

DISTRIBUTED CONTINUOUS PROCESS SIMULATION: AN INDUSTRIAL CASE STUDY

1Raúl Alves Santos, 1Julio E. Normey-Rico, 2Alejandro Merino Gómez
& 3Cesar de Prada Moraga

1 Department of Automation and Systems. Federal University of Santa Catarina.88040-
900 CTC-UFSC. Florianópolis-SC Brazil. {ralves, julio}@das.ufsc.br

2 Center of Sugar Tecnology. University of Valladolid. Edificio Alfonso VIII, 47011.
Valladolid. Spain. alejandro@cta.uva.es

3 Department of Systems Engineering and Automatic Control. University of Valladolid
c/ Real de Burgos s/n 47011, Valladolid, Spain. prada@autom.uva.es

Abstract: This paper presents a case study of the creation of distributed continuous
simulations using DCOM components. The proposed approach considers each part of the
simulation as a DCOM component and uses an efficient simulation modeling language,
EcosimPro, to perform the simulations contained in each one. This procedure has been
applied to an industrial scale simulation corresponding to a sugar beet factory. The effect
of the distribution degree in the performance has been studied. The simulation has been
used to test advanced control algorithms and also in the construction of a simulator
training system. Copyright© 2005 IFAC

Keywords: Distributed Simulation, Process Control, Process Simulators, Training.

1. INTRODUCTION

Simulation is recognised as one of the key
technologies in the process industry. It is used for
many purposes but perhaps the two most important
applications are operator training and controller
tuning and evaluation. In these cases, it is very
important to execute the simulation in real time. For
simple processes it is easy to obtain using
conventional PCs. But when the complexity of the
process increases, for instance if a complete factory
must be simulated, parallel and distributed
simulation must be used. Parallel simulations
systems use multiprocessors computers with shared
memory. Distributed simulations systems use a set of
computers distributed in a network. Both solutions
bring a series of benefits (Fujimoto, 2001): reduced
execution time, allows the geographical distribution
of the machines and the execution in heterogeneous
systems. But the option of using conventional PCs
distributed in a network is usually preferred because
it can be implemented using existing infrastructure.

There are several tools and standards in the field of
distributed simulation like HLA (High Level
Architecture) (DMSO, 2004) and CAPE-OPEN
(Computer Aided Process Engineering Open
Simulation Environment) (CAPE-OPEN, 1999).
HLA comes from the Department of Defence of US,
it was approved as an IEEE standard in September of
2000, IEEE Standard 1516. It is focused on
interoperability and reusability of the components
and offers mechanisms for time management, as well
as sophisticated data distribution concepts. It uses
their own communication and synchronization
libraries, called Runtime Infrastructure (RTI). HLA
has been used mainly in military simulation
applications, like combat simulators and also in some
civil simulators applications like flight simulations,
traffic control, etc. Most of these applications are
discrete events or hybrid simulations. CAPE-OPEN
is an European Community project whose purpose is
the development, specification, test and publication
of standards for the software components interfaces
used to the development of process simulators. Like

HLA, does not specify the programming language in
which the simulations must be develop. It
standardizes the interfaces of the simulation
components for the middlewares OMG CORBA
(OMG, 1998) and Microsoft DCOM (Microsoft C.,
1995). This solution is adopted by commercial
simulators like INDISS (RSI, 2004).

The military simulations commonly are written in
languages like C++, FORTRAN or Java, while the
civil simulations are developed with commercial
simulation tools like ACSL, Arena, GPSS/H,
Dymola, gProms, Abacuss, EcosimPro, etc.

Distributed simulation is widely used with discrete
event systems but there are almost no applications in
the continuous process area. The interesting for this
type of application is growing and the studies and
implementation of solutions for this area is an open
field of research (Acebes, 1999).

In this paper, a sugar beet control room training
simulator is presented. It consists of a plant wide
model and a control room environment. The
simulation is based in EcosimPro (EcosimPro, 2004).
As an OOML (Object Oriented Modeling Language)
it allows the construction of libraries of component
models that can be connected to simulate the
different parts of a sugar factory. In order to simulate
the whole factory a distributed architecture is used so
that different parts of the factory simulation run in
different interconnected computers performing a
synchronized execution.

