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Abstract: In this paper, a new subspace method for predicting time-invari-
ant/varying stochastic systems is investigated in the 4SID framework. Using the
concept of angle between past and current subspaces spanned by the extended
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1. INTRODUCTION

During the last two decades, 4SID-based system
identification has been considerably developing,
achieving a significant level of maturity and ac-
ceptability in control system applications. Nowa-
days, subspace identification is recognized to be
very efficient to model multivariable systems, in-
cluding estimations of the system states only from
the set of input and output data. However, the
prediction of system model has not been so much
investigated in the framework of subspace identi-
fication.

In reality, most existing systems show time-
varying and/or nonlinear behavior, and the non-
linear systems are sometimes treated as (high-
order) linear time-varying systems from the prac-
tical point of view. Furthermore, most of actual
phenomena show complex behaviors and their
mathematical models are written by time-varying
and/or nonlinear equations.

Thus, in order to obtain accurate mathematical
models and to realize efficient control, the esti-
mation and/or prediction of the system are sig-
nificantly important. Especially, in order to re-
alize the model predictive control the subspace
prediction (SP) is very important (Favoreel, et
al., 1999), and its algorithm must be necessarily
recursive.
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Motivated by the model predictive control which
is a general name for a whole class of model-based
control methods, in this paper an approach to pre-
dict unknown system dynamics will be developed
in the 4SID framework with an idea of the angle
between two subspace of the past and the future.

2. PROBLEM STATEMENT

Suppose that we are given a couple of input and
output data sequences {uk, yk} and the output
data is generated from the discrete-time time-
varying stochastic system:

xk+1 = Akxk + Bkuk + wk (1)

yk = Ckxk + Dkuk + vk, (2)

where uk ∈ Rm, yk ∈ Rℓ and xk ∈ Rn are
input, output and state vectors; wk ∈ Rn and
vk ∈ Rℓ are zero-mean white Gaussian sequences
with covariance matrices:
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(δks : Kronecker delta).

The system order n is assumed to be known. Let
k1, k2 (k1 < k2) be two (distinct) time instants,
and let Yα(kν |kν − N + 1) ∈ Rαℓ×N (ν = 1, 2) be
a block Hankel matrix constructed by arranging
(column) output vectors yα(i) = [ yT (i − α +
1), · · ·, yT (i) ]T from i = kν − N + 1 to i =
kν , where α is the size of block rows. Similarly,
let Uα(kν |kν − N + 1) ∈ Rαm×N be the block
Hankel matrix constructed by the input data (e.g.,



Verhaegen and Dewilde, 1992; Van Overschee and
De Moor, 1996).

Then, under the quasi-stationarity assumption
(Ohsumi and Kawano, 2002b; Ohsumi, et al.,
2003; Kameyama, et al., 2005) the input-output
algebraic relationships with arguments k1 and k2

are given, respectively, as:

Yα(kν |kν − N + 1) = Γα(kν)Xα(kν |kν − N + 1)

+Hα(kν)Uα(kν |kν − N + 1)

+Σα(kν)Wα(kν |kν − N + 1)

+Vα(kν |kν − N + 1) (ν = 1, 2), (3)

where Γα(·) ∈ Rαℓ×n is the extended observ-
ability matrix; Xα(·|·) ∈ Rn×N the matrix con-
structed by system states; Wα( · | · ) ∈ Rαn×N

and Vα( · | · ) ∈ Rαℓ×N are system and obser-
vation noise matrices constructed similarly to
Yα( · | · ); and Hα(·), Σα(·) are lower block tri-
angular matrices consisting of system matrices
{Ak, Bk, Ck, Dk}.

The subspaces spanned by the column vectors
of extended observability matrices Γα(k1) and
Γα(k2) form a relationship which is described by
the concept of angles between subspaces.

Our problem is to derive a recursive algorithm for
predicting the future subspace which is spanned
by an extended observability matrix Γα(k3) at
a future step k3 (k3 > k2) by applying the
information about the angle to the past subspace.
Hence, the SP problem can be stated as follows:
Given a set of input and output data of the
unknown linear time-varying system (1)-(2) up
to the present time step k, predict the quadruple
system matrices (Ak+µ, Bk+µ, Ck+µ, Dk+µ) at µ-
step ahead (within a similarity transformation).

