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Abstract: D-decomposition technique is targeted to describe the stability domain
in parameter space for linear systems, depending on parameters. The technique
is very simple and effective for the case of one or two parameters. However the
geometry of the arising parameter space decomposition into root invariant regions
has not been studied in detail; it is the purpose of the present paper. We prove that
the number of stability intervals for one real parameter is no more than n/2 (n
being the degree of the characteristic polynomial) and provide an example, where
this number is achieved. For one complex or two real parameters we estimate the
number of root invariant regions (equal n2−2n+3 for complex and 2n2−2n+3 for
real case) and demonstrate that this upper bound is tight. The example with n−1
simply connected stability regions in 2D parameter plane is analyzed. Copyright
c©2005 IFAC
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1. INTRODUCTION

Robust stability analysis is a trivial task if one
has a full description of the stability domain in
the parameter space. The approaches to this chal-
lenging problem can be traced to 19th century.
Vishnegradsky (1876) investigated the stability
domain for the third order polynomial with two
uncertain parameters. Later Frazer and Duncan
(1929) developed the method for the general case
of the nth-order polynomial; however it required
to find all the roots of n×n Hurwitz determinant.
The famous Nyquist diagram can be interpreted
as a graphical tool for checking stability of a poly-
nomial with one (real or complex) parameter. The
final technique is due to Neimark (1948 and 1949),
who developed his D-decomposition method for
the stability domain analysis. The core of the
approach is decomposition of the parameter space
into root invariant regions; the boundaries of the
regions are defined by a system of equations. This

method in the Western literature is addressed in
the books (Siljak, 1969; Ackermann, 2002). Its use
for the design of low-order controllers for linear
systems is very efficient, see e.g. (Bhattacharyya
et al., 2003).

Until recently, the geometry of D-decomposition
was not well studied. In some particular cases one
can validate that the stability domain is simply
connected. However the structure of the stabil-
ity domain can be much more complicated. For
instance the examples were known with several
stability intervals for a gain. In the recent paper
(Nikolayev, 2002) there is an example, where the
stability domain consists of n − 1 simply con-
nected regions for two uncertain parameters. Here
several problems arise: how many root invariant
regions are there in the parameter space? What
is the maximal (minimal) number of the stability
regions? In the present paper we address these
problems for characteristic polynomials, depend-



ing linearly on one or two parameters. The bound-
ary of the root invariant regions, generated by
D-decomposition method, is an algebraic curve.
The topological properties of algebraic curves re-
fer to the 16th Hilbert Problem (Ilyashenko and
Yakovenko, 1995). Thus it is natural that we ex-
ploit some algebraic geometry tools for our anal-
ysis.

We deal with continuous and discrete-time sys-
tems. Here and elsewhere we denote by P (s, λ)
any continuous-time polynomial with an uncer-
tain parameter λ and by P (z, λ) any discrete-time
polynomial. The first one is stable when all its
roots have negative real parts, the second one is
stable when all its roots are inside the unit circle.
Using the mapping s = z+1

z−1 we can proceed from
a continuous-time system to a discrete-time one
and vice versa.

The paper is organized as follows. In Section 2
we explain the idea of the D-decomposition tech-
nique. In Section 3 we analyze one real parameter
polynomial family. A theorem about the maximal
number of root invariant intervals (and in partic-
ular the maximal number of stability intervals) is
stated. The example showing the attainability of
this upper bound is provided. Sections 4 and 5 are
devoted to one complex parameter family and two
real parameters family correspondingly. Several
examples demonstrate that the geometry of D-
decomposition can be fairly sophisticated. Some
preliminary results are considered in (Gryazina,
2004).

2. D-DECOMPOSITION

Let P (s, λ) be a polynomial of degree n with real
coefficients ak(λ), where λ ∈ Rm is an uncertain
parameter:

P (s, λ) = an(λ)sn + an−1(λ)sn−1 + . . . + a0(λ).

