
 

     

 
 
 
 
 
 
 
 
 
 
 
 

APPLICATION OF GENETIC ALGORITHMS IN OPTIMAL EXCITATION AND CONTROLLER 
DESIGN 

 
 

Marco P. Schoen1), Feng Lin2), and Sinchai Chinvorarat3)  
 
 

1)Measurement and Controls Engineering Research Center  
Idaho State University, Pocatello, ID 83209, USA 

 
2)Applied Research Center 

Indiana Institute of Technology, Fort Wayne, IN 46803, USA 
 

3)Department of Mechanical Engineering 
King Mongkut’s Institute of Technology North Bangkok, Thailand 

 
 
 

 
Abstract: Genetic Algorithms (GAs) are used in a set of covariance based optimum input 
signal algorithms using a proposed architecture suitable for on-line system identification. 
The optimal signals are computed recursively using a predictive filter. The relationships 
among these algorithms are investigated and compared based on a set of simulations. In 
addition, a nested GA is proposed for intelligent LQR controller design. The GAs are 
used to find the minimum distance to uncontrollability of a given system and to maximize 
that minimum distance by finding the optimal coefficients in the weighting matrices of 
the LQR controller. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Intelligent techniques such as Neural Networks 
(NN), Fuzzy Logic (FL), and Genetic Algorithms 
(GA) have become ever more popular in controls 
engineering. In particular GAs attract a lot of 
attention to master cumbersome optimization 
problems. The lack of having to deal with derivatives 
and the possibility to find the global optimum point 
are a few of the features responsible for the 
popularity of GAs. For the past few decades, system 
identification has established itself as a valuable tool 
for facilitating the control design task of a vast array 
of different systems. One key objective in system 
identification is to automate the modeling process for 
unknown or partially unknown systems. While 
different algorithms are being proposed, one 
common problem is the experimental design. In 
particular, the question is addressed how to excite the 
system such that sufficient information can be 

collected for the system identification algorithm to be 
successful. This can be formulated as an optimum 
problem and therefore a short discussion on the 
application of GA to identification and control is a 
topic of this paper. For system identification, 
generally one tries to excite all system modes so that 
they are represented in the collected input/output 
data. Since the system is – at least at the beginning of 
the experiment – to a certain degree unknown, one 
generally uses, theoretically, white gaussian noise 
with zero mean. In practice the whiteness of the 
signal cannot be achieved due to finite power supply. 
One of the first studies undertaken to define optimal 
inputs for system identification was by Levin (1960), 
who considered the reference input to fulfill some 
constraint, defined by the process dynamics or power 
limitation on the reference input, or a range 
limitation. This topic has been studied intensively 
ever since its introduction by Levin and is generally 
in the field of optimum input signals. Mehra (1974) 



 

     

presented the problem of optimal input in a statistical 
fashion. In particular, the covariance matrix is used 
to define the optimum criteria. This is a logical 
extension from using the Cramer-Rao lower bound in 
the estimation problem. Schoen (2002) proposed an 
optimal input design algorithm that is also based on 
the covariance of the information matrix. The 
properties of this matrix are exploited in order to 
direct the new input energy to modes that are 
underrepresented in the information matrix. The 
optimum input signal is computed using a Genetic 
Algorithm. GAs are evolutionary algorithms that 
simulate Darwin’s survival of the fittest principle. 
The initial population of candidate solutions is 
randomly generated and represented as chromosomes 
in the form of genes. These chromosomes are 
evaluated based on an objective function and ranked 
in terms of its fitness. A subset of the next generation 
of candidate solutions is selected based on their 
performance with the objective function. The 
remaining set of the new generation is generated by a 
mating process, where the best performing candidate 
solutions comprise the subset of the parents. In 
addition to the mating process, a mutation rate is also 
imbedded in the generation of the new population. 
The mutation rate enables the search for the optimum 
solution to overcome local minimums and – provided 
enough randomness is included in the GA – locate 
the global minimum/optimum. This process of 
selection, mating, and mutation is repeated a number 
of times until the best performing candidate solution 
converges to some stationary value. 
 
In this paper, we will examine these covariance 
based optimal input design algorithms based on a 
proposed algorithm architecture applied to all 
algorithms. In particular, a comparison among the 
existing algorithms with the one proposed by the 
author of this paper is investigated. The architecture 
uses a GA approach for the computation of the 
optimum, which will enable a comparison. In the 
second part, a LQR controller is proposed using a 
nested GA.  
 