3. PRELIMINARIES
3.1 Angle between subspaces
Consider two matrices A ∈ Rp×r and B ∈ Rq×r

(p, q ≤ r) with rankA = ad and rankB = bd, re-
spectively. Then, the angle between two subspaces
spanned by column vectors of A and B is defined
by a set of angles {θi, i = 1, 2, · · ·, ad ∧ bd} (where
ad∧bd = min(ad, bd), 0 ≤ θi ≤ π/2) between prin-
cipal vectors ai ∈ spancol{A} and bj ∈ spancol{B}
(i, j = 1, 2, · · ·, ad ∧ bd), where spancol{A} denotes
the subspace spanned by column vectors of A.
The following is the definition of angle between
subspaces (see Goulb and Van Loan (1996); Van
Overschee and De Moor (1996)).

Definition: Given two matrices A and B men-
tioned above, choose first a pair of principal vec-
tors a1 ∈ spancol{A} and b1 ∈ spancol{B} such
that a1 and b1 minimize their angle θ1. Next,
choose unit vectors a2 and b2 which are orthog-
onal to a1 and b1, respectively, and minimize

their angle θ2. By repeating this procedure ad ∧
bd times, obtain a set of vectors {a1, · · ·, aad∧bd

}
and {b1, · · ·, bad∧bd

} called principal vectors for
each subspace. Then, the angles θ1, · · ·, θad∧bd

∈
[ 0, π/2 ] are called principal angles between two
subspaces spanned by column vectors of A and
B.

The principal vectors and angles of spancol{A}
and spancol{B} can be calculated by performing
the SVD as

A
(
AT A

)†
AT B

(
BT B

)†
BT = USV T , (4)

where U ∈ Rp×p and V ∈ Rq×q are orthogonal
matrices; S ∈ Rp×q is the matrix consisting of sin-
gular values {σi, i = 1, 2, · · ·, p∧ q} as diagonal el-
ements; and † denotes the Moore-Penrose pseudo-
inverse. Then, the principal vectors of spancol{A}
and spancol{B} are given as ui ∈ Rp and vj ∈ Rq

(i = 1, 2, · · ·, ad ∧ bd; j = 1, 2, · · ·, ad ∧ bd), where
ui and vj are the first ad or bd column vectors
of U or V . The ith principal angle θi between ui

and vi is obtained as the singular value σi with
relationship:

σi = cos θi (i = 1, 2, · · ·, ad ∧ bd), (5)

and other singular values are equal to zero. Fur-
thermore, spancol{A} = spancol{U(:, 1 : ad)} and
spancol{B} = spancol{V (:, 1 : bd)} by definition.

3.2 Rotation of vectors

Without loss of generality, let us consider the case
of p = q. Let ui and vi be column vectors in
p-dimensional subspace, ui = [ ui1, ui2, · · ·, uip ]T

and vi = [ vi1, vi2, · · ·, vip ]T . Then, the rotation
operator Rθi is defined such that the vector vi =
Rθiui makes the angle θi with vector ui. The
rotation is realized by the following procedure.

First, define the orthonormal basis of the rotation
plane on which ui and vi lie:

ei1 :=
ui

||ui||2
(6)

ei2 :=
vi − 〈vi, ei1〉 ei1

||vi − 〈vi, ei1〉 ei1||2
, (7)

where 〈a, b〉 denotes the inner product aT b of a
and b. The rest of the vectors eij (j = 3, · · ·, p) of
orthonormal basis of Rp are arbitrarily selected as

eije
T
ik = Ipδjk (8)

(δjk: Kronecker delta; Ip: unit matrix of dimension
p) for j, k = 1, 2, · · ·, p. Then, ui is represented in
terms of a basis {ei1, · · ·, eip} by the orthonormal
basis as:

ui = ai1ei1 + ai2ei2 + · · · + aipeip

= ai1ei1, (9)



where aij = 〈ui, eij〉 (j = 1, 2, · · ·, p) and ai2 =
· · · = air = 0. Similarly, vi is written as

vi = bi1ei1 + bi2ei2 + · · · + bipeip

= bi1ei1 + bi2ei2 (10)

with bij = 〈vi, eij〉 (j = 1, 2, · · ·, p) and ai3 = · · · =
aip = 0. Then, the relationship between aij and
bij is given as (j = 1, 2):

