
FILTERING PROBLEM FOR DISCRETE VOLTERRA
EQUATIONS WITH COMBINED DISTURBANCES

A. Bashkov 1), G. De Nicolao 2), V. Kolmanovskii 3), and A. Matasov 4,5)

1) Faculty of Applied Mathematics and Physics, Moscow Aviation Institute
Volokolamskoe shosse, 4, Moscow 125871 Russia,

2) Dipartimento di Informatica e Sistemistica, Università di Pavia
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Abstract: A minimax filtering problem for discrete Volterra equations with
combined noise models is considered. The combined models are defined as the
sums of uncertain bounded deterministic functions and stochastic white noises.
However the corresponding variational problem turns out to be very difficult for
direct solution. Therefore simplified filtering algorithms are developed. The levels
of nonoptimality for these simplified algorithms are introduced. In opposite to the
original variational problem, these levels can be easily evaluated numerically. Thus
simple filtering algorithms with guaranteed performance are obtained. Numerical
experiments confirm the efficiency of our approach. Copyright c©2005 IFAC
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1. INTRODUCTION

Volterra equations are used for modelling a lot
of various processes in viscoelasticity theory, de-
mography, industrial inventory problems, physi-
ology, polography, control of motion, aerospace
technologies, etc. The various filtering problems
for Volterra equations are of major interest for ap-
plications and should have a significant place in
the theory of such equations. Note that the filter-
ing problems for Volterra equations are scantily
known.

In the classical filtering problem statement the
plant and measurement disturbances are discrete
white noises, i.e. sequences of independent ran-
dom variables. However, in most applications the
system contains some additional non-stochastic
noises. These unknown signals can be described
by set-membership models. So, a filtering prob-
lem is considered with more realistic (compared
to the classical framework) assumptions, namely
that the plant and measurement disturbances are
the sums of white noises and uncertain bounded
deterministic functions. Such disturbances are



called combined noises. Our goal is to estimate
a specified linear combination of a plant state
at a given terminal instant T using a linear
estimator fed by observations on the segment
[0, T ]. Since the disturbances contain uncertain
deterministic signals, the estimation performance
is determined by the maximal value of the square
root of the second moment of estimation error.
The maximization is taken over all deterministic
uncertainties; this maximal value is called the
guaranteed estimation error. The optimal filter-
ing problem is to find an estimator that provides
a minimal value of the guaranteed estimation
error. Such approach to filtering goes back
to the works by N.N. Krasovskii, M.L. Lidov,
I.Ya. Katz and A.B. Kurzhanskii, F.C. Schweppe,
H.S. Witsenhausen, J. Sacks and D. Ylvisaker.

The guaranteed estimation error can be calcu-
lated explicitly and the optimal filtering problem
can be reduced to a convex variational problem
in which a convex functional is minimized on
an affine manifold. However, the functional is
nonsmooth, the problem dimension is high and
thus the variational problem is extremely difficult.

Thus, we have to consider simplified filtering
algorithms as an approximation to the unknown
optimal algorithm. The level of nonoptimality is
defined as the ratio of the filtering performances
for the simplified and optimal estimators. Since
the original variational problem cannot be solved,
it is important to evaluate a level of nonop-
timality without solving the original problem
(Matasov, 1999). In order to obtain the desired
estimate for the level of nonoptimality the duality
theory of convex variational problem is employed
(Ekeland and Temam, 1976). Three simplified
algorithms will be studied: an algorithm of
the least-squares type and two quasi-impulse
algorithms. The numerical experiments will show
that the levels of nonoptimality can be acceptable
and in some cases they can be quite close to
unity. Therefore our approach can be very useful
for practical implementation. A similar estimate
for the nonoptimality level was first obtained in
(Matasov, 1994) for dynamic systems described
by ordinary linear differential equations. In the
present paper, a system with infinitely growing
memory is investigated. Moreover, quasi-impulse
estimators are also exploited as simplified estima-
tors.

