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Abstract Based on an extension of the bilinear transformation, a rational implemen-
tation for distributed delay in linear control laws is proposed. This implementation
converges much faster than the rational implementation inspired from theδ-operator.
The implementation has an elegant structure of chained bi-proper nodes cascaded with
a strictly proper node. The stability of each node is determined by the choice of the total
numberN of the nodes. TheH∞-norm of the implementation error approaches0 when
N goes to∞ and hence the stability of the closed-loop system can be guaranteed. In
addition, the steady-state performance of the system is retained. Simulation examples are
given to verify the results and to show comparative study with other implementations.
Copyright c©2005 IFAC
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1. INTRODUCTION

A distributed delay is a finite integral over the time,
e.g,

v(t) =

h
∫

0

eAζBu(t − ζ)dζ, (h > 0). (1)

The s-domain equivalent, i.e., the transfer function
from u to v, is:

Z(s) = (I − e−(sI−A)h)(sI − A)−1B. (2)

This is a finite-impulse-response (FIR) block because
all the poles are canceled by the zeros. Distributed de-
lays often appear as a part of dead-time compensators
for processes with dead time, in particular, for unstable
processes as a part of the finite-spectrum-assignment
control law (Manitius and Olbrot, 1979; Watanabe,
1986; Wanget al., 1999) or in the form of a modi-
fied Smith predictor (Watanabe and Ito, 1981; Palmor,
1996). Distributed delays also appear inH∞ control

of (even, stable) dead-time systems (Zhong, 2003e;
Meinsma and Zwart, 2000; Zhong, 2003b; Zhong,
2003c; Mirkin, 2003b; Zhong, 2003d) and continuous-
time deadbeat control (Zhong, 2003a). Due to the
requirement of internal stability, such an FIR block
has to be approximately implemented as a stable block
without hidden unstable poles.

A common way to do this is to replace the distributed
delay by the sum of a series of discrete (often com-
mensurate) delays (Manitius and Olbrot, 1979; Watan-
abe and Ito, 1981; Palmor, 1996) (other interesting
implementations using resetting mechanism can be
found in (Tam and Moore, 1974) and (Mondiéet
al., 2001)). There have been some arguments about
the possibility of causing instability by doing this.
This has attracted a lot of attention from the research
community; see (Mondiéet al., 2001; Van Assche
et al., 1999; Santos and Mondié, 2000; Mondié and
Santos, 2001; Van Asscheet al., 2001; Engelborghset
al., 2001; Mirkin, 2003a; Michiels et al., 2003; Fat-
touh et al., 2001; Mondié and Michiels, 2003). It



was proposed as an open problem in the survey pa-
per (Richard, 2003). Recently, it has been proved that
the implementation using quadrature approximations
does not cause instability (Zhong, 2004). Moreover,
the steady-state performance of the system can be
retained by using an improved implementation. Re-
cent research (Zhong, 2005) shows that the implemen-
tation can be done using rational transfer functions.
This makes the implementation much easier than that
involving discrete delays because a rational transfer
function is easier to implement. However, as men-
tioned in (Zhong, 2005), the convergence is not fast
enough and a better approach is needed.

Further to the work in (Zhong, 2005), this paper
proposes a rational implementation with much faster
convergence. Some of the reasoning developed in
(Zhong, 2005) will be adopted here. However, the
implementation proposed here is not a straightforward
extension. In particular, the proof of the convergence
is not trivial. The proposed implementation meets all
the five key points for implementation of distributed
delay summarized in (Zhong, 2005).

Following the structure developed in (Zhong, 2004;
Zhong, 2005), the implementation is regarded as a
pure approximation/implementation problem of dis-
tributed delay in the frequency domain. It does not
matter whether the system delay exists in the input, the
measurement or the state or what the control law is as
long as there is a distributed delay in the control law.
Although these papers focus on the implementation
of distributed delay in control laws, the approaches
proposed are also useful for approximating systems
involving a distributed delay, even a discrete delay.
See (Partington, 2004; Partington, 1991) for more de-
tails on this topic.