The organization of this paper is as follows. In 
Section 2 the general architecture of the algorithm 
for optimal input design is introduced. Section 3 
provides a detailed mathematical formulation of the 
existing and proposed optimal input signal 
algorithms. Section 4 introduces the intelligent LQR 
controller. Section 5 includes the simulation results 
with some discussion, and Section 6 states the 
conclusion and problems for further research.  
 
 

2. STRUCUTURE OF ALGORITHM 
IMPLEMENTATION 

 
The implementation of the optimum input signal 
algorithms is done using the architecture depicted in 
Fig 1. The plant is first excited for a finite duration 
by a random, white, gaussian input sequence. This is 
to ensure that all modes of the system are at least to 
some extend represented in the information matrix.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Proposed recursive architecture for use of GA 

in optimal input signal computation. 
 
The plant and the measurement signals are corrupted 
by a white noise process. The plant parameters are 
estimated using a recursive least-squares (RLS) 
approach. The future optimal input signals are 
computed using a genetic algorithm. This 
computation is facilitated by a predictive filter, which 
is based on the estimated plant parameters. To access 
the accuracy and establish a base for comparison for 
the different optimality criteria, the open-loop system 
Markov parameters are computed for each iteration 
using the state-space matrices obtained from the 
eigensystem realization algorithm (ERA). 
 
 

3. MATHEMATICAL FORMULATION OF 
OPTIMAL INPUT SIGNAL 

 
A linear, time-invariant discrete time system can be 
modeled using a linear finite difference model, or 
ARX (Auto-Regressive with eXogenous input) 
model of order p: 
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where kεG  is the residual between the estimated 
output ŷG  and the actual output yG  at current time 
step k. iaG and ib

G
are the parameter coefficient 

matrices of the ARX model and ir
G  is the input to the 

system. Defining a parameter matrix vector Θ
G
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information matrix Φ

G
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where L  is the current data length. The output vector 
ξ
G

can be given as 
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Then, one can write the error equation ε ξ= − ΦΘ
G GGG  

and form a quadratic cost function TJ ε ε=
G G , which 

upon minimization yields the least-squares estimate 

of the parameter vector Θ̂
G

: 

 ( ) 1ˆ T Tξ
−

Θ = Φ Φ Φ
GG G G G

. (5) 
For online system identification one needs a 
recursive form of the estimation problem in order to 
avoid computational speed constraints. Assuming 
one has obtained a new set of data at the discrete 
time k+1, the future output of the system can be 
given by the ARX model 
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For time-invariant systems, or systems that vary 
slowly over time, one can define 
        1k k+Θ = Θ
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where 1L +  is equal to the new data length. The 
corresponding output vector can be given using 
Equation (7) as: 
 1 2 1 11
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Lp p L Lk ky y y y yξ ξ+ + + ++
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Using the matrix inversion lemma and defining the 
inverse correlation matrix kP

G
 as 

 ( ) 1T
k k kP

−
= Φ Φ

G G G
, (9) 

the well-known recursive formula for the inverse 
correlation matrix can be given as: 

 1
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which does not involve the computation of the 
inverse of large data matrices and is therefore 
suitable for on-line methods. Note that the inverse of 
the P

G
- matrix represents the Fisher’s information 

matrix M
G

. Using the scalar measures defined by 
Mehra (1974), the optimality based on the covariance 
matrix P

G
 can be given as 

i) A-Optimality: { }1min ktr P +
⎡ ⎤
⎣ ⎦

G
, (11) 

 which will have the effect of minimizing the 
variances of the estimated model parameters. 

ii) D-Optimality: { }1min det kP +
⎡ ⎤
⎣ ⎦

G
, (12) 

which will minimize the generalized variance 
of the covariance matrix. 

iii) E-Optimality: ( ){ }1min max kPλ +
⎡ ⎤
⎣ ⎦

G
, (13) 

where λ  is an eigenvalue of the covariance 
matrix. 