2. PROBLEM STATEMENT

Consider a linear discrete Volterra equation

x(t + 1)=
t∑

k=0

A(t, k)x(k) + B(t)u(t), x(0)=x0,

where x(t) ∈ Rn is the system state vector;
A(t, k) ∈ Rn×n, B(t) ∈ Rn×r are specified
matrices, u(t) = (u1(t), . . . , ur(t))′ ∈ Rr is a
perturbation vector, x0 = (x01, . . . , x0n)′ ∈ Rn is
an initial state. A prime denotes the transposition
sign.

Let the measurements be made for the state vec-
tor:

z(k) = H ′(k)x(k) + �(k), k = 0, . . . , N,

where z(k) ∈ Rm is the measurement at an
instant k, H(k) ∈ Rn×m is a given matrix,
and �(k) = (�1(k), . . . , �m(k))′ ∈ Rm is the
measurement noise.

Assume that the initial state and the system per-
turbations have the form

x0 =
(1)
x0+

(2)
x0, u(t)=

(1)
u(t)+

(2)
u(t), �(k)=

(1)
� (k)+

(2)
� (k),

where the summands satisfy the following hy-
potheses:
• the entries of

(1)
x0 are uncertain deterministic

numbers with bounded values, and the entries of
(1)
u (t),

(1)
� (k) are uncertain deterministic bounded

functions such that

|(1)x0d | ≤ σ−d, |(1)uj (t) | ≤ γj(t), |(1)� l (k) | ≤ σl(k);

• the vector
(2)
x0 is a zero-mean random variable

and
(2)
u (t),

(2)
� (k) are standard zero-mean white

noise processes with uncertain bounded covari-
ances such that

E
(2)
x0

(2)
x0

′
= diag(cx

1 , ..., cx
n),

E
(2)
u(t)

(2)
u

′
(s) = diag(qu

1 (t), ..., qu
r (t))δts,

E
(2)
� (k)

(2)
�

′
(i) = diag(rρ

1(k), ..., rρ
m(k))δki,

where

cx
d ≤ cd, qu

j (t) ≤ qj(t), rρ
l (k) ≤ rl(k);

• the vector
(2)
x0 and the processes

(2)
u (t),

(2)
� (k)

are assumed to be mutually independent.

In these formulas E denotes the expectation
operator, δst is the Kronecker delta; σ−d, cd are
known positive numbers and γj(t), qj(t), σl(k),
rl(k) are known positive functions. We call such
perturbations combined disturbances.

The filtering problem is to evaluate a scalar quan-
tity l∗ = a′x(N), where a ∈ Rn is a given vector,
with the help of linear functionals

l̂(Φ) =
N∑

k=0

Φ′(k)z(k),



Φ(k) = (Φ1(k), . . . ,Φm(k))′ ∈ Rm.

Since the stochastic elements x0, u, � have uncer-
tain statistics, let us introduce a guaranteed esti-
mation error by the expression

d(Φ) = max
x0,u,�

{
E

(
l̂(Φ) − l∗

)2
} 1

2

,

where the maximum is taken over all deterministic
uncertainties in the description of x0, u, �. Then
the optimal guaranteed filtering problem is to find
an estimator Φopt that minimizes the guaranteed
estimation error:

d(Φopt) = min
Φ∈Rm(N+1)

d(Φ).

Let us introduce the quantities:

(a) the function ξΦ(t) that, for a given {Φ(t)}N
0 ,

is defined by the following difference equation:

ξΦ(t) =
N−1∑
k=t

A′(k, t)ξΦ(k + 1) − H(t)Φ(t),

ξΦ(N) = a − H(N)Φ(N), t = N − 1, . . . , 0;

(b) the functional D(Φ−,Φ, w):

D(Φ−,Φ, w) = I2(Φ−,Φ, w) + Φ′
−cΦ− (1)

+
N∑

k=0

Φ′(k)r(k)Φ(k) +
N−1∑
t=0

w′(t + 1)q(t)w(t + 1),

where

I(Φ−,Φ, w) =
n∑

d=1

σ−d|Φ−d|

+
m∑

l=1

N∑
k=0

σl(k)|Φl(k)| +
r∑

j=1

N−1∑
t=0

γj(t)|wj(t + 1)|

and
Φ− = (Φ−1, . . . ,Φ−n)′ ∈ Rn,

w(t + 1) = (w1(t + 1), . . . , wr(t + 1))′ ∈ Rr,

c = diag (c1, . . . , cn) ,

r(k) = diag (r1(k), . . . , rm(k)) ,

q(t) = diag (q1(t), . . . , qr(t)) .