[
bi1

bi2

]
=

[
cos θi − sin θi

sin θi cos θi

] [
ai1

ai2

]
. (11)

Substituting (9) and (11) into (10), we have

vi =
[
ei1 ei2 ei3 · · · eip

]

·


cos θi − sin θi 0 · · · 0
sin θi cos θi 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1





eT
i1

eT
i2

eT
i3

...
eT
ip

ui

=:Rθiui. (12)

4. PREDICTION OF FUTURE SUBSPACE

Given a set of input and output data up to the
current time step k2, we are interested in the
estimation of all system matrices at some future
time, say k3, based on the currently obtained data
set. Let k1, k2 and k3 be past, current and future
times, respectively (k1 < k2 ≤ k3). In this paper,
“time-varying” means that all system matrices as
well as noise covariance matrices change slowly
with time. Qualitatively speaking, the instinctive
word “slowly” implies that all matrices change
smoothly and continuously, and do never abruptly
or randomly. Then the extended observability
matrices can be computed at k = kν as (Ohsumi
and Kawano, 2002b)

Γα(kν) =
[
CT

kν
(Ckν

Akν
)T · · · (Ckν

Aα−1
kν

)T
]T

(ν = 1, 2). (13)

These matrices are also considered to change
slowly. This implies that the change is took
place by rotation and scaling of column vectors
{γi(·)}i=1,2,···,n of the matrix Γα(·), i.e.,

Γα(kν) =
[
γ1(kν) γ2(kν) · · · γn(kν)

]
.

According to such observation, the angle between
signal subspaces Γα(k1) and Γα(k2) is yielded as
a result of rotation of each column vector γi(k1)
during the interval k2 − k1 in αℓ-dimensional
vector space.

From (4) the principal vectors of spancol{Γα(k1)}
and spancol{Γα(k2)} are calculated by

Γα(k1)
{
ΓT

α (k1)Γα(k1)
}†

ΓT
α (k1)

·Γα(k2)
{
ΓT

α (k2)Γα(k2)
}†

ΓT
α (k2)

= U(k1)S(k1|k2)V T (k2), (14)

where the column vectors of the matrices U(k1) =
[u1(k1) · · ·un(k1) · · ·uαℓ(k1)] and V (k2) = [v1(k2)
· · · vn(k2) · · · vαℓ(k2)] consist of principal vectors
of Γα(kν) (ν = 1, 2). The angles {θi(k2|k1)}i=1,2,···,n
made by principal vectors {ui(k1)} and {vi(k2)}
are related to the first n singular values {σi(k2|k1)}
with relationship:

σi(k2|k1) = cos θi(k2|k1). (15)

Here, let v̂i(k3|k2) be the estimate of vi(k3) based
on the data up to the current time k2. Then, (12)
implies that this estimate can be computed based
on vi(k2) by

v̂i(k3|k2) = Rθi(k3|k2)vi(k2). (16)

The rotation operator Rθi(k3|k2) can be computed
as follows. Since the rate of rotation during the
interval k2 − k1 is given from (15) as

∆θi(k2|k1) :=
arccos σi(k2|k1)

k2 − k1
[rad/step], (17)

so that the extrapolated angle θi(k3|k2) is evalu-
ated as

θi(k3|k2) = ∆θi(k2|k1)(k3−k2)+o(k3−k2) (18)

within the approximation of order o(k3 − k2).
Therefore, the estimate of the extended observ-
ability matrix at the future time k3, Γ̂α(k3|k2),
can be computed by

Γ̂α(k3|k2) =
[
v̂1(k3|k2) v̂2(k3|k2) · · · v̂n(k3|k2)

]
.

(19)
Based on this predicted extended observability
matrix the SP can be performed. This scheme
is off-line and requires computations of SVD two
times for obtaining the estimate of current sub-
space and the angle between past and current
subspaces. Undoubtedly, this is lengthy. So, in
the following section, we concentrate our attention
on the recursive update of the main steps in the
algorithm to reduce multiple SVDs.