Noting that a poorly excited mode of the system to be 
identified is represented in the P

G
- matrix by a large 

element, Schoen (2002) proposed to use this 
observation for an optimal input signal algorithm. 
Recognizing the poorly excited mode by its element 
representation in the P

G
-matrix allows one to direct 

the future input to the system to excite this particular 
mode. The computation for exciting the poorly 
excited mode is done by minimizing the magnitude 
of this particular element in the P

G
-matrix of the next 

discrete time step. The formulation for this algorithm 
is summarized by defining the sub-matrix S

G
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where no  is the number of outputs of the system and 
ni  the number of inputs to the system. One can write 
the definition for the (i,j)’s element of the 1kP +

G
-

matrix as:
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Suppose the largest element in the future P
G

-matrix is 
contained in the sub-matrix ( 1)

,
k

i jP +
G

, one can minimize 
the magnitude of this element for the future P

G
-

matrix by choosing a new 1Ly +
G : 

iv) Mode-Optimality: 
  Minimize ( 1)

,
k

i jP +
G

. (15) 
With regard to the continuously computed optimum 
outputs LyG , which minimize Equations (11), (12), 
(13), or (15), the required input needs to be 
calculated. Note that Equation (6) relates the next 
output with the current input. A predictive ARX filter 
can be designed where the future output is related to 
the current input (Chinvorarat, et al., 1999), given 
here as a one step ahead predictive filter: 
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where the predictive parameter coefficient matrices 
are defined as 
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The superscript in the brackets indicates how many 
steps ahead will be predicted with the coefficient 
matrices. Note, the predictive parameter coefficient 
matrices are a function of the estimated parameter 
coefficient matrices given in Equation (2), which can 
be calculated with Equation (5) or recursively with 
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For a system without a direct transmission line, 
Equation (17) and (18) can be used together with the 
optimization of Equations (11), (12), (13) or  (15) to 
compute the desired input to the system: 
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The identification method used for the optimum 
input calculation is the Observer Kalman-filter 
System Identification method (Juang, 1994). 
 
 
4. INTELLIGENT LQR CONTROLLER DESIGN 

 
In many cases the identification serves for the 
purpose of updating a controller, which may in turn 
also affect the performance of the input signal with 
regard to the identification results. One way to 
enhance the system identification results is to 
improve the identifiability of the system using a 
controller. The identification of the augmented 
system can then be accomplished using the Closed-
Loop system Identification (CLID) algorithm 
proposed by Huang, et al. (1994). Consider the 
observability and controllability matrices multiplied 
out for a given system: 
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The last matrix is recognized as the Hankel matrix 
with the open-loop system Markov parameters as its 
entries. Since this matrix is the basis for the 
eigensystem realization algorithm (ERA), which 
employs an SVD of this matrix, the identifiability of 
the system is enhanced by improving the 
controllability and the observability. For this paper, 
we focus only on the controllability. We leave the 
detailed investigation on the effect to the 
identifiability for future work and only propose an 
intelligent controller design. The objective therefore 
is to enhance the controllability of the system using 
an intelligent LQR controller. This controller can be 
derived as follows: Considering a continuous time, 
linear time-invariant, or slowly time varying system 
 x Ax Bu= +

G G G� , (20) 
where *n nA R∈  and *n mB R∈ . The system ( ),A B  is 
controllable if 
 [ ]( ),rank A sI B n− =  for s C∀ ∈ . (21) 
Page (1981) defines the distance to uncontrollability 
as the spectral norm distance of the pair ( ),A B  from 
the set of all uncontrollable pairs: 
 

[ ]{ }( , ) min , : ( , )d A B E H A E B H uncontrollable= + +
 

Elsner and He (1991) refined this as 
 

 ( ) [ ]( ) ( ), ,min  min  n
s C s C

d A B A sI B sσ σ
∈ ∈

= − = , (22) 
 

where ( )n Gσ  is the nth singular value of 
the )(*( mnn + ) matrix G . This implies that the 
problem of finding the distance to uncontrollability is 
the problem of minimizing ( )sσ  over the complex 
plane. Elsner and He (1991) show that the function 

 ( ) ( ) ( )
0

H n
n

u sf s v s ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (23) 

is the partial derivative of ( )G s  with respect to the 
components of s. The normalized left singular vector 

( )nu sG  and the normalized right vector ( )svn
G  are the 

nth column of U  and V  respectively, which results 
from the singular value decomposition 
[ ], HA sI B U V− = Σ , and H denotes the complex 
(Hermitian) transpose. In Elsner and He (1991) the 
function ( )sf  is used to find the minimum distance 
to the uncontrollable region by use of an iterative 
Newton method. The disadvantage of this method is 
that a good starting value for the iteration is needed 
and that no guaranty is given that the global optimum 
is found. We propose an alternative approach by 
employing a simple genetic algorithm with a small 
mutation rate and sufficient randomness embedded 
into the selection, the pairing, mating operations to 
ensure the ability to find the global optimum point. 
The search area for the smallest singular value can be 
defined as  (Elsner and He, 1991) 
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and 
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where * * *s x iy= +  defines the optimum point in the 
complex s plane. The minimization problem is 
formulated as follows: 
Minimize  [ ]( )( ) ,n A x iy I Bσ − +  (26) 

subjected to  
min max

*
real realI x I≤ ≤  

and  
min max

*
imag imagI y I≤ ≤ . 