It can be shown that

d 2(Φ) = D(Φ−(Φ),Φ, w(Φ)),

where Φ−(Φ) and w(t + 1;Φ) are defined by the
constraints

Φ− − ξΦ(0) = 0, (2)

w(t+1)−B′(t)ξΦ(t+1) = 0, t = 0, . . . , N−1.

Thus, the optimal guaranteed filtering problem
reduces to the following nonsmooth variational
problem:

D0 = min
Φ− Φ, w

D(Φ−,Φ, w) (3)

under constraints (2).

Unfortunately, this is a very difficult nonsmooth
problem. Therefore the following approach is ex-
ploited (Matasov, 1999). Some simplified estima-
tor ϕ is searched instead of Φopt and the approxi-
mation quality is defined by the ratio

∆ = d(ϕ)
/

d(Φopt).

Clearly ∆ ≥ 1. However the optimal estimator
Φopt is unknown and thus ∆ is unknown. There-
fore an upper bound ∆0 will be constructed for
∆ that can be calculated without exactly solving
the problem (3), (2). If this upper bound is not
large, then ϕ is acceptable for the solution of the
filtering problem.

3. LINEAR-QUADRATIC PROBLEM

Consider an approximating linear-quadratic vari-
ational problem that will be a main tool for our
analysis of the initial variational problem (3), (2).
Namely, let us replace the nonsmooth functional
(1) by the following quadratic functional

J (Φ−,Φ, w) = Φ′
−P0 Φ−

+
N∑

k=0

Φ′(k)R(k)Φ(k)+
N−1∑
t=0

w′(t+1)Q(t)w(t+1).

Here
P0 = β0 diag

(
σ2
−1, . . . , σ

2
−n

)
+ c,

R(k) = β1 diag
(
σ2

1(k), . . . , σ2
m(k)

)
+ r(k),

Q(t) = β2 diag
(
γ2
1(t), . . . , γ2

r (t)
)

+ q(t),

where β0, β1, and β2 are scalar scale multipliers.

Thus the following approximating linear-
quadratic problem is obtained:

J0 = min
Φ−,Φ, w

J (Φ−,Φ, w) (4)

under constraints (2).

Theorem 1. The solution {Φ0
−,Φ0, w0} of the

linear-quadratic problem (4), (2) is given by the
relations

Φ0
− = ξ(0),

Φ0(k)=R−1(k)H ′(k)
(
P (k)ξ(k)+

N−1∑
s=k

P ′
1(k, s)ξ(s+1)

)
,



w0(t + 1) = B′(t)ξ(t + 1),

where ξ(t)satisfies the backward equation

ξ(t)=
N−1∑
k=t

C ′(k, t)ξ(k + 1), t = N−1, . . . , 0, (5)

C(t, l) = A(t, l) − D(t, l)H ′(l),

D(t, l) =
[
P ′

1(l, t) + A(t, l)P (l)
]
H(l)

×
[
H ′(l)P (l)H(l) + R(l)

]−1

,

with the terminal condition

ξ(N) =
(
E + H(N)R−1(N)H ′(N)P (N)

)−1
a.

The matrices P (t) ≥ 0 and P1(t, k) that enter in
(5) are determined by the system of equations

P (t + 1) =
t∑

l=0

[
C(t, l)P1(l, t) + P ′

1(l, t)A
′(t, l)

+ C(t, l)P (l)A′(t, l)
]

+ B(t)Q(t)B′(t),

P1(t + 1, k) =
t∑

l=0

[
C(t, l)P1(l, k) + P ′

1(l, t)A
′(k, l)

+ C(t, l)P (l)A′(k, l)
]
,

t = 0, . . . , N − 1, k = t + 1, . . . , N − 1

with the initial conditions

P (0) = P0, P1(0, k) = 0, k = 0, . . . , N−1.

