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Abstract: Real time system parameter estimation from theos@éput-output data is
usually solved by the quadratic norm minimization of systeguations errors - known
as least squares (LS). But measurement errors are also bathematrix and so it is
necessary to use a modification known as total least squBEL& 6r mixed LS and TLS.
Instead of quadratic norm minimization othenorms are used, for < p < 2. In the
article new method is described nam&atal p-norm andMixed total p-norm which is
the analog to TLS and mixed LS and TLS method in the quadrase.c

The goal of the paper is to develop the method and to compaet af parameter
estimations of ARX model where each estimation is obtaingahimimizing totalp-norm

(1 < p < 2). Total p-norm and mixed totap-norm approach is used when errors are
also in data matrix. If the measurement of the system ougpdinaged by some outliers
described method gives better results than standard TLSxedrhS and TLS approach.
Copyright ©2005 IFAC
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1. INTRODUCTION done by Singular Value Decomposition (SVD) of data
matrix. But usually the errors are only in measured
output of the system and not in the input, which

Identification of dynamic properties of a real plant . : L .
dentification of dynamic properties of a real plant is realized by controller and so it is known without

is usually solved by making its model - choosin .
y y g 9 errors. In such case only part of the data matrix -

the model structure and the estimation of model un- . . :

known parameters using data measured on the reafOme of its columns - is mea;ured with errors andlsuch

plant (Ljung, 1987). problem can be solved by mixed LS and TLS. MQ«.ad
LS and TLS can also be solved by SVD decomposition

If ARX model of the system is used, the measured of the data matrix. The problem in such case is that

data together with unknown system parameters formsupdating of the results when new data are obtained is

the system of linear equation and parameter vector isdifficult.

obtained by the minimization of equations error vector I L

by the least squares (LS) method §Bjk, 1996). But Rg cono':r|byt|odn Ii);the:r_plc_:lse IS Irllalthe nevlv TethOd. of

the errors are also in the data matrix and such problem and mixe an problem sofution using

leads to the total least squares (TLS) method (Hueffel 'ttheera::;/tzt.snmugOgtg;vgef'%r:s%.f:,{sgssq;:&e]ieﬁaszeo%g n
et al.,, 1991). Solution of such problem is usually ng sy ' ( ' )



The main idea of the method is based on the fact thatapproximation of the output vector

in some special cases the LS and TLS solutions areb = [y(t), y(t — 1),...,y(t —m — 1)]T by the vector
identical. Az, where

The advantage of the new method is in simple updat- yt—1) y(t—2) ... ut) ...

ing of the TLS and mixed LS and TLS when new data _ |yt —-2)yt—=3) ... ut—1) ... @)

are given. Such approach opens new possibilities to
solve TLS and mixed LS and TLS problems.

Equation error minimization can also be realized using g o+ the vectob and the matrixd are formed from the
generalp-norm instead of quadratic norm. Algorithm measured dat®’. The problem is the minimization of
of the solution is known as lteratively Reweighted -0 of error vector

Least Squares (IRLS) (Bjck, 1996). The utilization
of this algorithm together with the method using ro- min || Az — bllp ) (3)
tating system of coordinates results in a new method *
of p-norm minimization when errors are also in the
data matrix. Such method is namé&atal p-norm and
Mixed total p-norm which is the analog to TLS and
mixed LS and TLS method in the quadratic case. Itis
known, that utilization op norm(1 < p < 2) instead

of quadratic norm suppress the wrong measurements
(outliers) in the data.

If p = 2 the solution is known as Least Squares
(LS) (Bjorck, 1996) (Boycet al., 2002). In reality the
noise of output measurement is also in the elements of
data matrixA. Solution of this problem leads to the
Total Least Squares (TLS) (&jck, 1996), (Huffelet

al 1991). If the measurement of the input is noise
free, the problem can be solved by Mixed LS and TLS
The paper is organized as follows: (Bjorek, 1996), (Huffekt al., 1991). If1 < p < 2 the

The second section shows identification of ARX new method of solution is developed and this is the
model usingp-norm. The algorithm for minimiza-  contribution of the article.

tion of p-norm (I < p < 2) is recapitulated in
the section 3. This algorithm is known as lteratively
Reweighed Least Squares (IRLS). Original method of
TLS problem solution based on rotating system of
coordinates is described in section 4 and its variant
when only part of data matrix is corrupted by the noise
is given in subsection 4.1.

