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Abstract: Real time system parameter estimation from the set of input-output data is
usually solved by the quadratic norm minimization of systemequations errors - known
as least squares (LS). But measurement errors are also in thedata matrix and so it is
necessary to use a modification known as total least squares (TLS) or mixed LS and TLS.
Instead of quadratic norm minimization otherp-norms are used, for1 ≤ p ≤ 2. In the
article new method is described namedTotal p-norm andMixed total p-norm which is
the analog to TLS and mixed LS and TLS method in the quadratic case.
The goal of the paper is to develop the method and to compare a set of parameter
estimations of ARX model where each estimation is obtained by minimizing totalp-norm
(1 ≤ p ≤ 2). Total p-norm and mixed totalp-norm approach is used when errors are
also in data matrix. If the measurement of the system output is damaged by some outliers
described method gives better results than standard TLS or mixed LS and TLS approach.
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1. INTRODUCTION

Identification of dynamic properties of a real plant
is usually solved by making its model - choosing
the model structure and the estimation of model un-
known parameters using data measured on the real
plant (Ljung, 1987).

If ARX model of the system is used, the measured
data together with unknown system parameters forms
the system of linear equation and parameter vector is
obtained by the minimization of equations error vector
by the least squares (LS) method (Björck, 1996). But
the errors are also in the data matrix and such problem
leads to the total least squares (TLS) method (Hueffel
et al., 1991). Solution of such problem is usually

done by Singular Value Decomposition (SVD) of data
matrix. But usually the errors are only in measured
output of the system and not in the input, which
is realized by controller and so it is known without
errors. In such case only part of the data matrix -
some of its columns - is measured with errors and such
problem can be solved by mixed LS and TLS. Mixed
LS and TLS can also be solved by SVD decomposition
of the data matrix. The problem in such case is that
updating of the results when new data are obtained is
difficult.

The contribution of the article is in the new method of
TLS and mixed LS and TLS problem solution using
iterative solution of weighted least squares based on
the rotating system of coordinates (Pachner, 2002).



The main idea of the method is based on the fact that
in some special cases the LS and TLS solutions are
identical.

The advantage of the new method is in simple updat-
ing of the TLS and mixed LS and TLS when new data
are given. Such approach opens new possibilities to
solve TLS and mixed LS and TLS problems.

Equation error minimization can also be realized using
generalp-norm instead of quadratic norm. Algorithm
of the solution is known as Iteratively Reweighted
Least Squares (IRLS) (Björck, 1996). The utilization
of this algorithm together with the method using ro-
tating system of coordinates results in a new method
of p-norm minimization when errors are also in the
data matrix. Such method is namedTotal p-norm and
Mixed total p-norm which is the analog to TLS and
mixed LS and TLS method in the quadratic case. It is
known, that utilization ofp norm(1 ≤ p < 2) instead
of quadratic norm suppress the wrong measurements
(outliers) in the data.

The paper is organized as follows:
The second section shows identification of ARX
model usingp-norm. The algorithm for minimiza-
tion of p-norm (1 < p < 2) is recapitulated in
the section 3. This algorithm is known as Iteratively
Reweighed Least Squares (IRLS). Original method of
TLS problem solution based on rotating system of
coordinates is described in section 4 and its variant
when only part of data matrix is corrupted by the noise
is given in subsection 4.1.

Because TLS method using rotating system of coordi-
nates is based on iterative LS solutions so the method
can be modified in such a way that in each iteration in-
stead LS solution Iteratively Reweighed Least Squares
are used. Totalp-norm method is obtained in this way
as analogy to known TLS method.

In section 5 the examples of system parameter estima-
tion in different variant of totalp-norm are shown.

2. IDENTIFICATION OF ARX MODEL

Usually chosen structure is the ARX model of the
system described by equation

y(t) = a1y(t − 1) + . . . + an−1y(t − n − 1) +

+ b0u(t) + . . . + bn−1u(t − n − 1) + e(t) (1)

wherey(t) is the output of the system in timet and
u(t) is the system input,e(t) is equation error andai,
bj are system parameters. Only single input - single
output system is considered.

Parameter estimation problem from given set of data
Dt = {y(t), y(t − 1), . . . , u(t), u(t − 1), . . .} leads
to minimization of errorε = [e(t), e(t − 1), . . .]

T .

So we are looking for the parameter vector
x = [a1, a2, . . . , b0, b1, . . .]