Next section presents the implementation of the
proposed solution. Section 3 analyses the application
to the sugar factory and the obtained results. The
paper ends with the conclusions.

2. DISTRIBUTED SIMULATION

EcosimPro acts as a C++ simulation code generator
that must be compiled with a Microsoft Visual C++
compiler. For distributed simulation, anyone of the
two mentioned middlewares can be used, but for its
execution under a Windows operating system and in
a homogenous environment it is more appropriate the
direct use of DCOM, because it is included in the
operating system and does not requires the
installation of additional packages. Also, Microsoft
development tools include facilities for the
development of COM components.

In our case study we have a series of simulations
developed with EcosimPro, corresponding to
different parts of a sugar factory, including the
process and its control system. The main steps for
the development of the distributed simulation with
EcosimPro vía DCOM are: i) identification of the cut
points of the simulation, following criteria of data
interchange, process integrity and number of
distributed modules; ii) generation of the C++ code
correspondent to the simulations; iii) encapsulation

of the simulations in DCOM servers; and iv)
communication and synchronization among them.

2.1 Simulation and partition.

EcosimPro belongs to the family of the so called
modelling languages, such as gProms, Abacus,
Dymola… in the sense that they support non-causal
models able to be modified automatically according
to the context in which they are used. This means
that the user can specify different boundary
conditions without modifying the model code, and
EcosimPro will manipulate symbolically the
equations to adapt them to the specifications, which
increases its re-usability. Being object-oriented it
support the paradigms of encapsulation, inheritance,
etc.

Its simulation language, called EL, allows the
description of process models, named components,
in a natural way by means of continuous differential-
algebraic equations and discrete events variables.
Once the user has built a system interconnecting
components by ports, it is compiled and, after
establishing a partition, that is, describing which
variables constitute the known boundary conditions,
EcosimPro generates C++ simulation code linked to
the numerical solvers. This increases the open
character of the language. EcosimPro can deal with
large models and has been tested in different fields
such as aerospace, power stations or process
industries. A typical process model involving several
thousand DAEs will be integrated normally in a fast
and reliable way, but the speed of execution,
assuring a given precision, depends not only in the
size, but, mainly, in the nature of the DAE involved.
This means that, if real time execution is required,
some large models must be executed in a distributed
environment.

The choice of the points where a compact simulation
can be split in several ones is not an easy task.
Important aspects to be considered are not only the
number of variables that must be interchanged
among the parts during the simulation execution, but,
having in mind the constraints imposed by the
numerical integration of the model differential
equations, it is also important to consider the speed
of change of these variables. If fast changing
variables are involved, the time interval between data
exchanges should be reduced in order to maintain
integration errors below a desired threshold, which
can represent a heavier load than another distribution
with a higher number of slower changing variables to
interchange. The variable that determines the
communication time interval is called CINT. It is
very important to establish a correct value to it.
Increasing the CINT introduces errors in the
simulation but at the same time increases the
execution performance because the communication
times are smaller.

2.2 Encapsulation in DCOM Servers.

DCOM is the Microsoft solution for a component
software bus, and has the same philosophy as
CORBA. DCOM extends COM (Component Object
Model) to support communication between objects in
different computers, in a LAN, WAN, or even in
Internet and allows the distribution of components
throughout a network. COM consists of a set of
interface specifications that allow communications
between clients and a server in the same machine. It
provides support for the creation of software
components, and incorporates properties like
language independence, location transparency, etc.
Using this characteristic, simulations can be
encapsulated in DCOM components. In order to
control and access the encapsulated simulation, an
interface with a set of methods must be created (Fig.
1). After the components were created they must be
installed in the different computers of the network.

SERVER

ECOSIMPRO
SIMULATION

Start
GetValues
SetValues
Reset
Advance

Fig. 1. Interface for the component which includes

the simulation.

The access is done through the methods contained in
the components interface, which will allow the
management of the simulation.

In the components, the CINT variable establishes the
time interval for data interchange between
simulations. The data that are being interchanged are
the values of the boundary conditions of every model
component. Notice that, each simulation assumes
that during the CINT time interval, the boundary
conditions remain constant, which is the main source
of errors.