To implement this in to a LQR controller design, 
consider the closed-loop system given by ( )A BF+ , 
where *m nF R∈  is the feedback gain matrix.  
Using Equation 22,  
 ( )

( )
[ ]( )

Re 0
min, n cd A BF B A I

λ
σ λ

≥
+ = −  (27) 

where cA A BF= + , the controller can be formulated 
as follows: Find F  such that the minimum distance 
to uncontrollability is maximized. Expressed in 
matrix form: 
 [ ]( ){ }{ },nMax Min A BF sI Bσ + −  (28) 

subjected to 
 

maxmin
*

realreal IxI ≤≤
min max

*
imag imagI y I≤ ≤ . (29) 

Since the actuation power is limited, an additional 
constraint can be imposed for actuator saturation: 
 1l L ur +Ψ ≤ ≤ Ψ  (30) 
where lψ  and uψ  are the lower and upper limits of 
the actuator. The implementation of computing the 
controller parameters is done using a nested genetic 
algorithm. The weighting matrices Q  and R  of the 
linear quadratic regulator formulation 
 { }T T

LQRJ x Qx u Ru∑= +
G G G G  (31) 

are found using a GA formulation that employs the 
minimum distance to the uncontrollable region as the 
cost or objective function, given by Equation (28) 
and (29). Equation (28) subjected to constraint (29) is 



 

     

also solved using a GA, with the search areas defined 
by Equations (24) and (25). The distance to the 
uncontrollable region is computed for each candidate 
weighting matrices Q  and R . The gain matrix F  is 
computed from these two weighting matrices.  
 
 

5. SIMULATION RESULTS 
 
For the numerical simulation a human respirator 
system model is used. The model used is based on 
Grodins, et al. (1954). For details on the system 
model and its linearization characteristics see Schoen 
(2002). The application of respiratory systems, its 
identification, and the application to control systems 
is manifold. The model given by Grodins, et al. 
(1954) was slightly altered by Sano and Kikucki 
(1985) to introduce an adaptive feedback control 
system for incubator oxygen treatments. The 
controller determines the optimum oxygen 
concentration of the mixed gas, which is forced into 
the incubator so that the partial oxygen pressure in 
the arterial blood flow is kept in a certain range. This 
is a necessary treatment for newborns who suffer 
from respiratory distress. In general, system 
identification in biomedical engineering is very 
helpful wherever modeling is difficult due to the lack 
of physical information or describing laws. The 
problem with system identification for biomedical 
systems is the danger to the system by exciting it to 
extract the dynamic features. Generally, input signals 
are severely constraint for such systems. The 
continuous time state-space description for the 
pulmonary ventilation is reproduced here for 
convenience and given as follows: 

 
0 1

1.8861 11.826145
A =

− −
⎡ ⎤
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0

760
B =

⎡ ⎤
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 and

 [ ]1 0 .C =  (32) 
For the numerical simulation the model given in 
Equation (32) was discretized using the zero-order 
hold method on the inputs with a sampling time of 
0.025s. The ARX model and the predictive ARX 
filter represented the system best with a model order 
of 15. The first 150 input data points were generated 
as white gaussian noise with zero mean. After that, 
the input design algorithm was switched on using the 
different optimality definitions. The system was 
identified at every time step in order to track the 
error deviation between the true and reconstructed 
open-loop Markov parameters. The error percentage 
was calculated using the following equation: 

 
1 1

11

ˆ ˆ ˆi i
p

F
ii

F

CA B CA B

CA B

− −

−=

−
∑  (33) 

where ˆ ˆˆ, ,A B C  denote the identified system matrices 
and the subscript F denotes the Frobenius norm. For 
the simulation results, the measurement and process 
noise were set to 1% noise variance. All simulations 
were carried out with an input limitation of 1± , 
representing the actuator saturation. Fig. 2 indicates 
that all four optimum input signal schemes reduce 
the error percentages of the open-loop Markov  
parameters  compared  to  the  random input signal. 
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Fig. 2. Error percentages of open-loop system 

Markov parameters for all five input signals. 
 