3. P-NORM MINIMIZATION

Solution of minimization problem (3) is recapitulated
in this section. If the norm is restricted by < p < 2
the minimization problem is convex and the solution
Because TLS method using rotating system of coordi- is unique. This problem can be solved by iterative
nates is based on iterative LS solutions so the methodalgorithm which is known as Iteratively Reweighted
can be modified in such a way that in each iteration in- Least Squares (IRLS) (Bjck, 1996).

stead LS solution Iteratively Reweighed Least Squares

are used. Totgl-norm method is obtained in this way Iteratively Reweighted Least Squares

as analogy to known TLS method. Let us solve the approximation problem
In section 5 the examples of system parameter estima- _ ,
tion in different variant of totap-norm are shown. min {‘I’ (z) = [[Az - b||p} l<p<2 (4)

Consider, that all coordinates of the residuum
e(x) = b — Ax are nonzero. Then the functich(z)
Usually chosen structure is the ARX model of the ¢@n be defined as
system described by equation m
= lei(x Z i (@)[" e (@) (5)
=1

+bou(t) +... +bpru(t —n—1)+elt) (1) previous problem is weighted Least Squares:
wherey(t) is the output of the system in timeand
u(t) is the system inpug(t) is equation error and;, ming
b; are system parameters. Only single input - single
output system is considered.

2. IDENTIFICATION OF ARX MODEL

yt)=ayt—1)+ ... +ap1y(t—n—1)+

D(a)’%Q(b—Am)‘

; (6)

2

whereD (e) = diag (|¢]). Because of dependency of
Parameter estimation problem from given set of data diagonal weighting matrixD(e) on unknown solution

= {yt),y(t—1),...,u(t),u(t—1),...} leads x the problem must be solved by iterative algorithm.
to minimization of erroe = [e(t), e(t — 1),...]". The input ofk-th iteration is
So we are looking for the parameter vector

e®) =p— Az® D® = diag (‘5(’“)

) ™)

T = [al,ag,...,bo,bl,...]T that ensures the best



Utilizing weighted LS algorithmdz(*) is obtained by

X y x  data
solving T —— LSsolution
N e new system of
Sxk) — arg min ‘D(k) (s(k) _ A5:£) H (8) coordinates
ox 2

The next iteratiok*+1) is obtained as

et = 2R 4 (k) 9) )

—u

For minimization of the normp = 1 linear program-

ming (LP) can be used. Two following problems are Fig. 1. Coordinate rotation in the method for TLS
equivalent solution

exactly is omitted). So TLS problem is solved by LS
min [[Az —b|[; < (10) by iterative way and in each iteration the coordinate
’ system is rotated as in fig 1., where dashed lines form
the new system of coordinates and solid line is LS
solution.

min{lTy : Ar—b <y, Ax—bz—y}
Y

. x
Introducing augmented vectar = [y} standard gyt it is natural that coefficient which forms part
form of LP problem is obtained of the data is without error. So the problem leads to
B B mixed LS and TLS solution and the model is in such
min {CTZ Az < b} , (12) case
T =10,...0,1,...1] Vi +eyi =a(u; +eyi) +0 (14)

A T - Let us return to our model of discrete time linear
A= , b= .
—A I —b dynamic system

Yk = Q1Yk—1+ -+ nYk—n +bour +... (15)

The only drawback of such computation is that LP

problem can have more than only one solution. . L
The problem is the estimation of parameter veetor

T
x:[al,...,an,b()7...7bn] (16)
4. TLS SOLUTION BASED ON THE ROTATING
SYSTEM OF COORDINATES from output measurement vector= [y, yo, - - ., ¥u]