2.3 Communication and Synchronization.

To perform the cooperative execution of the
simulations it is necessary communicate and
synchronize them. For this purpose there is an
application (coordinator) that acts as a client.

Simulation advance is handled by a thread located in
each component. The execution basic cycle consists
of: waiting until all the data have been received,
integrating the model up to the next time interval and
notifying the coordinator that the calculation has
finished and the data are available. Written and read
data are stored in an intermediate buffer, in order to
avoid the reads and writes while the simulation is
performing the model integration.

In the client side, the coordinator, in a first step,
initializes the servers that are going to be used. After
that, a cycle of actions begin. The client waits until it

receives the advance signals from each server, which
indicate the end of the simulation interval
calculation. Then it reads the data from the servers, it
generates the corresponding writing vectors and
writes them to the target servers. After that, checks if
the simulation is finished, if not, another iteration
cycle is done. Once the simulation ends the servers
finalize their execution. Finally the function that
closes all the communications is called. The
synchronization between the client and the servers is
made through the data writings and the advance
signals sent from the servers to the client. The
chronogram in Fig. 2 illustrates the joint execution of
the servers and the client, and shows how the
synchronization is made.

Fig. 2. Chronogram of the communication and

synchronization.

3. APPLICATIONS AND RESULTS

This section describes the process, the training
simulator and some results related to its operation.

3.1 The simulated process.

Sugar factories are fairly complex plants that involve
a great variety of processes, ranging from external
services such as a power plant, distillation and
fermentation, waste water treatments, to the typical
sugar process units: diffusers, evaporators, reactors,
heat exchangers, crystallisers, dryers, filters, etc.
operating both in continuous and batch modes. A
schematic of the process can be seen in Fig. 3,
showing the main sections that compose the main
line of beet sugar production each one involving
dozens of process units and thousands of variables.

Server 1 Server 2Client

Advance

Advance

1 0

0 0

1 1

ReadData
ReadData

WriteData

Advance

0 0

1 0

WriteData

Advance 1 1

ReadData

WriteData

Advance

ReadData

WriteData

Advance

0 0

1 0

1 1

0 0

Calculate

Calculate

Calculate

Calculate

Cutting
and washing DIFUSSION

SUGAR

MOLASSES

PULP
DRYERS

DEPURATION

ELECTRICITY
POWER

STATION

EVAPORATION
SUGAR
HOUSE

SUGAR BEET

PULP

WATER

Fig. 3. Main sections in a sugar factory.

The simulation of the factory has been performed in
EcosimPro, organising several libraries of process
units, products properties, ports and control
equipment The components were then linked
together as in the real process and parameterised
using process data and technical documentation from
a factory in Benavente, Spain. As the complete
simulation of the sugar factory represents a huge
model that requires a great amount of computational
time, the execution in a single conventional
computer is not possible, if real time specifications
are required, and a distributed simulation must be
implemented. The fact that each section in Fig. 3 is
linked to the adjacent ones by a small number of
pipes which mainly send juices and steam, facilitates
the task of defining cut-points for the distribution of
the simulation which correspond roughly to the
working departments or sections. Thus, the complete
simulation system was divided into seven individual
simulations, one for each section, except for the
depuration, the biggest in terms of computation
because it involves a lot of mixed continuous and
batch units, which has been subdivided in two parts.
Fig. 4 shows how the different sections are
connected, as well as the number of interchanged
data. Table 1 illustrates the size of each section.

PULP DRYING

DIFUSSION SUGAR HOUSEDEPURATION13 EVAPORATION

DEPURATION2

3
4

1

13 32
6

3

12

2

5

15

2

Fig. 4. Data interchange between the different

sections of the sugar factory.

Table 1. Size of each section.

 Equations Variables Outputs Inputs
Difussion 3105 5176 9 3
Pulp Drying 1303 2670 0 3
Depuration13 4505 7325 20 39
Depuration2 2608 4643 32 13
Evaporation 1936 4020 25 11
Sugar House 5578 9534 2 15
Steam Boilers 2545 4765 1 5
 21580 38133 89 89

The architecture of the system has seven servers and
one client coordinator that interchange data and
synchronize them.

