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Abstract Based on an extension of the bilinear transfoomath rational implemen-
tation for distributed delay in linear control laws is praged. This implementation
converges much faster than the rational implementatiopired from thed-operator.
The implementation has an elegant structure of chaineddpgr nodes cascaded with
a strictly proper node. The stability of each node is deteeiby the choice of the total
numberN of the nodes. Théf°°-norm of the implementation error approacleshen
N goes toco and hence the stability of the closed-loop system can beagteed. In
addition, the steady-state performance of the systemasesd. Simulation examples are
given to verify the results and to show comparative studywiher implementations.
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1. INTRODUCTION of (even, stable) dead-time systems (Zhong, 2003
o ) o ) Meinsma and Zwart, 2000; Zhong, 20§)3Zhong,
A distributed delay is a finite integral over the time, 2003 Mirkin. 2003b: Zhong, 2008) and continuous-
e.g, time deadbeat control (Zhong, 263 Due to the
h requirement of internal stability, such an FIR block
o(t) = [ A Bu(t — ¢)dc, (h > 0). (1) hf_as to be_approximately implemented as a stable block
without hidden unstable poles.

A common way to do this is to replace the distributed
The s-domain equivalent, i.e., the transfer function delay by the sum of a series of discrete (often com-
fromuto v, is: mensurate) delays (Manitius and Olbrot, 1979; Watan-
(sT—A)h _ abe and Ito, 1981; Palmor, 1996) (other interesting
Z(s) = (I = e I=AN (sI — A)7'B. @ implementations using resetting mechanism can be
found in (Tam and Moore, 1974) and (Mondéé
al.,, 2001)). There have been some arguments about
he possibility of causing instability by doing this.

0

This is a finite-impulse-response (FIR) block because
all the poles are canceled by the zeros. Distributed de-

lays often appear as a part of dead-time compensators_ .
- . . . his has attracted a lot of attention from the research
for processes with dead time, in particular, for unstable . L.
P b (fommunlty; see (Mondi&t al., 2001; Van Assche

processes as a part of the finite-spectrum-assignmen i L . i
control law (Manitius and Olbrot, 1979; Watanabe, €t al., 1999; Santos and Mondié, 2000; Mondié and

1986; Wanget al., 1999) or in the form of a modi-  S2aMoS: 2001; Van Asscieeal, 2001; Engelborghet

fied Smith predictor (Watanabe and Ito, 1981; Palmor, ?ll'hzgtm;l M|2rlc<)|(;11,.2|(\)/|0&;dl_\/’llchlzlsl\? E;' IZO%?());OZat-It
1996). Distributed delays also appearfifte control ou a. » Mondie an IchIels, )-



was proposed as an open problem in the survey pa-, 1 -1
per (Richard, 2003). Recently, it has been proved that=7¢r(| ; | |+ 9)- See(Zhong, 20G8Zhong, 2008)
the implementation using quadrature approximationsfor the definition of notations used here. In this paper,
does not cause instability (Zhong, 2004). Moreover, the term “bilinear transformation” is preferred due to
the steady-state performance of the system can behe extension introduced in the next section.

retained by using an improved implementation. Re- 1pq ghift operatoy can be solved as

centresearch (Zhong, 2005) shows that the implemen-

tation can be done using rational transfer functions. 111" 7 1+ 35y

This makes the implementation much easier than that g =H( {1 1 } ) 57) T 1_ Iy

involving discrete delays because a rational transfer 2

function is easier to implement. However, as men- Sinceq — ¢™® whent — 0 (Kannai and Weiss,
tioned in (Zhong, 2005), the convergence is not fast 1993), we can approximate "* as

enough and a better approach is needed. 1= 2y

Further to the work in (Zhong, 2005), this paper S s e
proposes a rational implementation with much faster 2
convergence. Some of the reasoning developed inFyrthermorey holds the followingimiting property:
(Zhong, 2005) will be adopted here. However, the
implementation proposed here is not a straightforward li -1 271
m 7y 1im -
extension. In particular, the proof of the convergence =0 r=0Tem 41
is not trivial. The proposed implementation meets all 11.¢ meansy-
the five key points for implementation of distributed
delay summarized in (Zhong, 2005).