T that ensures the best

approximation of the output vector
b = [y(t), y(t − 1), . . . , y(t − m − 1)]T by the vector
Ax, where

A =







y(t − 1) y(t − 2) . . . u(t) . . .
y(t − 2) y(t − 3) . . . u(t − 1) . . .

...
...

...
...






(2)

Both the vectorb and the matrixA are formed from the
measured dataDt. The problem is the minimization of
the norm of error vector

min
x

‖Ax − b‖p . (3)

If p = 2 the solution is known as Least Squares
(LS) (Björck, 1996) (Boydet al., 2002). In reality the
noise of output measurement is also in the elements of
data matrixA. Solution of this problem leads to the
Total Least Squares (TLS) (Björck, 1996), (Huffelet
al., 1991). If the measurement of the input is noise
free, the problem can be solved by Mixed LS and TLS
(Björck, 1996), (Huffelet al., 1991). If1 ≤ p ≤ 2 the
new method of solution is developed and this is the
contribution of the article.

3. P -NORM MINIMIZATION

Solution of minimization problem (3) is recapitulated
in this section. If thep norm is restricted by1 < p < 2
the minimization problem is convex and the solution
is unique. This problem can be solved by iterative
algorithm which is known as Iteratively Reweighted
Least Squares (IRLS) (Björck, 1996).

Iteratively Reweighted Least Squares

Let us solve the approximation problem

min
x

{

Ψ(x) = ‖Ax − b‖p
p

}

1 < p < 2 (4)

Consider, that all coordinates of the residuum
ε(x) = b − Ax are nonzero. Then the functionΨ(x)
can be defined as

Ψ(x) =

m
∑

i=1

|εi (x)|p =

m
∑

i=1

|εi (x)|p−2
εi (x)

2 (5)

Previous problem is weighted Least Squares:

minx

∥

∥

∥
D (ε)

p−2

2 (b − Ax)
∥

∥

∥

2
, (6)

whereD (ε) = diag (|ε|). Because of dependency of
diagonal weighting matrixD(ε) on unknown solution
x the problem must be solved by iterative algorithm.
The input ofk-th iteration is

ε(k) = b − Ax(k), D(k) = diag

(

∣

∣

∣
ε(k)

∣

∣

∣

p−2

2

)

(7)



Utilizing weighted LS algorithmδx(k) is obtained by
solving

δx(k) = arg min
δx

∥

∥

∥
D(k)

(

ε(k) − Aδx
)∥

∥

∥

2
(8)

The next iterationx(k+1) is obtained as

x(k+1) = x(k) + δx(k) . (9)

For minimization of the normp = 1 linear program-
ming (LP) can be used. Two following problems are
equivalent

min
x

‖Ax − b‖1 ⇐⇒ (10)

min
y

{

1T y : Ax − b ≤ y, Ax − b ≥ −y
}

Introducing augmented vectorz =

[

x
y

]

, standard

form of LP problem is obtained

min
z

{

cT z : Āz ≤ b̄
}

, (11)

cT =
[

0, . . . 0, 1, . . . 1
]

Ā =

[

A −I
−A −I

]

, b̄ =

[

b
−b

]

The only drawback of such computation is that LP
problem can have more than only one solution.

4. TLS SOLUTION BASED ON THE ROTATING
SYSTEM OF COORDINATES

Let us first suppose the simple linear dependence
between the datayi = aui + b , wherey is the
output (response) of the system andu is the input
(stimulus). Our aim is to estimate parametersa, b from
the measured datayi, ui.

In least squares solution it is supposed that errors are
in outputyi (in equation) only, so the model has the
form

yi + εi = aui + b (12)

and the LS solution is

(a, b) = arg min
∑

i

(εi)
2

= arg min
∑

i

(yi − aui − b)2

In TLS solution it is supposed that the errors are also
in stimulus, so the model is

yi + εyi = a (ui + εui) + b(1 + εbi) (13)

The principal idea is that LS and TLS solution is
the same whena = 0 (the possibility that data fix
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Fig. 1. Coordinate rotation in the method for TLS
solution

exactly is omitted). So TLS problem is solved by LS
by iterative way and in each iteration the coordinate
system is rotated as in fig 1., where dashed lines form
the new system of coordinates and solid line is LS
solution.