) ) i and input measuremenis. So it is necessary to solve
Let us first suppose the simple linear dependence|inear systemix = y where matrixA is formed from
between the datay; = au; + b, wherey is the e data

output (response) of the system ands the input

(stimulus). Our aim is to estimate parametgrsfrom Yo Y-1 .- Ylon UL ... Ulp
the measured datg, u;. A= (17)
In least squares solution it is supposed that errors are Yo—1 Yo—2 - Yo—pn Uy ... Up—n
in outputy; (in equation) only, so the model has the )
form The whole data matrix equal® = [4, —y] and
equation error vector is
Yi+ei=au;+b (12)
e=D h" } . (18)
and the LS solution is
. ) Note that the parameter vector is in such case aug-
(a,b) =argmin ) (z;) mented by last coordinate which equals
@ LS solution of linear system is; ¢ = arg mine” e.
_ : o B)2
=argminy _(y; — au; —b) For the simplicity denote the whole data vecidone

row of the matrixD) of the dimension = 2n + 2
In TLS solution it is supposed that the errors are also
in stimulus, so the model is d=[dy,ds d,]

cey Gy
Yi +eyi = a (U; + €yq) + (1 + €ps) (13) =Yty s Ytmmy Uty - ooy U, =] (19)

The affi h i
The principal idea is that LS and TLS solution is e affine dependence among the data is

the same whem = 0 (the possibility that data fix dx=dix1+...+dy1xy—1 +duzy, (20)



In this way in (1) dimensional data space the linear
subspace is defined. Such subspace is defined by the
set of following (i — 1) row vectors (intersection of
linear subspace with coordinate system planes)

[10...0 -2 7
Ly
01...0 -2
Ty =P eREDxW (21)
60. 1 —Lut
L z, |

e The solution is terminated when

D — 2@ < (27)
or
max |:1:,(j+1) — x,(;)| <~ (28)

where~ is the chosen accuracy of the solution.

system of coordinates

Coordinate rotation means that the new system of
coordinates is formed from such set(pf— 1) vectors

4.1 Mixed LSand TLS solution based on the rotating

Let now suppose that inputs; in the data matrix

together with one vector which is perpendicular to are measured without errors. Such approach leads to
the rest. In this way the new system of coordinates is mixed LS and TLS solution. The affine dependence

formed and QR factorization of matriR” is used to
create it.

among the data is the same as in (20). But inputs
which are the part of the data vectak, 1, . . .

) du—l)

are measured without errors and so they are omitted

PT=QR, = P=R"'Q"

when the system of coordinates is rotated. Omitting

the data without errors the linear dependence among

whereQ € R*( is orthogonal(QQ™ = I) and
matrix R € R(#)*(#=1) js upper triangular, so

PQ = RT e Rr(v=1)x(n) (22)

dixy + ...+ dpx, +dyzy,

data is (compare with (20))

(29)

In this way only in(x — n — 1 = n + 1) dimensional

matrix R is lower triangular and due to its dimension
the last(x) column equals zero.

So the matrixQ forms the new system of orthonormal
coordinates. Iterative LS solution of the TLS problem
proceeds in the iterative way and in each iteration the
coordinate rotation is used. Algorithm of the solution
is the following:

e At the beginning LS problem
(23)

min || e = Az —y ||?
xT

is solved.
e From matrixP, see (21), in each iteratidn) by

(10...0 =22
am
01...0-22
Ty,
00..1-2n
L Ty J

data space the linear subspace is defined. Such sub-
space is defined by the setof orly — n — 2 = n)

row vectors (which again show intersection of linear
subspace with coordinate system planes)

= P e R+ (30)

The part of the new coordinate system is formed from

QR decomposition new system of coordinates is such set of: vectors together with one vector which

computed, then
e=DWQY (Q(i))Tx(i) (24)

So from the new data matriR "+ = D@ Q)
by LS new vecto(z(*+1)) ¢ is computed.

e From this follows that the original parameter
vectorz(*t1) equals

(Q(i))TI(iH) - (zLS)(i+1>

and so

must be perpendicular to such set of vectors. Again
the part of the new system of coordinates is obtained
by QR factorization of matrix°” as in the previous

case. Then

PQ — RT c R(n)X(n+l)

and the matrixR” is lower triangular and due to its
dimension the lastn + 1) column equals zero.