5. RECURSIVE IMPLEMENTATION OF
SUBSPACE PREDICTION

The recursive SP algorithm is derived incorporat-
ing the recursive subspace identification algorithm
developed by Ohsumi and Kameyama with their
colleagues (2003, 2005) (owing to limited space a
brief review is omitted here). Up to the present
time, there are mainly two kinds of recursive
4SID algorithms. One uses the forgetting factor
to adapt 4SID algorithm to the identification of
time-varying systems; while the other one uses the
fixed size of input and output data. The latter one



is rather congenial with the SP algorithm because
its algorithm is constructed based on the same
quasi-stationarity assumption.

Consider the LQ-factorization of the constructed
data matrix: Uα(k2|k2 − N + 1)

Uβ(k2|k2 − N + 1)
Yα(k2|k2 − N + 1)

 =

 L11(k2) 0 0
L21(k2) L22(k2) 0
L31(k2) L32(k2) L33(k2)


 QT

1 (k2)

QT
2 (k2)

QT
3 (k2)

, (20)

where Yα(·|·), Uα(·|·) are block Hankel matrices
(as appeared in (3)); Uβ(·|·) is an instrumental
variable matrix constructed similarly from input
data. Then, the estimate of the signal subspace
is derived by performing the SVD of L32(k2) or
the eigendecomposition of L32(k2)LT

32(k2), and
L32(k2)LT

32(k2) is renewed by the recursive 4SID
algorithm using fixed input/output data size
(Ohsumi, et al., 2003; Kameyama, et al., 2005).

Now, write the matrices L32(k2) and L32(k2)LT
32(k2)

as

L32(k2) =
[
s1(k2) s2(k2) · · · sαℓ(k2)

]
L32(k2)LT

32(k2) =
[
h1(k2) h2(k2) · · · hαℓ(k2)

]
,

where {si(·)} and {hi(·)} are column vectors; and
further let {fij(·)} be the (i, j)-element of the
matrix LT

32(k2) (fij(k2) ̸= 0). Then, the column
vector of L32(k2)LT

32(k2) is represented as

hj(k2) = f1j(k2)s1(k2) + f2j(k2)s2(k2) + · · ·

+ fαℓ j(k2)sαℓ(k2) (j = 1, · · · , αℓ). (21)

Choosing n column vectors arbitrarily from
{hj(k2)}j=1,2,···,αℓ, and construct a matrix

Lb(k2) = [ hi(k2), · · · , hj(k2) ] ∈ Rαℓ×n (i ̸= j).
(22)

Then, the following relation holds:

spancol{Γα(k2)} ∼= spancol{Lb(k2)}

⊂ spancol{L32(k2)LT
32(k2)}. (23)

As a result, the computation of the angle between
Γα(k1) and Γα(k2) can be performed by that
between Γα(k1) and Lb(k2) as

Γ̂α(k1)
{
Γ̂T

α (k1)Γ̂α(k1)
}†

Γ̂T
α (k1)

·Lb(k2)
{
LT

b (k2)Lb(k2)
}†

LT
b (k2)

= U(k1)S(k1|k2)V T (k2), (24)

and the estimate of spancol{Γ̂α(k2)} is given by
the principal vectors of Lb(k2) as far as the angles
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Fig.1. Conjugate pole loci of true time-varying system.

between principal vectors at k1 and k2 hold the
relation θi(k2|k1) < π/4 (see Appendix A).

Consequently, the recursive SP algorithm is sum-
marized as follows:

Subspace Prediction Algorithm

Step 1: Acquire a data set {u(k2), y(k2)}, and
renew L32(k2)LT

32(k2) according to the recursive
algorithm proposed in Ohsumi, et al. (2003) or
Kameyama, et al. (2005).

Step 2: Construct Lb(k2) and perform the SVD as
(24).

Step 3: Predict the future subspace by the proce-
dure mentioned in Section 4.

Step 4: Derive each unknown system matrices
according to the 4SID framework.

6. NUMERICAL EXAMPLE

Consider a single-input, single-output two-dimensio-
nal time-varying stochastic system with matrices:

Ak =

1
2

[
sin (2πk/1000) 0.5 + sin (2πk/4000)

−0.5 − sin (2πk/4000) sin (2πk/2000)

]

Bk =

[
2.0

−1.0

]
, Ck =

[
1.0, 2.0

]
, Dk = 1.5.

