω, xj)pω(xj) (11)

then the marginal distribution of Ω, also denoted
by h(ω) for simplicity, satisfies

h(ω) ∝

[
∫

u(ω, x)pω(x)dx

]J

= U(ω)J . (12)

This means that if we can extract realizations
of (Ω, X1, X2, X3, . . . , XJ ) then the extracted Ω’s
will be concentrated around the optimal points of
U(Ω) for a sufficiently high J . These extractions
can be used to find an approximate solution to the
optimization of U(ω).
Realizations of the random variables
(Ω, X1, X2, X3, . . . , XJ ), with the desired joint
probability density given by (11), can be obtained
through Monte Carlo Markov Chain simulation.
The algorithm is presented below. In the algo-
rithm, g(ω) is known as the instrumental (or
proposal) distribution and is freely chosen by the
user; the only requirement is that g(ω) covers the
support of h(ω).

MCMC algorithm (Metropolis-Hastings)

Initial state (ω̄, x̄j j = 1, . . . , J) and ūJ =
∏

j u(ω̄, x̄j)

1 Extract
Ω̃ ∼ g(ω|ω̄)

2 Extract

X̃j ∼ pΩ̃(x) j = 1 . . . J

and calculate

ŨJ =
∏

j

u(Ω̃, X̃j)

3 Extract the new state of the chain as

(Ω̄, ŪJ )=







(Ω̃, ŨJ ) with prob. ρ(ω̄, ūJ , Ω̃, ŨJ )

(ω̄, ūJ ) with prob. 1−ρ(ω̄, ūJ , Ω̃, ŨJ )

where

ρ(ω̄, ūJ , ω̃, ũJ ) = min

{

1,
ũJ

ūJ

g(ω̄|ω̃)

g(ω̃|ω̄)

}

4 Repeat steps 1 through 3

This algorithm is a formulation of the Metropolis-
Hasting algorithm for a desired distribution given
by h(ω, x1, x2, . . . , xJ ) and proposal distribution
given by

g(ω)
∏

j

pω(xj) .

In this case, the acceptance probability for the
standard Metropolis-Hastings algorithm is

h(ω̃, x̃1, x̃2, . . . , x̃J )

h(ω, x1, x2, . . . , xJ )

g(ω)
∏

j pω(xj)

g(ω̃)
∏

j pω(x̃j)
.

By inserting (11) in the above expression one ob-
tains the probability ρ(ω, uJ , ω̃, ũJ ). Under mini-
mal assumptions, the Markov Chain Ω(k) is uni-
formly ergodic with stationary distribution h(ω)
given by (12). Results that characterize the con-
vergence rate to the stationary distribution can be
found for example in (Robert and Casella, 1999).
A general guideline to obtain faster convergence is
to concentrate the search distribution g(ω) where
U(ω) assumes nearly optimal values.

4. SIMULATION EXAMPLE

We consider the problem of sequencing two air-
craft. This is typically a task of air-traffic con-
trollers in Terminal Airspace where aircraft de-
scend from cruising altitude and need to be se-
quenced and separated by a certain time interval
before entering in the Final Approach Sector. In
Figure 1 several possible trajectory realizations of
a descending aircraft corresponding to the same
nominal path are displayed. In this figure, the
aircraft descends from 35000 ft to 10000 ft. In
addition to stochastic wind terms, uncertainty
about the mass of the aircraft is introduced as a
uniform distribution between two extreme values.
The figure suggests that the resulting uncertainty
in the position of aircraft is of the order of mag-
nitude of some kilometres.
We consider the problem of sequencing two de-
scending aircraft as illustrated in Figure 2-(a).
The initial position of the first aircraft (A1)
is [−100000 100000] (where coordinates are ex-
pressed in meters) and altitude 35000 ft. The
path of this aircraft is fixed. This aircraft pro-
ceeds to way-point [−90000 90000] where it will
start a descent to 15000 ft. The trajectory of A1,
while descending, is determined by an interme-
diate way-point in [0 0] and a final way-point in
[100000 0], where aircraft exit the sector. The sec-
ond aircraft (A2) is initially in [−100000 −100000]
and altitude 35000 ft. This aircraft proceeds to
way-point [−90000 − 90000] where it will start
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Fig. 1. Trajectory realizations of aircraft descent