Matrix @ forms part of the new system of orthonormal

coordinates. Total transformation matkk. must be

x(i-I—l) — Q(L) (xLS)(i+1) (25)

and the parameter vectof+is normalized
20D = (D) /20 in order that the last
coordinate of vectot equalsl, see (18).

e TLS parameter vector solutionequals

L0+ — o™ | oW x(Lz‘;rl) (26)

formed with respect to the data measured without
errors in the following way. Matrixy is divided to

Q= |:Q(n><n) q1 :| (31)

q2 q22

whereq; is column vectorg, is row vector andpss is
scalar. The total rotation matri.. is then



Qnxn)  Omx(nt1)) T
Qc = | O((n+1)xn) L((n+1)x(n+1)) O(nr1)x1) | (32)
72 0(1x(n+1)) 922

The algorithm of the solution of mixed LS and TLS is
then the same.

5. SIMULATION EXAMPLES

In this section two simulation examples are presented
which show the advantage of the proposed method.

All simulation are realized with discrete time system
of the third order

3

> bu(k—i)+s  (33)

=0

3
y(k) = — Z ay(k — i)+

wherea; = [0.50.1 0.4], b;

s = 4; so the parameter vector is = [a; b; s |
Noises with different distribution are added to show
how the method works and in the second example
outliers are added to the data.

[01212] and
T

—— real system
—— approx. p=1
—— approx. LS

sl

Fig. 3. Step responses of real and estimated system for
p = 1 norm minimization

Fig. 4 shows how the norm of estimation error depends
on thep-norm. If output of the system is without out-
liers (case with outliers is shown in the next example)
the estimation error decreasegifiorm changes from

p = 1top = 2. Mixed total p-norm minimization
method was used to solve the problem.

If only total p-norm (not mixedp-norm) minimization
is used, which solves the problem if noise is wrongly
supposed to be in whole data matrix, the estimation
error is larger and is shown in fig. 5. In both figures
quadratic estimation errofz — z*||2 and p-norm

1000 samples of input and output data are generatedestimation errofjz — x*||,, are shown.

and noiseV(0,0.1) is added to the output - it is shown
in fig. 2.
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Fig. 2. Input and output of the system

Step responses of real and estimated system forl
norm minimization are shown in fig. 3. Mixed total
p-norm minimization method was used to solve the
problem. It is due to the fact that input signal is
measured without noise.
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Fig. 4. Dependency of norm of estimation error on
the usedb-norm (mixedp-norm minimization is
used)

Dependance of the estimation error on p—norm

10

error in p—norm
- — - errorin 2—norm

estimation error

w

The norm of parameter estimation error can be usedFi9- 5- Dependency of norm of estimation error on the

for the demonstration of estimation accuracy. The
norm equals

(34)

J=lz" =z,

wherex* is the parameter estimation vector ands
the vector of true parameters.

usedp-norm (totalp-norm minimization is used)

In the next example outliers (wrong measurements)

are added to the output of the system and also noise
N(0,1) is added to the output. There is 1000 samples

of input and output signal and among them 15 outliers

are added.



Output data are in this case shown in fig 6 (input is the 6. CONCLUSIONS

same).

In this paper new method of system parameter esti-
mation is developed using different norms and output
measurement errors also in the data matrix. It is the
analog to well known Total Least Squares (TLS) and
its variant Mixed Least Squares (LS) and TLS method.
Such method is in the paper denoted as Tptabrm
and Mixed totalp-norm minimization method.

For the solution new original method for TLS solution

is used which is based on the iterative LS solution
Fig. 6. System output data with outliers in the rotating system of coordinates. The system
of coordinates is rotated in such a way that LS and

Step responses of real and estimated system forl TLS solutions are identical. If instead of LS solution
norm minimization is shown in fig. 7. Mixed total Iteratively Reweighted Least Squares are used the

p-norm minimization method was used to solve the Proposed method is obtained. Such approach opens

problem. It respects the fact that input signal is mea- NeW possibilities for solving different variants of TLS
sured without noise. problem. For instance updating LS is simple and so

updating Totalp-norm method can be realized too.
Simulation results show how the algorithm works and
obtained results show the advantage of the method
especially if outliers are presented.
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