_ 1-%s .
Following the structure developed in (Zhong, 2004; 7 ~ & thene™"* ~ 1+§s‘ This actually recovers the
Zhong, 2005), the implementation is regarded as afirst-order Padé approximation ef 7*.
pure approximation/implementation problem of dis- Since they-operator offers better approximation than
tributed delay in the frequency domain. It does not the §-operator (which corresponds to the forward
matter whether the system delay exists in the input, therectangular rule)§wider, 1998; Astrém and Witten-
measurement or the state or what the control law is asmark, 1989; Franklimt al., 1990), they-operator (i.e.,
long as there is a distributed delay in the control law. the bilinear transformation) is exploited to implement
Although these papers focus on the implementationthe distributed delay. The framework developed in
of distributed delay in control laws, the approaches (zhong, 2005) will be followed; the major difficulty
proposed are also useful for approximating systemsiies in the proof of the convergence.
involving a distributed delay, even a discrete delay.

See (Partington, 2004; Partington, 1991) for more de-
tails on this topic. 3. IMPLEMENTATION OF DISTRIBUTED

DELAY

(IR

-1

= S.

operator is an approximation of the
differential operatop = gt Using the approximation

Due to the page limit, the relevant background in-
formation is kept to a minimum. See (Zhong, 2004; For g natural numbeN and the delayh > 0, the

Zhong, 2005) for more details. function® of matrix A is defined as
%
2. PRELIMINARY: BILINEAR P =( e—ACdO—l(e—A% + 1),
TRANSFORMATIONS

0

The well-known~-operator in digital and sampled-
data control circles is defined as

2 q-—1
T or g+1’

which is independent of. Furthermore, a bilinear
transformatiori” is defined as

= (eT(sI—A) . I)(eT(SI_A) +I)_1¢‘, (3)

Whereq is the shift operator and is the Samp"ng with 7 = % This can be regarded as the extension of
period Swider, 1998; Astrdm and Wittenmark, 1989; the bilinear transformation to the matrix cabéholds:
Franklinet al., 1990). It is often used to digitizing a (i) the limiting property

continuous-time transfer function. The transformation )

defined by they-operator is also called the bilinear sl —A= lim I, (4)
transformation, or the Tustin's transformation. It ac-

tually corresponds to the trapezoidal rule for numer- (i) the static property

ical integration. It also connects to the (lower) lin- o — A
ear fractional transformatiorf; and the (right) ho-
mographic transformatioft/,., which are frequently

used inH >°control, withy = %]:l([ll 21} Q) = . iy
- sI—A=0 — U

s=0 — Fls:() =4,

(iii) the cancellation property
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Figure 1. Rational implementation of distributed de-
lay: Z, = X3 TIFEB

According to the mechanism developed in (Zhong,
2005), thidl" is able to bring a rational implementation
to guarantee the stability of the closed-loop system
and the steady-state performance.

From (3), we have

eI N — (& —T)(®+T) .

Substitute this into (2), then
Z(s)=I - (@ -T)N(@+T)"V)(sI — A)~'B.(5)

Due to the limiting property (4), we hade= s/ — A.
Substitute this into (5), thed can be approximated as
Z, given below:

Zr(s)
=T - (@—sI+AN(I—A+ ) N)(sI—A)"'B (6)
=T —(®—sI+A)(sI—A+d) Y

IV @ — sT+ A)f(sT — A+ @) F(sT - A)7'B

=0
=2(s] —A+ @) 'S (@ — s+ A)F(sT — A+ ®)7FB
=y I*EB, @
with

M= (®—sl+A)(s] — A+ )71,

The hidden, possibly unstable, polesArhave disap-
peared fromZ,.. This approximation converges {0
whenN — +o0, as will be proved in Section 4.