If P (s, λ) has k stable and n − k unstable roots
we say λ ∈ D(k); thus D(n) is a stability domain.
Simply connected components of all D(k)s gener-
ate the decomposition of Rm into root invariant
regions, our goal is to describe their boundaries.
To abandon D(k) λ should encounter one of the
following situations: 1) the polynomial has an
imaginary root, that is P (jω, λ) = 0 for some ω, 2)
the polynomial has a zero root, i.e. a0(λ) = 0, 3)
the polynomial changes its degree, i.e. an(λ) = 0.
Thus the boundary of each D(k) can consist of
the curves, generated by these three equations
(in the first one ω ∈ (−∞,∞) is considered as
a parameter):

P (jω, λ) = 0 (1)

a0(λ) = 0, an(λ) = 0 (2)

Note that equation (1) is equivalent to two
real equations (for real and imaginary parts of
P (jω, λ)). Equations (1), (2) define D-decomposi-
tion of the parameter space — they characterize
the boundary of root invariant regions D(k). We
do not discuss here how to find k for each region
(this issue will be addressed later).

The same technique can be used to construct a
boundary of the regions with certain number of
real roots. Indeed the number of real roots can
change when a multiple real root arises, that is
for some s ∈ R

P (s, λ) = 0
P ′(s, λ) = 0 (3)

Similar equations can define the domain of aperi-
odic stability, that is the set of parameters which
guarantee that all roots are stable and real.

Example (Vyshnegradsky, 1876). Consider a cu-
bic polynomial reduced to Vyshnegradsky’s form
(that is with a3 = 1, a0 = 1):

P (s, λ1, λ2) = s3 + λ2s
2 + λ1s + 1. (4)

Solving the system of equations (1) (note that
a3 6= 1, a0 6= 1) we have the parametrized curve
λ1(ω) = ω2, λ2(ω) = 1/ω2, or after elimination
of ω, nonparametric formula for the boundary
of stability domain is λ1λ2 = 1, while stability
domain itself is defined by inequality λ1λ2 >
1, λ1 > 0, λ2 > 0. For the same example equations
(3) become λ1(s) = − 2

s + s2, λ2(s) = 1
s2 − 2s,

where s is a real parameter. Figure 1 depicts
stability domain and the regions with a certain
number of real roots (they are marked by digits).
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Fig. 1. D-decomposition for cubic polynomial

We provided the basic D-decomposition technique
for continuous-time polynomials. It can be ex-
tended with minor changes to discrete-time poly-
nomials P (z, λ). The imaginary axis should be
replaced by the unit circle, thus the equation of
D-decomposition (1) reads

P (ejω, λ) = 0. (5)



Note that there is no analog of (2) because
degree dropping does not affect instability of
discrete-time polynomials. Similarly more general
Γ-stability can be treated (a polynomial is Γ-
stable, if all its roots lie in a domain Γ of the
complex plane). Then the boundary of Γ should
be taken instead of the imaginary axis or the unit
circle.

3. ONE REAL PARAMETER

Consider the one real parameter polynomial fam-
ily

P (s, λ) = {a(s) + λb(s), λ ∈ R}, (6)

where a(s) = ansn + an−1s
n−1 + ... + a1s + a0

and b(s) = bnsn + bn−1s
n−1 + ... + b1s + b0 are

given polynomials with real coefficients of degree
n. When λ varies, the number of stable roots of
P (s, λ) can vary as well; we call such values of λ
critical values. Below we estimate their number.

Theorem 1. In the polynomial family (6) there
exist no more than n + 1 root invariant intervals
and no more than

⌈
n
2

⌉
stability intervals.

Proof Critical values are the solutions of (1).
Represent it as:

P (jω, λ) = U0 + λU1 + jω(V0 + λV1) = 0,

where

U0 = a0 − a2ω
2 + a4ω

4 + ...
V0 = a1 − a3ω

2 + a5ω
4 + ...

U1 = b0 − b2ω
2 + b4ω

4 + ...
V1 = b1 − b3ω

2 + b5ω
4 + ...

A solution of two linear equations with one vari-
able λ = λ(ω) exists if and only if

U0V1 − U1V0 = 0. (7)

Left-hand side of (7) is equal to Im(λ(ω)), the
n − 1 order polynomial in ω2. So there exists no

more than n−1 different real values of λ = −U0

U1
=

−V0

V1
which are critical ones. Equation (2) provides

two extra critical values. One is λ = −an/bn,
while another is λ = −a0/b0. Distinct n+1 points
divide the λ axis into n+1 root invariant intervals
(intervals λ −→ +∞ and λ −→ +∞ we regard as
the same interval). Since two neighboring intervals
can’t be both stability intervals, there can be no
more than dn

2 e stability intervals. ¦
We suggest an algorithm to calculate the number
of stable roots in every root invariant interval
which is purely algebraic, not graphical.