Due to the page limit, the relevant background in-
formation is kept to a minimum. See (Zhong, 2004;
Zhong, 2005) for more details.

2. PRELIMINARY: BILINEAR
TRANSFORMATIONS

The well-knownγ-operator in digital and sampled-
data control circles is defined as

γ =
2

τ
·
q − 1

q + 1
,

whereq is the shift operator andτ is the sampling
period (́Swider, 1998; Åström and Wittenmark, 1989;
Franklin et al., 1990). It is often used to digitizing a
continuous-time transfer function. The transformation
defined by theγ-operator is also called the bilinear
transformation, or the Tustin’s transformation. It ac-
tually corresponds to the trapezoidal rule for numer-
ical integration. It also connects to the (lower) lin-
ear fractional transformationFl and the (right) ho-
mographic transformationHr, which are frequently

used inH∞control, withγ = 2
τ
Fl(

[

−1 2
1 −1

]

, q) =

2
τ
Hr(

[

1 −1
1 1

]

, q). See (Zhong, 2003e; Zhong, 2003d)

for the definition of notations used here. In this paper,
the term “bilinear transformation” is preferred due to
the extension introduced in the next section.

The shift operatorq can be solved as

q = Hr(

[

1 −1
1 1

]

−1

,
τ

2
γ) =

1 + τ
2γ

1 − τ
2γ

.

Since q → eτs when τ → 0 (Kannai and Weiss,
1993), we can approximatee−τs as

e−τs ≈ q−1 =
1 − τ

2 γ

1 + τ
2 γ

.

Furthermore,γ holds the followinglimiting property:

lim
τ→0

γ = lim
τ→0

2

τ

eτs − 1

eτs + 1
= s.

This meansγ-operator is an approximation of the
differential operatorp = d

dt. Using the approximation

γ ≈ s, thene−τs ≈
1− τ

2
s

1+ τ

2
s
. This actually recovers the

first-order Padé approximation ofe−τs.

Since theγ-operator offers better approximation than
the δ-operator (which corresponds to the forward
rectangular rule) (́Swider, 1998; Åström and Witten-
mark, 1989; Franklinet al., 1990), theγ-operator (i.e.,
the bilinear transformation) is exploited to implement
the distributed delay. The framework developed in
(Zhong, 2005) will be followed; the major difficulty
lies in the proof of the convergence.

3. IMPLEMENTATION OF DISTRIBUTED
DELAY

For a natural numberN and the delayh > 0, the
functionΦ of matrixA is defined as

Φ = (

h

N
∫

0

e−Aζdζ)−1(e−A h

N + I),

which is independent ofs. Furthermore, a bilinear
transformationΓ is defined as

Γ = (eτ(sI−A) − I)(eτ(sI−A) + I)−1Φ, (3)

with τ = h
N

. This can be regarded as the extension of
the bilinear transformation to the matrix case.Γ holds:

(i) the limiting property

sI − A = lim
τ→0

Γ, (4)

(ii) the static property

sI − A|s=0 = Γ|s=0 = −A,

(iii) the cancellation property

Γ|sI−A=0 = 0.
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Figure 1. Rational implementation of distributed de-
lay: Zr = ΣN−1

k=0 ΠkΞB

According to the mechanism developed in (Zhong,
2005), thisΓ is able to bring a rational implementation
to guarantee the stability of the closed-loop system
and the steady-state performance.

From (3), we have

e−(sI−A) h

N = (Φ − Γ)(Φ + Γ)−1.

Substitute this into (2), then

Z(s) = (I − (Φ − Γ)N (Φ + Γ)−N )(sI − A)−1B.(5)

Due to the limiting property (4), we haveΓ ≈ sI −A.
Substitute this into (5), thenZ can be approximated as
Zr given below:

Zr(s)

= (I − (Φ − sI + A)N (sI − A + Φ)−N )(sI − A)−1B (6)

= (I − (Φ − sI + A)(sI − A + Φ)−1)

·ΣN−1
k=0

(Φ − sI + A)k(sI − A + Φ)−k(sI − A)−1B

= 2(sI − A + Φ)−1ΣN−1
k=0

(Φ − sI + A)k(sI − A + Φ)−kB

= ΣN−1
k=0

ΠkΞB, (7)

with

Π = (Φ − sI + A)(sI − A + Φ)−1, Ξ = 2(sI − A + Φ)−1.