IT is a bi-proper rational transfer function white

(i) Z.,II,Zor A — @ is stable;
(i) ;¥ eA<dc is antistable;

(i) o cosw + wsinw — ge™? > 0, ignoring the case
wheno = 0 andw = 0.

PROOF. (i)« (ii): The A-matrix of each node is

(8)

It was assumed that is nonsingular here. Actually,
the final equality holds for a singular as well. Since

the inverse operation does not change the sign of the
real part of an eigenvalue, the signs of the real part of
the eigenvalues oft — ® are opposite from those of

foﬁ eA¢d¢. Hence,Z, (IT andZ) is stable if and only
if fo% e d( is antistable.

(i) < (ii): see (Zhong, 2005). This completes the
proof.

Corollary 2. If all the eigenvalues ofd are real, then
each nodéI or = is stable for any natural numb#f.

Surprisingly, the node or the implementation shares
the same stability with the node or the implementa-
tion derived using the&-operator in (Zhong, 2005).

Hence, some of the results there can be applied to
this implementation as well. For example, the three-

is strictly proper. They share the same denominatordimensional surface of(o, w) = o cosw +wsinw —

and thus the same stability proper;. can be easily
implemented as a chain of rational transfer functions
shown in Figure 1. Sinc& is strictly proper, so is

oe~ 7, a sufficient condition to guarantee the stability
of the node or the implementation, and the contour of
f(o, w) atlevel0 can be found there. Figure 2 shows

Z,. This indicates there always exists a large enougha part of the contour focusing on the circle around the

N such that the implementation does not affect the
stability of the closed-loop system, provided that each
node is stable. See Section 4 for more details.

The stability of each nodH or = is determined by the
numberN. This is governed by the theorem below.
Denotean eigenvalué of A ass + jw. Then the
corresponding eigenvalue ﬁA iso + jw with o =
Lsandw = Lo,

Theorem 1. The following conditions are equivalent:

1 The stability analysis in this paper only involves functoaf
matrix A. Hence, the eigenvalues of the functions are the scalar
functions of the eigenvalues df. In other words, the eigenvalues of
the functions can be obtained one by one. See (Dorny, 19¢5p8e
4.6) for more details.

origin with a radius oR.8. All the eigenvalues oﬁ%
fall into this circle whenN > N with
N = [0.357h : max|/\i(A)|—‘ : 9)
where[ - ] is the ceiling function. When this condition
holds, all the conditions in Theorem 1 are satisfied. In

particular, each node is stable. See (Zhong, 2005) for
more details. This result is needed in the next section.

4. CONVERGENCE OF THE IMPLEMENTATION

The lemma below is crucial to prove the convergence
of the implementation discussed later.



Figure 2. The circle into which all eigenvaluesA)%
fallwhenN > N
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Figure 3. The area mapped from the right-half circle
in Figure 2 viap = c¢1te—

l—e—c¢

Lemma 3. & is antistable ifV > N for IV in (9).

E,

h 1

h
N

/e*“*AKdg -B—2N® /(—1+ 20(® — (sI —
0

PROOF. Temporarily assume that does not have an
eigenvalud). According to (8), we have
h h

(I)— = Aﬁ([ — €7A%

" )l e AR ).

(10)
As mentioned before, iV > N then all the eigenval-
ues ofA% fall into the circle around the origin with a

radius of2.8 shown in Figure 2. The map = c1E<—
maps all the points inside this circle into the shaded
area shown in Figure 3, where only the mapped area
for the right-half circle is shown. The mapped area for
the left-half circle overlaps with that of the right-half
circle because the map is symmetric with respect to
c. The mapped area is on the open right half plane.
Since the eigenvalues @% are mapped from the
eigenvalues oﬂ% via this map, as can be seen from
(10), the real part of the eigenvalueslb}%, and hence

of ®, is always positive, i.ed is antistable.