Algorithm 1. i. Order the values λ(ωi), ωi being
solutions of equation (7), and extra two values λ =
−an/bn, λ = −a0/b0 such that λ1 < λ2 < ... < λs.

ii. When λ < λ1 P (s, λ) has the same number of
stable roots as b(s) has and it is easy to obtain
this number.

iii. We proceed by increasing λ. When λ passes one
of the λi values one or two roots become stable or
unstable. For any of two extra critical values only
one real root moves. For all other ωi two conjugate

roots cross imaginary axis. If
d Im(λ(ω))

dω

∣∣∣∣
ωi

< 0

the roots become stable and if the derivative is
positive – unstable. So adding and subtracting
the proper number of roots we get the stable root
number for every root invariant region.

The result is also valid for discrete-time case. Let
us consider an example with the maximal number
of root invariant intervals.

Example 1 The uncertain polynomial

P (z, λ) = zn + λzn−1 + εzn−2 + α (8)

where 1 < ε < 1 + 2
(n−2)2 , α = 1 − ε − 1

n2

has
⌊

n
2

⌋
stability intervals. In Fig. 2 digits mark

the number of stable roots in every interval for
n = 8, ε = 1.01, α = −0.026.
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Fig. 2. n
2 stability intervals in Example 1

The critical values are defined by

λ = −ejω − εe−jω − αe−(n−1)jω, Im(λ) = 0.

The last equation

(ε− 1) sin ω + α sin(n− 1)ω = 0

has n solutions in the segment [0, π] because
|α| > |ε − 1|. When λ < λ1 the polynomial has
one unstable root and the signs of the derivatives
alternate in critical points. That is why we can ob-
tain the maximal number of the stability intervals
in this example.

Example 2 Let for n = 4m

P (s, λ) = sn + λs + 1.

Then P (jω, λ) = ωn +λjω +1, and ReP (jω, λ) 6=
0 for all λ. Thus there are no critical values of ω,
and the entire real axis is the single root invariant



region for the polynomial P (s, λ) (indeed it has
2m stable and 2m unstable roots for any λ). Thus
the least number of root invariant regions is one.
Minor variation of the example P (s, k) = λ(sn +
1) + s provides real axis with the exception of
the origin as the root invariant region: for any
λ 6= 0, P (s, λ) has 2m stable and 2m unstable
roots.

Theorem 1 can be stated in terms of the Nyquist
criterion. Consider a plant with the transfer func-

tion H(s) =
a(s)
b(s)

closed by P-controller with

gain k. The closed-loop characteristic polynomial
is ka(s) + b(s). Substituting λ = − 1

k , we get the
polynomial family (6).

Theorem 1’. The Nyquist diagram H(jω) has no
more than n + 1 intersections µi, i = 1, . . . , n + 1
with the real axis. The interval (µi, µi+1) is a
stability region for k ( 1

µi+1
< k < 1

µi
) if

2(m+ −m−) + p + δ = 0,

where m+ (m−) is the number of bottom-up (top-
down) intersections of H(jω) with the real axis
below µi, p is the number of unstable roots for
b(s) and

δ =





1, −a0

b0
< µi < −an

bn
;

−1, −an

bn
< µi < −a0

b0
;

0, otherwise.
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Fig. 3. The Nyquist diagram

Consider the continuous-time version of Example
1:

a(s) = (s + 1)n + ε(s + 1)n−2(s− 1)2+
+α(s− 1)n,

b(s) = (s + 1)n−1(s− 1);

Figure 3 depicts its Nyquist plot for n=8. The
system

⌊
n
2

⌋
times acquires and loses stability.

4. ONE COMPLEX PARAMETER

A complex counterpart of polynomial family (6)
is

P (s, λ) = {a(s) + λb(s), λ ∈ C}, (9)

where a(s) and b(s) are given real polynomials of
degree n.

The curve

λ(ω) = −a0 + a1jω + ... + an(jω)n

b0 + b1jω + ... + bn(jω)n
,

ω ∈ (−∞,∞)
(10)

forms the root invariant regions boundary. It is
bounded when the polynomial b(s) has no roots
on the imaginary axis.

Theorem 2. For the polynomial family (9) there
exist no more than (n − 1)2 + 2 root invariant
regions.