Moreover,

J0 =a′P (N)
(
E+H(N)R−1(N)H ′(N)P (N)

)−1

a.

(6)
So, the linear-quadratic problem (4), (2) has an
exact solution that can be easily implemented.
The proof of Theorem 1 is based on (Kuchkina,
and Shaikhet, 1998), (Bashkov, et al., 2004), and
some new argument. Note that a corresponding
optimal estimate l̂(Φ0) has a Kalman type repre-
sentation.

4. LEVELS OF NONOPTIMALITY

To formulate the main result let us introduce the
following auxiliary quantities (that are calculated
from Theorem 1):

sd =
σ2
−d

cd
, Sd =

P0d Φ0
−d

σ−d
,

fl(k) =
σ2

l (k)
rl(k)

, Fl(k) =
Rl(k)Φ0

l (k)
σl(k)

,

gj(t) =
γ2

j (t)
qj(t)

, Gj(t) =
Qj(t)w0

j (t + 1)
γj(t)

,

where
P0 = diag (P01, . . . , P0n) ,

R(k) = diag (R1(k), . . . , Rm(k)) ,

Q(t) = diag (Q1(t), . . . , Qr(t)) .

Let ϕ be any simplified estimator. The main
result is given by the following theorem.

Theorem 2. The level of nonoptimality for the
simplified estimator ϕ is evaluated by the following
inequalities:

1 ≤ ∆ ≤ ∆0 =
D 1

2 (ϕ−, ϕ, wϕ) · Ω 1
2
(
Φ0

−,Φ0, w0
)

J0
,

where D(
ϕ−, ϕ, wϕ

)
is given by (1), ϕ− = ξϕ(0)

and wϕ(t + 1) = B′(t)ξϕ(t + 1) are set by con-
straints (2), J0 is specified by (6), and

Ω(Φ0
−,Φ0, w0) =

∑
d: |Sd|> ζ0

d=1,...,n

sd

(|Sd| − ζ0
)2

(7)

+
m∑

l=1

∑
k: |Fl(k)|> ζ0

k=0,...,N

fl(k)
(|Fl(k)| − ζ0

)2

+
r∑

j=1

∑
t: |Gj(t)|> ζ0

t=0,...,N−1

gj(t)
(|Gj(t)| − ζ0

)2
+ ζ0

2

.

The value ζ0 satisfies the equation E(ζ) = 0 on
the segment [0, ζmax], where

E(ζ) =
∑

d: |Sd|> ζ

d=1,...,n

sd

(
|Sd| − ζ

)
(8)

+
m∑

l=1

∑
k: |Fl(k)|> ζ

k=0,...,N

fl(k)
(
|Fl(k)| − ζ

)

+
r∑

j=1

∑
t: |Gj(t)|> ζ

t=0,...,N−1

gj(t)
(
|Gj(t)| − ζ

)
− ζ

and ζmax is the maximum out of three quantities:

max
d=1,...,n

|Sd|, max
l=1,...,m

k=0,...,N

|Fl(k)|, max
j=1,...,r

t=0,...,N−1

|Gj(t)|.

The proof is essentially based on the duality
theory for convex variational problems.

Similarly to (Matasov, 1999) one can prove
that the function E(ζ) is continuous, strictly



monotonically decreasing and has different signs
at the endpoints of [0, ζmax]. Moreover, it is
almost obvious that E(ζ) is a piecewise linear and
convex function. Therefore the equation E(ζ) = 0
has a unique root, which can easily be found by
sequentional halving the interval.

It follows from Theorem 2 that ∆0 can be easily
calculated without exactly solving the original
complex minimax filtering problem.

Let us consider three simplified estimators ϕ and
the corresponding values of ∆0 calculated from
Theorem 2.

4.1. Least-squares estimator

First consider the estimator Φ0(k) obtained from
the solution of the approximating linear-quadratic
problem (4), (2). We call it the least-squares
estimator and denote the corresponding value of
∆0 by ∆0

LS .