the descent to 15000 ft. The intermediate way-
point ω = [ω1 ω2] must be selected in the range
ω1 , ω2 ∈ [−90000 90000]. The aircraft will then
proceed to way-point [90000 0] and then to the
final way-point [100000 0].
We assume that the objective is to obtain a time
separation of 300 sec between the arrivals of the
two aircraft at the final way-point. Performance in
this sense is measured by perf = e−a·(|T1−T2|−300)

where T1 and T2 are the arrival times of the
aircraft at the final way-point and a = 5 · 10−3.
The constraint is that the trajectory of the two
aircraft are not conflicting. A conflict is defined as
the situation of loss of minimum safe separation.
Safe separation is defined by a protected zone
centred around each aircraft having radius 5 nmi
and height 2000 ft, so that aircraft which do not
have 5 nmi of horizontal separation must have
1000 ft of vertical separation. We optimise initially
with an upper bound on probability of constraint
violation given by P̄ = 0.1. It is easy to see that
there exists a maneuver in the set of optimization
parameters that gives negligible conflict probabil-
ity. Therefore, based on inequality (10), we select
Λ = 10 in the optimization criterion.
The results of the optimization procedure are il-
lustrated in Figures 2-(b-d). Each figure shows
the scatter plot of the accepted parameters during
MCMC simulation for different choices of J and
search distribution g. In all cases the first 10%
of accepted parameters was discarded as a burn
in period to allow convergence of the chain to its
stationary distribution. For each case we give also
the ratio between accepted and proposed states
during MCMC simulation. Figure 2.(b) illustrates
the case J = 10. In this case the proposal distribu-
tion g was uniform over the parameter space. The
ratio accepted/proposed states was 0.27. Regions
characterised by a low density of accepted param-
eters can be clearly seen in the figure. These are
parameters which correspond to nominal paths
with high probability of conflict. The figure also
shows distinct “clouds” of accepted maneuvers.
They correspond to different sequences of arrivals:

−0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x 10
5

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x 10
5

ω
1
 [meters]

ω
2 [m

et
er

s]

ω

(a) Nominal paths: A1 (bold) and A2 (dashed)
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(b) 2000 accepted states, J = 10
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(c) 1000 accepted states, J = 50
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(d) 1000 accepted states, J = 100

Fig. 2. Accepted states during MCMC simulation

either A1 arrives before before A2 (top left and
bottom right clouds) or A1 arrives after A2 (mid-
dle cloud). Figure 2.(c) illustrates the case J = 50.
In this case the proposal distribution g was a sum



of 2000 Gaussian distributions N(µ, σ2I) with
variance σ2 = 107 m2. The means of Gaussian dis-
tributions were 2000 parameters randomly chosen
from those accepted in the MCMC simulation for
J = 10. The choice of this proposal distribution
gives clear computational advantages since less
computational time is spent searching over regions
of non optimal parameters. In this case the ratio
accepted/proposed states was 0.34. Figure 2.(d)
illustrates the case J = 100 and proposal distribu-
tion constructed as before from states accepted for
J = 50. Here the ratio accepted/proposed states
was 0.3. Figure 2.(d) indicates that a nearly op-
timal maneuver is ω1 = −40000 and ω2 = 40000.
The probability of conflict for this maneuver,
estimated by 1000 Monte-Carlo runs, was zero.
The estimated expected time separation between
arrivals was 283 sec.

5. CONCLUSIONS

In this paper we illustrated our current approach
to air traffic conflict resolution in a stochastic
setting based on the use of Monte Carlo methods.
The main motivation for our approach is to enable
the use of realistic stochastic hybrid models of
aircraft flight; Monte Carlo methods appear to be
the only ones that allow such models. We have
formulated conflict resolution as the optimization
of an expected value criterion with probabilistic
constraints. Here, a penalty formulation of the
problem has been considered which guarantees
constraint satisfaction but delivers a suboptimal
solution. A side effect of the optimization pro-
cedure is that structural differences between ma-
neuvers are highlighted as “clouds” of maneuvers
accepted by the algorithm.
Our current research is concerned with overcom-
ing the sub optimality imposed by the need to pro-
vide constraint satisfaction guarantees. A possible
way is to use the Monte Carlo Markov Chain pro-
cedure presented in Section 3 to obtain optimiza-
tion parameters that satisfy the constraint and
then to optimise over this set in a successive step.
Formulation of the conflict resolution procedure in
the Sequential Monte Carlo framework (Doucet et
al., 2001) is also under investigation. Finally, we
are also working on modelling and implementation
in the simulator of typical Air-Traffic Control sit-
uation with a realistic parameterisation of control
actions and control objectives.
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