3.2 Test results.

The tests were done in a set of seven computers, with
Windows 2000 Pro operating system, connected to a
standard 10/100 Mb network. The characteristics of
these computers are listed in Table 2.

Table 2. Computers characteristics.

Id. Processor
PC1 / PC3 / PC4 / PC5 PIV 1.6 GHz
PC2 PIII 800 MHz
PC6 PIII 1GHz

In the tests, different combinations of the sections to
be distributed were considered, representing several
degrees of distribution. The simulations were
assigned to the available computers and the
calculation and communication times were obtained.
Table 3 shows how the distribution was done,
indicating in each row in which computer the
simulations will be executed. The tests, named Pi,
begin with the execution in only one computer and
end with the execution in six computers.

Table 3. Distribution of the simulations.

Test DIF PD D13 DE2 EVA SH SB CL
P1 PC1 PC1 PC1 PC1 PC1 PC1 PC1 PC1
P2 PC1 PC3 PC1 PC1 PC3 PC3 PC3 PC1
P3 PC3 PC2 PC1 PC1 PC2 PC3 PC1 PC1
P4 PC3 PC2 PC1 PC1 PC3 PC4 PC2 PC1
P5 PC3 PC3 PC1 PC5 PC2 PC4 PC1 PC1
P6 PC3 PC6 PC1 PC5 PC6 PC4 PC2 PC1

The results obtained according to the distribution
indicated in Table 3 are shown in Table 4. The times
correspond to the execution of 300 seconds of the
simulation with a CINT of 5 seconds. The last
column gives the average communication time for
one time.

Table 4. Execution times (in seconds).

Test Time Comm % Comm Interval Time
P1 918,037 0,0878 0,0096 0,001489
P2 533,112 0,1713 0,032 0,002904
P3 541,806 0,2330 0,043 0,003949
P4 358,144 0,2196 0,061 0,003722
P5 320,415 0,2292 0,072 0,003884
P6 284,965 0,2743 0,096 0,004650

Notice that, in spite of the fact that when the degree
of distribution increases the time needed to

interchange the data between simulations increases,
the overall execution time decreases.

Fig. 5. Execution time for different distribution

degrees.

With the increase of the distribution degree the
execution time is not always smaller (see P2 P3 in
Fig. 5). These times are conditioned for the
computational load of the simulation, and the
performance of the computer in which it is executed.
Fig. 6 shows the execution time of each simulation
and how this time depends on the computational
requirements of the simulated process, the
distribution degree and the performance of the
computer where the simulation is located.

Looking at the times of each simulation it is possible
to determine how to distribute the simulations when
the distribution degree increases. Also is it possible
to determine when the increase in distribution will
not give an increase in the performance. For
instance, if we are in case P6 and we add another
computer, with a performance lower or equal to the
faster computer used, the final execution time would
not be reduced because the simulation n. 3 in the
computer 1 have a execution time higher than the
execution time of the simulation 2 and 5 in the
computer 3.
As can be seen the distribution of the simulation
gives: (a) lower execution times, (b) larger
communication times. In this case the
communication time is always below 0.1% of the
total time, with an interval communication time
lower than 5ms.

3.3 Application to a training simulator.

One of the possible fields of application of
simulation is in a training simulator. To do this, real
time execution is needed. The simulations have to
finish their calculation before the CINT, and the
client must wait until the end of the CINT to
synchronise them, simulating in this way real time
operation. In this section a training simulator of
sugar factories is presented briefly (Acebes, 2003).

The architecture of the simulator includes, besides
the distributed simulation, a SCADA (Supervisor
Control And Data Acquisition System) connected to
the DCOM servers. This SCADA has been
developed in Microsoft Visual C++, an includes an
OPC (OLE Process Control) client in order to access
the developed servers (Iwainitz et al., 2002).

Nevertheless, the DCOM servers who contain the
simulations are not directly accessible by the
SCADA. Thus an intermediate OPC server has been
developed, which allows the access to the variables
of the simulation via OPC.

Fig. 7 shows the architecture of the training
simulator, of the sugar factory. The communications
for the synchronization is done by a DCOM client,
and the communications with the SCADA are done
through the OPC servers.