The hidden, possibly unstable, poles inZ have disap-
peared fromZr. This approximation converges toZ
whenN → +∞, as will be proved in Section 4.

Π is a bi-proper rational transfer function whileΞ
is strictly proper. They share the same denominator
and thus the same stability property.Zr can be easily
implemented as a chain of rational transfer functions
shown in Figure 1. SinceΞ is strictly proper, so is
Zr. This indicates there always exists a large enough
N such that the implementation does not affect the
stability of the closed-loop system, provided that each
node is stable. See Section 4 for more details.

The stability of each nodeΠ or Ξ is determined by the
numberN . This is governed by the theorem below.
Denotean eigenvalue1 of A as σ̄ + jω̄. Then the
corresponding eigenvalue ofh

N
A is σ + jω with σ =

h
N

σ̄ andω = h
N

ω̄.

Theorem 1. The following conditions are equivalent:

1 The stability analysis in this paper only involves functions of
matrix A. Hence, the eigenvalues of the functions are the scalar
functions of the eigenvalues ofA. In other words, the eigenvalues of
the functions can be obtained one by one. See (Dorny, 1975, Section
4.6) for more details.

(i) Zr, Π, Ξ or A − Φ is stable;

(ii)
∫ h

N

0 eAζdζ is antistable;

(iii) σ cosω + ω sinω − σe−σ > 0, ignoring the case
whenσ = 0 andω = 0.

PROOF. (i)⇔(ii): The A-matrix of each node is

A − Φ = A − (

h

N
∫

0

e−Aζdζ)−1(e−A h

N + I)

= A + A(e−A h

N − I)−1(e−A h

N + I)

= 2A(e−A h

N − I)−1e−A h

N

= −2A(eA h

N − I)−1

= −2(

h

N
∫

0

eAζdζ)−1. (8)

It was assumed thatA is nonsingular here. Actually,
the final equality holds for a singularA as well. Since
the inverse operation does not change the sign of the
real part of an eigenvalue, the signs of the real part of
the eigenvalues ofA − Φ are opposite from those of
∫ h

N

0 eAζdζ. Hence,Zr (Π andΞ) is stable if and only

if
∫ h

N

0
eAζdζ is antistable.

(ii)⇔(iii): see (Zhong, 2005). This completes the
proof.

Corollary 2. If all the eigenvalues ofA are real, then
each nodeΠ or Ξ is stable for any natural numberN .

Surprisingly, the node or the implementation shares
the same stability with the node or the implementa-
tion derived using theδ-operator in (Zhong, 2005).
Hence, some of the results there can be applied to
this implementation as well. For example, the three-
dimensional surface off(σ, ω) = σ cosω+ω sin ω−
σe−σ, a sufficient condition to guarantee the stability
of the node or the implementation, and the contour of
f(σ, ω) at level0 can be found there. Figure 2 shows
a part of the contour focusing on the circle around the
origin with a radius of2.8. All the eigenvalues ofA h

N

fall into this circle whenN > N with

N =
⌈

0.357h · max
i

|λi(A)|
⌉

, (9)

where⌈ · ⌉ is the ceiling function. When this condition
holds, all the conditions in Theorem 1 are satisfied. In
particular, each node is stable. See (Zhong, 2005) for
more details. This result is needed in the next section.

4. CONVERGENCE OF THE IMPLEMENTATION

The lemma below is crucial to prove the convergence
of the implementation discussed later.
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Figure 2. The circle into which all eigenvalues ofA h
N

fall whenN > N
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Figure 3. The area mapped from the right-half circle
in Figure 2 viaφ = c 1+e−c

1−e−c

Lemma 3. Φ is antistable ifN > N for N in (9).