But it is natural that coefficient1 which forms part
of the data is without error. So the problem leads to
mixed LS and TLS solution and the model is in such
case

yi + εyi = a (ui + εui) + b (14)

Let us return to our model of discrete time linear
dynamic system

yk = a1yk−1 + . . . + anyk−n + b0uk + . . . (15)

The problem is the estimation of parameter vectorx

x = [a1, . . . , an, b0, . . . , bn]
T (16)

from output measurement vectory = [y1, y2, . . . , yν ]
and input measurementsut. So it is necessary to solve
linear systemAx = y where matrixA is formed from
the data

A =







y0 y−1 . . . y1−n u1 . . . u1−n

...
yν−1 yν−2 . . . yν−n uν . . . uν−n






(17)

The whole data matrix equalsD = [A, −y] and
equation error vector is

ε = D

[

x
1

]

. (18)

Note that the parameter vector is in such case aug-
mented by last coordinate which equals1.
LS solution of linear system isxLS = arg min εT ε.

For the simplicity denote the whole data vectord (one
row of the matrixD) of the dimensionµ = 2n + 2

d = [d1, d2, . . . , dµ]

= [yt−1, . . . , yt−n, ut, . . . , ut−n,−yt] (19)

The affine dependence among the data is

d.x = d1x1 + . . . + dµ−1xµ−1 + dµxµ (20)



In this way in (µ) dimensional data space the linear
subspace is defined. Such subspace is defined by the
set of following(µ − 1) row vectors (intersection of
linear subspace with coordinate system planes)



















1 0 . . . 0 −
x1

xµ

0 1 . . . 0 −
x2

xµ
...

0 0 . . . 1 −
xµ−1

xµ



















= P ∈ R(µ−1)×(µ) (21)

Coordinate rotation means that the new system of
coordinates is formed from such set of(µ−1) vectors
together with one vector which is perpendicular to
the rest. In this way the new system of coordinates is
formed and QR factorization of matrixPT is used to
create it.

PT = QR, =⇒ P = RT QT

whereQ ∈ R(µ)×(µ) is orthogonal(QQT = I) and
matrixR ∈ R(µ)×(µ−1) is upper triangular, so

PQ = RT ∈ R(µ−1)×(µ) (22)

matrixRT is lower triangular and due to its dimension
the last(µ) column equals zero.

So the matrixQ forms the new system of orthonormal
coordinates. Iterative LS solution of the TLS problem
proceeds in the iterative way and in each iteration the
coordinate rotation is used. Algorithm of the solution
is the following:

• At the beginning LS problem

min
x

‖ ε = Ax − y ‖2 (23)

is solved.
• From matrixP , see (21), in each iteration(i) by

QR decomposition new system of coordinates is
computed, then

ε = D(i)Q(i) (Q(i))T x(i) (24)

So from the new data matrixD(i+1) = D(i)Q(i)

by LS new vector(x(i+1))LS is computed.
• From this follows that the original parameter

vectorx(i+1) equals

(Q(i))T x(i+1) = (xLS)(i+1)

and so

x(i+1) = Q(i) (xLS)(i+1) (25)

and the parameter vectorx(i+1)is normalized
x(i+1) := x(i+1)/x

(i+1)
/mu in order that the last

coordinate of vectorx equals1, see (18).
• TLS parameter vector solutionx equals

x(i+1) = Q(1)Q(2) . . . Q(i) x
(i+1)
LS (26)

• The solution is terminated when

‖x(i+1) − x(i)‖2 < γ (27)

or

max
k

|x
(i+1)
k − x

(i)
k | < γ (28)

whereγ is the chosen accuracy of the solution.

4.1 Mixed LS and TLS solution based on the rotating
system of coordinates

Let now suppose that inputsui in the data matrix
are measured without errors. Such approach leads to
mixed LS and TLS solution. The affine dependence
among the data is the same as in (20). But inputsui

which are the part of the data vector(dn+1, . . . , dµ−1)
are measured without errors and so they are omitted
when the system of coordinates is rotated. Omitting
the data without errors the linear dependence among
data is (compare with (20))

d1x1 + . . . + dnxn + dµxµ (29)

In this way only in(µ − n − 1 = n + 1) dimensional
data space the linear subspace is defined. Such sub-
space is defined by the set of only(µ − n − 2 = n)
row vectors (which again show intersection of linear
subspace with coordinate system planes)



















1 0 . . . 0 −
x1

xµ

0 1 . . . 0 −
x2

xµ
...

0 0 . . . 1 −
xn

xµ



















= P ∈ R(n)×(n+1) (30)

The part of the new coordinate system is formed from
such set ofn vectors together with one vector which
must be perpendicular to such set of vectors. Again
the part of the new system of coordinates is obtained
by QR factorization of matrixPT as in the previous
case. Then

PQ = RT ∈ R(n)×(n+1)

and the matrixRT is lower triangular and due to its
dimension the last(n + 1) column equals zero.