The difference in performance between the various 
optimal inputs is not significant for this example, the 
application and implementation in the embedded 
optimal evaluation on the other hand has value, in 
particular for biomedical systems. Consider certain 
known modes that are mapped to be harmful to the 
system. The Mode optimal computation permits 
evaluation of what modes are being excited, and 
therefore allows the exclusion of these potentially 
harmful signals. One would expect that for all four 
optimum input signal algorithms the error percentage 
should be a monotone-declining curve. Note that the 
spikes in the error percentage plot are associated with 
the fact that the predictive filter is based on the 
current information matrix, which is the objective for 
improvement. Another comparison of the 
performance of the identified system is to look at the 
correlation of the output of the estimated parametric 
models and the analytical model. The error can be 
given, see Fig. 1, as ˆy y y∆ = − . Table 1 lists the 
correlation coefficient and the standard deviation of 
this error for the various optimal input signal 
algorithms and a random input. The calculations are 
based on a data set of 200 points, and an ARX model 
order of 15p = . At a first glance, one could 
conclude that the Mode-optimality performs well 
compared to the other algorithms, while the D-
optimality is numerically close in terms of 
performance, at least numerically based on these 
results represented in Table 1 and the graph depicted 
in Fig. 2. Physically, these two algorithms operate in 
two different coordinate spaces. One can map the 
Mode-optimal algorithm and the A-, E-, and D-
optimal algorithms into a common coordinate space 
by a series of similarity transformations of the 
covariance matrix. Using this mapping, one can 
easily show that, with the exception of the Mode 
optimal algorithm, all these algorithms are ultimately 
based on the eigenvalues of the current covariance 
matrix. The D-optimal, and for that matter the E-, 
and A-optimal algorithms, do not detect emerging 
modes that have not yet developed any influence on 
the eigenvalues of the covariance matrix. 
 



 

     

Table 1: Correlation coeff. and Standard Deviation 
  

A-opt 
 

E-opt 
 

D-opt 
 

M-opt 
 

Rand. 

Correlat. 0.969  0.9688 0.9697 0.9704 0.960 
Std. 13.79 13.70 13.51 13.36 15.55 

 
These emerging modes will not be promoted by the 
A-, D-, and E- optimal algorithms. On the other 
hand, the Mode optimal algorithm does not 
discriminate based on the influence of a mode to the 
eigenvalues, and thus is able to allow development of 
emerging, under-represented modes during the 
system identification process. If the promoted mode 
develops together with the constructed covariance 
matrix into having influence to the eigenvalues of the 
covariance matrix, the Mode optimal input algorithm 
will have an advantage over the other algorithms.  
 
With respect to the results of the proposed intelligent 
controller, simulations were performed with the 
model given by Equation (32). The distance as 
defined by Equation (22) to the uncontrollable region 
of this open-loop model is 0.2697. Using the nested 
GA to compute the optimal weight matrices of the 
LQR formulation, the distance can be increased to 
0.2841, an increase of over 5%. The nested GA uses 
25 generations for the convergence of the optimal 
weighting matrices, and 10 iterations for the 
computation of the minimum distance to 
uncontrollability. Both GAs use a mutation rate of 
4%. The eigenvalues of the open-loop system and the 
closed-loop system are 
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λ λ
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The cost function and its convergence for finding the 
minimum distance is depicted in Fig. 3a. A similar 
plot can be established for the cost of the outer GA 
loop to find the optimal weights for the LQR 
controller. The response of the compensated and 
uncompensated system is depicted in Fig. 3b. The 
two graphs also depict the rise time, which is for the 
compensated system around 0.05 seconds and for the 
uncompensated system about 1.2 seconds. 
 
 

6. CONCLUSIONS 
 
This paper presents a new algorithm architecture for 
optimal input signal implementation for an on-line 
identification algorithm. The Mode-optimal input 
algorithm has the potential to perform better than the 
other covariance based optimal input algorithms. A 
nested GA is used to find the optimal LQR weighting 
matrices. The optimization is based on the objective 
to increase the minimum distance to uncontrollability 
with sight to increase the identifiability. The 
proposed nested GA works well to define the 
intelligent LQR controller. Future work is necessary 
for imbedding an observability objective into the 
controller design and test this with a closed-loop 
system identification algorithm along with the 
proposed optimal input architecture. 
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Fig. 3. Part a) Convergence plot for GA using 

minimum distance to uncontrollability. Part b) 
Step response of uncompensated and 
compensated system. 
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