This is also true whenl has an eigenvalue @f (the
corresponding eigenvalue @% is 2) because the
singularityc = 0 in the map¢ is removable and the
origin is mapped to the poir(®2, 0). This completes
the proof.

Theorem4. Denote the approximation error &f. as

E.=7-Z. Then
lim || £, (s)||, = 0.
N—+o0

PROOF. According to (2) and (6), the implementa-
tion errorE, is

(I—e =AY T - A 'B— (I — (@ —sl+ A)N(sT— A+ ®) " N)(sT—A)"'B

AN (@ — (sT — A)¢)~2d¢ - B

0
%
:/e—(SI_A)NCdNC-BfN/2<I>(7[+2<I>(<I>f(sIfA)%C)_l)_N_l(éf(sIfA)%C)_Qd%C-B
0

0

(e—(sI—A)NC _ 2N

The integrand can be expanded into a seriesasd

2N,
I-—o'4+¢.N

- ((%@*1)2 71) (sI — AT + 0(¢)).

When N — +o0, the terms oft® and (! disappear
becauseX®~! — [ andN ((2Xo~1)2 - 1) — 0.

(e*@f*AWC - %@(—1 +20(D — (sI — A)%C)*l)*]\“l(@ — (sI— A)%g)*) d¢-B

N . _n_ N . n_
T<1>(<1>+(517A);4) N 1(<1>7(317A)F<)N l)dC-B.

case in (Zhong, 2005), where the term¢éfdoes not
disappear wheiV — +co.

Now, consider the stability of the matrix

h

h _ _
A=l =A-0-0((0) ' - 1)

for ¢ € (0, £]. If N > N, thenA — & is stable, as

This means the convergence is much faster than thementioned at the end of the previous section, add



is stable as well according to Lemma @%¢)~! —

1 > 0 when¢ € (0, &]. Hence,(® + (sI —
A RON=Y® — (sI — A) XN~ is stable for{ €
(0, %] whenN > N. This means that the integrand is
bounded on the closed right half plane whgn> N
for ¢ € [0, £] and so isN ((2X®~1)2 — 1) (sI —
A)(I 4+ O(()). Assume that, folV > N,

HN((2N _

Td) h2 - I> (sI —A)(I+0()) - BH <M,
then, forN > N,

2N

186l < 0 = 2 e 0+ v [ arcac)
0

The two terms on the right-hand side all approéch
whenN — +oc0. This completes the proof.

This theorem indicates that there alway exists a num-
ber N such that the implementation is stable and, fur-
thermore, theH >°-norm of the implementation error
is less than a given positive value. According to the
well-known small-gain theorem, the stability of the
closed-loop system can always be guaranteed.

5. NUMERICAL EXAMPLE
Consider the simple plarif(t) = x(t) + u(t — 1) with
1

u(t) = —(1 4 Ag) (' - 2(t) +/ eCu(t — ¢)d¢) +r(t), (12)

0

where r(t) is the reference signal. This example
has been widely studied in the literature; see e.g.
(Engelborghst al., 2001; Van Asschet al., 1999;
Santos and Mondié, 2000; Fattoettal., 2001). Here,

A =1,B = 1andh = 1. The closed-loop system
has only one pole &t = —\,4, which is stable when
Aaq > 0. The distributed delay in (12) is

1
o) = [ eult~ e, a3)
0
and thes-domain equivalent iZ(s) = 1‘;_?. The
proposed rational implementatidf; is
k
2 —€s 2¢
Zn(s) = 5Nt
() k=0 (2—26+68> 2 —2e+es

with e = 1 — e~ ~. SinceA has no non-real eigenval-
ues,Z, is always stable, even fo¥ = 1.