Matrix Q forms part of the new system of orthonormal
coordinates. Total transformation matrixQc must be
formed with respect to the data measured without
errors in the following way. MatrixQ is divided to

Q =

[

Q̄(n×n) q1

q2 q22

]

(31)

whereq1 is column vector,q2 is row vector andq22 is
scalar. The total rotation matrixQc is then



Qc =





Q̄(n×n) 0(n×(n+1)) q1

0((n+1)×n) I((n+1)×(n+1)) 0((n+1)×1)

q2 0(1×(n+1)) q22



 (32)

The algorithm of the solution of mixed LS and TLS is
then the same.

5. SIMULATION EXAMPLES

In this section two simulation examples are presented
which show the advantage of the proposed method.
All simulation are realized with discrete time system
of the third order

y(k) = −
3

∑

i=1

aiy(k − i) +

3
∑

i=0

biu(k − i) + s (33)

whereai =
[

0.5 0.1 0.4
]

, bi =
[

0 1 2 1.2
]

and

s = 4; so the parameter vector isx =
[

ai bi s
]T

.
Noises with different distribution are added to show
how the method works and in the second example
outliers are added to the data.

1000 samples of input and output data are generated
and noiseN (0, 0.1) is added to the output - it is shown
in fig. 2.
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Fig. 2. Input and output of the system

Step responses of real and estimated system forp = 1
norm minimization are shown in fig. 3. Mixed total
p-norm minimization method was used to solve the
problem. It is due to the fact that input signal is
measured without noise.

The norm of parameter estimation error can be used
for the demonstration of estimation accuracy. The
norm equals

J = ‖x∗ − x‖p (34)

wherex∗ is the parameter estimation vector andx is
the vector of true parameters.
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Fig. 3. Step responses of real and estimated system for
p = 1 norm minimization

Fig. 4 shows how the norm of estimation error depends
on thep-norm. If output of the system is without out-
liers (case with outliers is shown in the next example)
the estimation error decreases ifp-norm changes from
p = 1 to p = 2. Mixed total p-norm minimization
method was used to solve the problem.

If only total p-norm (not mixedp-norm) minimization
is used, which solves the problem if noise is wrongly
supposed to be in whole data matrix, the estimation
error is larger and is shown in fig. 5. In both figures
quadratic estimation error‖x − x∗‖2 and p-norm
estimation error‖x − x∗‖p are shown.
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Fig. 4. Dependency of norm of estimation error on
the usedp-norm (mixedp-norm minimization is
used)
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Fig. 5. Dependency of norm of estimation error on the
usedp-norm (totalp-norm minimization is used)

In the next example outliers (wrong measurements)
are added to the output of the system and also noise
N (0, 1) is added to the output. There is 1000 samples
of input and output signal and among them 15 outliers
are added.



Output data are in this case shown in fig 6 (input is the
same).
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Fig. 6. System output data with outliers

Step responses of real and estimated system forp = 1
norm minimization is shown in fig. 7. Mixed total
p-norm minimization method was used to solve the
problem. It respects the fact that input signal is mea-
sured without noise.
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Fig. 7. Step responses of real end estimated system for
p = 1 norm minimization

The Euclide norm of parameter estimation error is
again used for the demonstration of estimation accu-
racy. Fig. 8 shows the dependency of norm of parame-
ter estimation error on thep-norm.

From this simple simulation examples follow that the
method is reliable, fast and usingp-norm minimiza-
tion results in better parameter estimation only when
outliers in system output are presented. Many simula-
tion was realized and similar results are obtained.
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6. CONCLUSIONS

In this paper new method of system parameter esti-
mation is developed using different norms and output
measurement errors also in the data matrix. It is the
analog to well known Total Least Squares (TLS) and
its variant Mixed Least Squares (LS) and TLS method.
Such method is in the paper denoted as Totalp-norm
and Mixed totalp-norm minimization method.

For the solution new original method for TLS solution
is used which is based on the iterative LS solution
in the rotating system of coordinates. The system
of coordinates is rotated in such a way that LS and
TLS solutions are identical. If instead of LS solution
Iteratively Reweighted Least Squares are used the
proposed method is obtained. Such approach opens
new possibilities for solving different variants of TLS
problem. For instance updating LS is simple and so
updating Totalp-norm method can be realized too.
Simulation results show how the algorithm works and
obtained results show the advantage of the method
especially if outliers are presented.
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