This architecture provides communications at two
levels. At low level, in which the interchange of data
and synchronization is made, the communication
time must be reduced to the minimum possible. With
this strategy the real time execution of the simulation
is not delayed. Also, this allows the executions with
smaller CINTs obtaining greater fidelity. The other
level is used to communicate the simulations with
the SCADA. These are not critical communications,
and the communication times can be higher.

Fig. 6. Calculation times of each simulation when the distribution degree increases.

OPC Server: Pulp Drying

DCOM Client

DCOM Server
EcosimPro
Simulation

Pulp Drying

OPC Server: Depu..13

DCOM Client

DCOM Server
EcosimPro
Simulation

Depuration13

OPC Server: Depu...2

DCOM Client

DCOM Server
EcosimPro
Simulation

Depuration2

OPC Server: Evapo...

DCOM Client

DCOM Server
EcosimPro
Simulation

Evaporation

OPC Server: Sugar...

DCOM Client

DCOM Server
EcosimPro
Simulation

Sugar House

OPC Client

SCADA
(Operator Console)

DCOM Client

OPC Client

SCADA
(Operator Console)

OPC Client

SCADA
(Instructor Console)

OPC Server: Difussion

DCOM Client

DCOM Server
EcosimPro
Simulation
Difussion

OPC Server: Steam...

DCOM Client

DCOM Server
EcosimPro
Simulation

Steam Boilers

 Data Interchange & Sincronization

Fig. 7. Sugar factory simulator training system architecture scheme.

3.4 Control application.

The sections of the sugar factory have a set of local
control loops (mainly PID controllers) that manages
the dynamic behaviour of the process. These ones are
executed as a part of the process simulation. With the
use of a SCADA system the parameters and set
points of these local regulators could be modified on
line during the simulation execution. Also advanced
control algorithms could be used to implement a
MIMO global control of the system. In the particular
case of the sugar factory model based predictive
controllers were designed and tested. This procedure
allows the tuning of the controller parameters before
the implementation in the real factory.

4. CONCLUSIONS

A case study for the development of distributed
simulations via DCOM oriented to a simulator of the
process industry has been presented. The
communication and synchronization problems have
been solved.

The main advantages of this approach are: (i)
independent programming of the simulated models
and the mechanisms of communication, (ii) use of a
well-known and widely used technology like
DCOM, (iii) use of conventional computers available
in a network, (iv) it could be directly applied to
industrial scale simulations.

Finally, this case study has shown the utility of the
distributed simulation in the continuous process area,
when accelerated or real time execution is required.
With the increase of the distribution degree the
desired execution times had been obtained. With
more powerful machines real-time execution has
been obtained, in almost all of the interval times.

REFERENCES

Acebes L. F., Prada C. (1999).”Process and Control
Design Using Dynamic Simulation”. CITS
General Assembly’99 Amberes, Holland.

Acebes L.F., de Prada C., Alves R., Merino A.,
Pelayo S., García A., Gutierrez G., Rueda A.
(2003). “Development Tools for Full Scale
Simulators of Sugar Factories”, CITS’03. , 22th
General Assembly of the CITS, Madrid.

CAPE-OPEN. (1999). “Next Generation Computer-
Aided Process Engineering Open Simulation
Environment: Public Synthesis & Roadmap”

DMSO, Defense Modeling and Simulation Office.
(2004) [Online]. Retrieved from
http://www.dmso.mil.

EcosimPro by EA Internacional (2004). Dynamic
Modeling & Simulation Tool [Online].
Retrieved from http://www.ecosimpro.com.

Fujimoto Richard M. (2001). “Parallel and
Distributed Simulation Systems”, Proceeding of
the 2001 Winter Simulation Conference.

Iwainitz F. and Lance J. A. (2002). “OPC-
Fundamentals, Implementation and
Application”, ISBN 3-7785-2883-1.

Microsoft Corporation and Digital Equipment
Corporation (1995). “The Component Object
Model Specification, Draft Version 0.9”.

OMG, Object Management Group (1998). “The
Common Object Request Broker: Arquitecture
and Specification”, 2.2 ed.

RSI (2004), [Online]. Retrieved from http://www.rsi-
france.com.