The approximation error for differen¥ is shown in
Figure 4. The static error is zero and the approxi-
mation error approachésat both high and low fre-

lementation error
= B
o W

Impl

107 107

0 1
10 0
Frequency (radllsec)

Figure 4. The implementation error &f. for different
N

proposed
d—operator

lementation error
= =
\ \

Impl

107

0 1
10 0
Frequency (radllsec)

Figure 5. Comparison of different implementations
(N =5)
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Figure 6. System responses when) = 1(t)

Figure 5 shows the implementation error of different
implementations fotV = 5. The discrete-delay im-
plementation proposed in (Zhong, 2004) is denoted
as “discrete delay” in the figure and the rational im-
plementation proposed in (Zhong, 2005), which was
derived from th&j-operator, is denoted ag-bperator”

in the figure. The proposed implementation is much
better than the one derived using th@perator. Al-
though it is still worse than the the discrete-delay
implementation, it has the advantage of easy imple-
mentation. Actually, it is good enough, as can be seen
from Figure 6, where the step response whén-= 5

is very close to the ideal response.

The unit-step responses of the system, as shown in
Figure 6, are obtained using (12) with =1, i.e.,

u=—1+X) (e z4+v)+r,v=2u

in the s-domain for differentV (note that no change
is made to the control law). WheN = 1, the system

guencies. The approximation error decreases when thés unstable because of the large approximation error.

numberN of the nodes increases. The convergence is
fast, in particular, for low frequencies.

When N = 2, the system is stable though slightly
oscillatory. WhenV = 5, the response is very close to



the ideal response. All the stable responses guaranteMirkin, L. (2003b). On the extraction of dead-time controllers

the steady-state performance.

6. CONCLUSIONS

Based on an extension of the bilinear transforma-
tion, an approach has been proposed to implemeng\ﬂond
distributed delay using rational transfer functions.
The implementation consists of a series of bi-proper

and estimators from delay-free parametrizatioB&EE Trans.
Automat. Control 48(4), 543-553.
Mondié, S. and O. Santos (2001). Approximations of contild
with distributed delays: A necessary condition for stapili
In: The 1st IFAC Symposium on System Structure and Control.
Prague, Czech Republic.
i€, S. and W. Michiels (2003). Finite spectrum assigmme
of unstable time-delay systems with a safe implementation.
|EEE Trans. Automat. Control 48(12), 2207 — 2212.

nodes cascaded with a low-pass node. The imple-Mondié, S., R. Lozano and J. Collado (2001). Resetting msce

mentation converges much faster than the one pro-
posed in (Zhong, 2005). Surprisingly, each node in

model control for unstable systems with delay. Ruoc. of
the 40th IEEE Conference on Decision & Control. Vol. 3.
Orlando, Florida, USA. pp. 2247-2252.

the implementation shares the same stability as that inpaimor, 7.J. (1996). Time-delay compensation — Smith ptedi

(Zhong, 2005). Thed*>°-norm of the implementation
error approachegswhen the numbeN of nodes goes
to co. Hence, there always exists a numbéto guar-

antee the stability of the closed-loop system. In addi-
tion, the steady-state performance of the system is also
guaranteed. In addition to the easy implementation,

and its modifications. InThe Control Handbook (S. Levine,
Ed.). pp. 224-237. CRC Press.
Partington, J.R. (1991). Approximation of delay systems by
Fourier-Laguerre seriefutomatica 27(3), 569-572.
Partington, J.R. (2004). Some frequency-domain appraaiththe
model reduction of delay systenfnnual Reviews in Control
28, 65-73.

the proposed rational implementation does not involve Richard, J.-P. (2003). Time-delay systems: An overviewoofis re-

any extra parameter to choose apart from the number
N of the nodes. In particular, no parameter for a low-
pass filter is needed to choose, which is an essential

part in the literature, e.g., (Mirkin, 20@3Michiels et

al., 2003; Mondié and Michiels, 2003; Zhong, 2004).

cent advances and open problerstomatica 39(10), 1667—
1694.

Santos, O. and S. Mondié (2000). Control laws involvingriisted

time delays: Robustness of the implementation.Aroc. of

the 2000 American Control Conference. Vol. 4. pp. 2479—
2480.

Simulation examples are given to verify the results and Swider, Z. (1998). Realization using theoperator. Automatica

to compare differentimplementations.
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