4.2. Quasi-impulse estimators

Consider the original variational problem (3), (2).
The Lagrange function for (3), (2) has the form

LD(Φ−,Φ, w;λ, p)=D(Φ−,Φ, w)+λ′
{

ξΦ(0)−Φ−
}

(9)
+

N−1∑
t=0

p′(t+1)
{

B′(t)ξΦ(t+1) − w(t+1)
}

.

In accordance with the duality theory (Ekeland
and Temam, 1976) the dual problem for (3), (2)
is the maximization problem

max
λ,p

(
min

Φ−,Φ, w
LD(Φ−,Φ, w;λ, p)

)
. (10)

Moreover, if (λ opt, p opt) is the solution for
(10), then the solution of the original prob-
lem (Φ− opt,Φ opt, w opt) yields the minimum
in (Φ−,Φ, w) for the Lagrange function
LD(Φ−,Φ, w;λ opt, p opt). However, the dual
problem (10) is as complex as the original one,
and (λ opt, p opt) are unknown.

Let us consider the Lagrange function LJ for the
approximating linear-quadratic problem (4), (2)
that is similar to LD but with D replaced by J .
The corresponding dual problem is defined by (10)
but with LD replaced by LJ . In opposite to (10)
the dual problem to the linear-quadratic problem
has an explicit solution

λ0 = 2P0ξ(0), p0(t+1) = 2Q(t)ξ(t+1), (11)

where ξ(t) is defined by (5). The multipliers (11)
prompt us a successful direction for the approx-
imation (λ a, p a) to the unknown (λ opt, p opt) in

the form (λ a, p a) = ν (λ0, p0), where ν is a pos-
itive scalar. Then the dual problem (10) can be
approximated by the problem

max
ν>0

(
min

Φ−,Φ, w
LD(Φ−,Φ, w; νλ0, νp0)

)
.

One can show after laborious calculation that the
last problem has an explicit solution

ν0 = J0 Ω−1(Φ0
−,Φ0, w0), (12)

where J0 and Ω are defined by (6) and (7).
So the multipliers (ν0λ0, ν0p0) can be consid-
ered as a desired approximation for the unknown
(λ opt, p opt). Thus in accordance with the duality
theory a simplified estimator can be obtained from
the minimization of LD(Φ−,Φ, w; ν0λ0, ν0p0) in
(Φ−,Φ, w). This simplified estimator has the form
Φ̂(k) = (Φ̂1(k), . . . , Φ̂m(k))′, where Φ̂l(k) is deter-
mined by the expression




ν0 r−1
l (k)

(
Rl(k)Φ0

l (k)−ζ0σl(k)
)
, Fl(k) > ζ0

0, |Fl(k)| ≤ ζ0

ν0 r−1
l (k)

(
Rl(k)Φ0

l (k)+ζ0σl(k)
)
, Fl(k) < −ζ0.

Here ν0 is set by (12), Φ0(k) is given by Theo-
rem 1, and ζ0 is defined by (8).

Obviously the estimator Φ̂l(k) has a “dead” zone,
that is Φ̂(k) is of quasi-impulse type. So we call
Φ̂(k) the quasi-impulse estimator and denote the
corresponding nonoptimality level by ∆0

QI . Note
that this estimator has the same structure as the
unknown optimal one. Thus we could hope that
the quasi-impulse estimator would be useful.

Unfortunately, the values of ∆0
QI turned out to be

too large in many cases, and the quasi-impulse es-
timator Φ̂(k) frequently is not acceptable. There-
fore we have to modify it basing on the feature
that Φ̂l(k) = 0 for

|Fl(k)| ≤ ζ0. (13)

This feature means that the measurements zl(k)
are ignored for instants k such that (13) holds.
By analogy, let us introduce a parametrized
estimator Φζ(k) that is provided by a special
least-squares estimator Φ0(k) based on a reduced
set of measurements in which we ignore the
measurements zl(k) such that |Fl(k)| ≤ ζ, where
ζ is a given parameter. We call this estimator
the modified quasi-impulse estimator and denote
the corresponding nonoptimality level by ∆0

MQI .
Obviously, for ζ = 0 the estimator Φζ coincides
with the least-squares estimator Φ0.