Figure 1 shows the true loci of conjugate poles.
The random noises wk and vk are mutually in-
dependent and have common covariance E{w(k)
wT (j)} = 0.12I2δkj and E{v(k)vT (j)} = 0.12δkj .
The size of block Hankel matrices is specified as
α=h =5. Five sets of experiments were performed
by changing N (number of data for an identifica-
tion) from N =25 to N =150 because reasonable
N for the quasi-stationarity assumption must be
chosen, and the results of the case N = 75 are
depicted. Interval to calculate the rotation angles
is decided as k2−k1 = N . Figure 2 depict a couple
of time evolutions of real and imaginary parts of
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Fig.2. Time evolutions of real (top) and imaginary

(bottom) parts of predicted conjugate poles

(N=75, L = 50 (50-step ahead prediction)).
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Fig.3. Sample mean (top) and variance (bottom)

of the real part of predicted conjugate poles

(N = 75, L = 0 (Estimation)).

typical one of 50-step ahead predicted conjugate
poles.

Figures 3-5 show the results of 50 Monte Carlo
experiments. Top and bottom pictures of each
figure show sample mean and variance of the es-
timates of the real parts of poles for the case of
L(:= k3 − k2) = 0 (estimation), L = 50 (50-step
ahead prediction) and L = 100 (100-step ahead
prediction). Predicted and true ones are depicted
by chain (red) and broken (black) curves, respec-
tively. Although both averaged sample variances
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Fig.4. Sample mean (top) and variance (bottom)

of the real part of predicted conjugate poles

(N = 75, L = 50 (50-step ahead prediction)).
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Fig.5. Sample mean (top) and variance (bottom)

of the real part of predicted conjugate poles

(N = 75, L = 100 (100-step ahead prediction)).

exhibit large value in the incipient stage, they
become small less and less as time goes by.

In Fig. 6, results of 50-step prediction of a sudden
change system are shown. From these we see that
the proposed algorithm can be applied for such a
system.

7. CONCLUSION

An approach to predict the time-varying system
matrices of the linear systems has been proposed
in the 4SID framework. The key of our approach is
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Fig.6. Sample mean (top) and variance (bottom)

of the real part of predicted sudden change system

(N = 100, L = 50 (50-step ahead prediction)).

the introduction of the idea of angles between two
subspaces which is geometric and intuitive. Fur-
thermore, the recursive implementation of sub-
space prediction was proposed and the efficacy has
been confirmed by simulation experiments.
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Appendix A. CONDITION FOR DERIVATION
OF THE PRINCIPAL VECTORS

By the assumption that the noise sequences are
mutually uncorrelated with input sequence, the
subspace spanned by Lb(k2) is represented as

spancol{Lb(k2)} = spancol{Γα(k2)}

⊕ spancol{E (k2)}, (A.1)

where ⊕ denotes the direct sum; and spancol{E (k2)}
is the noise subspace. So, each column vector of
Lb(k2) is represented as:

hj(k2) = g1j(k2)v1(k2) + · · ·

+ gnj(k2)vn(k2) + gn+1 j(k2)vn+1(k2)

+ · · · + gαℓ j(k2)vαℓ(k2), (A.2)

where vi(k2) ∈ spancol{Γα(k2)} (i = 1, · · ·, n)
and vi(k2) ∈ spancol{E (k2)} (i = n + 1, · · ·, αℓ)
are principal vectors of the signal and noise sub-
spaces, respectively (Fig. A); and gij(k2) (i, j =
1, · · ·, αℓ) are appropriate coefficients for the basis
vi(k2) (i = 1, · · ·, αℓ) in this representation. Then,
for the angle between ith principal vector of the
signal subspace and jth one of the noise subspace,
φij(k2), holds the relation:

φij(k2) =
π

2
− θi(k2) (0 ≤ φij(k2) ≤ π/2). (A.3)

On the other hand, the SVD in (24) yields
principal vectors of signal subspace at time
k2 from spancol{Lb(k2)} so that the angle be-
tween principal vectors of spancol{Lb(k2)} and
spancol{Γ̂α(k1)} becomes minimum.

So, all {θi(k2|k1)} have to be smaller than φij(k2)
to derive principal vectors of Γ̂α(k2) as the first n
column vectors of V (k2), i.e.,

θi(k2) < φij(k2) =
π

2
− θi(k2) ⇐⇒ θi(k2) <

π

4
.

(A.4)