PROOF. Temporarily assume thatA does not have an
eigenvalue0. According to (8), we have

Φ
h

N
= A

h

N
(I − e−A h

N )−1(e−A h

N + I). (10)

As mentioned before, ifN > N then all the eigenval-
ues ofA h

N
fall into the circle around the origin with a

radius of2.8 shown in Figure 2. The mapφ = c 1+e−c

1−e−c

maps all the points inside this circle into the shaded
area shown in Figure 3, where only the mapped area
for the right-half circle is shown. The mapped area for
the left-half circle overlaps with that of the right-half
circle because the map is symmetric with respect to
c. The mapped area is on the open right half plane.
Since the eigenvalues ofΦ h

N
are mapped from the

eigenvalues ofA h
N

via this map, as can be seen from
(10), the real part of the eigenvalues ofΦ h

N
, and hence

of Φ, is always positive, i.e.,Φ is antistable.

This is also true whenA has an eigenvalue of0 (the
corresponding eigenvalue ofΦ h

N
is 2) because the

singularityc = 0 in the mapφ is removable and the
origin is mapped to the point(2, 0). This completes
the proof.

Theorem 4. Denote the approximation error ofZr as
Er = Z − Zr. Then

lim
N→+∞

‖Er(s)‖∞ = 0.

PROOF. According to (2) and (6), the implementa-
tion errorEr is

———————

Er = (I − e−(sI−A)h)(sI − A)−1B − (I − (Φ − sI + A)N (sI − A + Φ)−N )(sI − A)−1B

=

h
∫

0

e−(sI−A)ζdζ · B − 2NΦ

1
∫

0

(−I + 2Φ(Φ − (sI − A)ζ)−1)−N−1(Φ − (sI − A)ζ)−2dζ · B

=

h

N
∫

0

e−(sI−A)NζdNζ · B − N

h

N
∫

0

2Φ(−I + 2Φ(Φ − (sI − A)
N

h
ζ)−1)−N−1(Φ − (sI − A)

N

h
ζ)−2d

N

h
ζ · B

= N

h

N
∫

0

(

e−(sI−A)Nζ
−

2N

h
Φ(−I + 2Φ(Φ − (sI − A)

N

h
ζ)−1)−N−1(Φ − (sI − A)

N

h
ζ)−2

)

dζ · B

= N

h

N
∫

0

(

e−(sI−A)Nζ
−

2N

h
Φ(Φ + (sI − A)

N

h
ζ)−N−1(Φ − (sI − A)

N

h
ζ)N−1

)

dζ · B.

———————

The integrand can be expanded into a series ofζ as

I −

2N

h
Φ−1 + ζ · N

(

(
2N

h
Φ−1)2 − I

)

(sI − A)(I + O(ζ)).

WhenN → +∞, the terms ofζ0 andζ1 disappear
because2N

h
Φ−1 → I andN

(

(2N
h

Φ−1)2 − I
)

→ 0.
This means the convergence is much faster than the

case in (Zhong, 2005), where the term ofζ1 does not
disappear whenN → +∞.

Now, consider the stability of the matrix

A − Φ
h

N
ζ−1 = A − Φ − Φ((

h

N
ζ)−1 − 1)

for ζ ∈ (0, h
N

]. If N > N , thenA − Φ is stable, as
mentioned at the end of the previous section, and−Φ



is stable as well according to Lemma 3.( h
N

ζ)−1 −

1 ≥ 0 when ζ ∈ (0, h
N

]. Hence,(Φ + (sI −

A)N
h

ζ)−N−1(Φ− (sI −A)N
h

ζ)N−1 is stable forζ ∈

(0, h
N

] whenN > N . This means that the integrand is
bounded on the closed right half plane whenN > N

for ζ ∈ [0, h
N

] and so isN
(

(2N
h

Φ−1)2 − I
)

(sI −
A)(I + O(ζ)). Assume that, forN > N ,
∥

∥

∥

∥

N

(

(
2N

h
Φ−1)2 − I

)

(sI − A)(I + O(ζ)) · B

∥

∥

∥

∥

< M,

then, forN > N ,

‖Er(s)‖∞ ≤

∥

∥

∥

∥

(I −
2N

h
Φ−1)B

∥

∥

∥

∥

h + N

h

N
∫

0

Mζdζ.(11)

The two terms on the right-hand side all approach0
whenN → +∞. This completes the proof.