Note that our simplified estimators implicitly
depend on three scalar parameters β0, β1, β2 (the



Table 1. Levels for σ = 1, r = 25 (w = 1)

q
1
2 = 5γ 2·10−4 2·10−3 2·10−2 2·10−1 2·10 0

∆0
LS 1.19 1.23 1.30 1.25 1.09

∆0
MQI 1.07 1.11 1.28 1.20 1.08

Table 2. Levels for σ = 1, r = 1 (w = 1)

q
1
2 = γ 4·10−5 4·10−4 4·10−3 4·10−2 4·10−1

∆0
LS 1.98 2.06 2.04 2.23 1.98

∆0
MQI 1.24 1.36 1.80 2.07 1.92

modified quasi-impulse estimator depends on
parameter ζ as well) that can be adjusted to
improve the level of nonoptimality. An obvious
starting choice is β0 = β1 = β2 = 1 (ζ = ζ0). It
should be emphasized that all estimators are easy
for calculation. Thus we constructed parametric
families of suboptimal algorithms with a moderate
number of parameters that can be easily “tuned
in the wave” of a specific filtering problem with a
guaranteed evaluation of filtering performance.

5. NUMERICAL EXPERIMENTS

Consider a two-dimensional Volterra equation

x(t + 1) =
t∑

k=0

αt−k+1

(
w 1
0 1

)
x(k) + u(t),

x(k) = (x1(k), x2(k))′, u(t) = (u1(t), u2(t))′

and scalar measurements

z(k) = x1(k) + �(k), k = 0, . . . , N.

The aim is to estimate the second component
x2(N). Here α and w are specified scalars. The
uncertainties in initial state and disturbances are
described in Section 2. We put N = 100, α = 0.5,
w = 1 or w = 0.8, σ−1 =σ−2 = 10, c1 = c2 = 100,
γ1(t) = γ2(t) = γ, q1(t) = q2(t) = q, σ1(k) =
σ2(k) = σ, r1(k) = r2(k) = r. The optimized (in
β1, β2 and ζ; β0 = 1) values of ∆0

LS and ∆0
MQI

for various noise intensities are shown in Table 1,
Table 2, and Table 3. Parameter β0 is not varied
since it has no virtual effect on ∆0.

As a rule, the optimized values of ∆0
LS differ

only weakly from their not optimized values

Table 3. Levels for σ = 1, r = 1 (w = 0.8)

q
1
2 = γ 4·10−5 4·10−4 4·10−3 4·10−2 4·10−1

∆0
LS 1.09 1.13 1.42 2.09 1.90

∆0
MQI 1.03 1.05 1.09 1.41 1.87

(i.e. with β0 = β1 = β2 = 1) which are also
acceptable. At the same time, the values of ∆0

MQI

usually are very sensitive to optimization. Note
that the contribution of uncertain deterministic
disturbances into estimation error far exceeds the
contribution of white noise components of the
same intensities (σ = r

1
2 , γ = q

1
2 ). So, in the case

presented in Table 1 the influence of deterministic
components is essential and cannot be neglected
in advance. It follows from the tables that the
least-squares estimator is quite acceptable and,
in some cases, it is near-optimal. Moreover,
sometimes the modified quasi-impulse estimator
can improve markedly the filtering performance.
Thus the simplified estimators can be successfully
used for filtering in Volterra equations.

6. CONCLUSION

In the paper, the optimal minimax filtering
problem with combined disturbances for linear
discrete Volterra equations was considered. The
corresponding variational problem turned out
to be very difficult. Then the least-squares and
the quasi-impulse simplified estimators were
proposed as approximate solutions. The levels of
nonoptimality for these simplified estimators were
derived. They can be easily calculated without
exactly solving the original filtering problem.
Thus a useful constructive approach has been
developed for the minimax filtering problem for
discrete Volterra equations.

The work was supported by a grant of the Cariplo
Foundation (Italy).
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