This theorem indicates that there alway exists a num-
berN such that the implementation is stable and, fur-
thermore, theH∞-norm of the implementation error
is less than a given positive value. According to the
well-known small-gain theorem, the stability of the
closed-loop system can always be guaranteed.

5. NUMERICAL EXAMPLE

Consider the simple plantẋ(t) = x(t)+u(t−1) with

u(t) = −(1 + λd)
(

e1
· x(t) +

1
∫

0

eζu(t − ζ)dζ
)

+ r(t), (12)

where r(t) is the reference signal. This example
has been widely studied in the literature; see e.g.
(Engelborghset al., 2001; Van Asscheet al., 1999;
Santos and Mondié, 2000; Fattouhet al., 2001). Here,
A = 1, B = 1 andh = 1. The closed-loop system
has only one pole ats = −λd, which is stable when
λd > 0. The distributed delay in (12) is

v(t) =

1
∫

0

eζu(t − ζ)dζ, (13)

and thes-domain equivalent isZ(s) = 1−e1−s

s−1 . The
proposed rational implementationZr is

Zr(s) = ΣN−1
k=0

(

2 − ǫs

2 − 2ǫ + ǫs

)k
2ǫ

2 − 2ǫ + ǫs

with ǫ = 1 − e−
1

N . SinceA has no non-real eigenval-
ues,Zr is always stable, even forN = 1.

The approximation error for differentN is shown in
Figure 4. The static error is zero and the approxi-
mation error approaches0 at both high and low fre-
quencies. The approximation error decreases when the
numberN of the nodes increases. The convergence is
fast, in particular, for low frequencies.
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Figure 4. The implementation error ofZr for different
N
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Figure 5. Comparison of different implementations
(N = 5)
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Figure 6. System responses whenr(t) = 1(t)

Figure 5 shows the implementation error of different
implementations forN = 5. The discrete-delay im-
plementation proposed in (Zhong, 2004) is denoted
as “discrete delay” in the figure and the rational im-
plementation proposed in (Zhong, 2005), which was
derived from theδ-operator, is denoted as “δ-operator”
in the figure. The proposed implementation is much
better than the one derived using theδ-operator. Al-
though it is still worse than the the discrete-delay
implementation, it has the advantage of easy imple-
mentation. Actually, it is good enough, as can be seen
from Figure 6, where the step response whenN = 5
is very close to the ideal response.

The unit-step responses of the system, as shown in
Figure 6, are obtained using (12) withλd = 1 , i.e.,

u = −(1 + λd)
(

e1 · x + v
)

+ r, v = Zr · u

in the s-domain for differentN (note that no change
is made to the control law). WhenN = 1, the system
is unstable because of the large approximation error.
When N = 2, the system is stable though slightly
oscillatory. WhenN = 5, the response is very close to



the ideal response. All the stable responses guarantee
the steady-state performance.

6. CONCLUSIONS

Based on an extension of the bilinear transforma-
tion, an approach has been proposed to implement
distributed delay using rational transfer functions.
The implementation consists of a series of bi-proper
nodes cascaded with a low-pass node. The imple-
mentation converges much faster than the one pro-
posed in (Zhong, 2005). Surprisingly, each node in
the implementation shares the same stability as that in
(Zhong, 2005). TheH∞-norm of the implementation
error approaches0 when the numberN of nodes goes
to∞. Hence, there always exists a numberN to guar-
antee the stability of the closed-loop system. In addi-
tion, the steady-state performance of the system is also
guaranteed. In addition to the easy implementation,
the proposed rational implementation does not involve
any extra parameter to choose apart from the number
N of the nodes. In particular, no parameter for a low-
pass filter is needed to choose, which is an essential
part in the literature, e.g., (Mirkin, 2003a; Michiels et
al., 2003; Mondié and Michiels, 2003; Zhong, 2004).
Simulation examples are given to verify the results and
to compare different implementations.
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