Proof. The number of regions depends on the
number of self-crossing points of the boundary
curve. A curve without self-crossing points divides
the parameter plane into two regions, and every
simple self-crossing point appends an extra region.
So the idea of the proof is based on the com-
putation of the number of self-crossing points of
the algebraic curve (10). Self-crossing points are
specified by

λ(ω1) = λ(ω2), ω1 6= ω2.

It is equivalent to the system of equations

n−2∑

i=0

n
2∑

l=1

(−1)i+lcikωi
1ω

i
2(ω

2l
2 − ω2l

1 ) = 0

n−1∑

i=0

n
2∑

l=0

(−1)i+l+1cimωi
1ω

i
2(ω

2l+1
2 − ω2l+1

1 ) = 0,

(11)

where cik = aibk−akbi, k = i+2l, m = i+2l+1.
Now we exploit the following result (Ackermann,
2002 (Appendix); Walker, 1950).

Theorem (Bezout) Two bivariate polynomials
P (x, y) = p1x

α1yβ1 + ... + pkxαkyβk , deg(P ) = n

Q(x, y) = q1x
γ1yδ1 + ... + qlx

γlyδl , deg(Q) = m

(where deg(P (x, y)) .= max
i

(αi+βi)) have no more

than mn common real zeros.

Due to this theorem, system (11) can have (2n−
2) (2n − 1) solutions; but this is a conservative
estimate. The first equation is an identity when
ω1+ω2 = 0. It leads to n−1 self-crossing points on
the real axis λ. Notice that two different solutions
(α, β) and (β, α) describe the same self-crossing
point. To avoid this degeneracy we change the
variables ω ⇒ d:

ω1ω2 = d1

ω1 + ω2 = d2 6= 0.



In these variables we get no more than (n − 1)
(n − 2) solutions. Thus the total number of self-
crossing points does not exceed (n− 1) + (n− 2)
(n− 1) = (n− 1)2, and hence the number of root
invariant regions is less or equal (n− 1)2 + 2. ¦
The steps of the proof allow to suggest an al-
gebraic algorithm (extension of Algorithm 1) to
calculate the number of stable roots in every root
invariant region D(k) and to check the existence
and the number of stability domains; we omit it
here.

Example 3 The uncertain polynomial

P (z) = zn + λzn−1 + α, λ ∈ C (12)

has (n − 1)2 + 1 root invariant regions for α > 1
and 2 invariant regions for α<1/(n − 1). Fig. 4
provides D-decomposition of the complex plane
for this example with n = 6 and α = 1.5.
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Fig. 4. Root invariant regions for Example 3

In Example 3 there is no stability regions. The
question what is the maximal number of stability
regions remains open.

Note that the minimal number of root invariant
regions is one, as the following example confirms.

Example 4 D-decomposition for the polynomial
sn + λ, where n = 2m, λ ∈ C, is given by

λ(ω) = −(jω)n = −(−1)mωn, ω ∈ (−∞, ∞),

i.e. ray [0, (−1)m+1∞). The complex plane with
the exception of this ray is the single root invariant
region with m stable and m unstable roots.

5. TWO REAL PARAMETERS

Consider the polynomial family with two real
parameters:

P (s, λ1, λ2) =
{a(s) + λ1b(s) + λ2c(s), λ1, λ2 ∈ R}, (13)

where a(s), b(s) and c(s) are given polynomials
with real coefficients of degree n.

The structure of D-decomposition is a bit different
if compared with the previous section. As usual it
contains a complex root boundary curve specified
as

P (jω, λ1, λ2) = 0.

Solving it with respect to the parameters we have:

λ1 = −∆1

∆
, λ2 = −∆2

∆
, (14)

where:

∆ =
∣∣∣∣
Ub Uc

Vb Vc

∣∣∣∣ ; ∆1 =
∣∣∣∣
Ua Uc

Va Vc

∣∣∣∣ ; ∆2 =
∣∣∣∣
Ub Ua

Vb Va

∣∣∣∣ ;

Ua = a0−a2ω
2+a4ω

4+..., Ub = b0−b2ω
2+b4ω

4+...,

Va = a1−a3ω
2+a5ω

4+..., Vb = b1−b3ω
2+b5ω

4+...,

Uc = c0 − c2ω
2 + c4ω

4 + ...
Vc = c1 − c3ω

2 + c5ω
4 + . . . .

This curve starts at the line a0 + λ1b0 + λ2c0 = 0
and terminates at the line an + λ1bn + λ2cn = 0.
The lines are called singular. For some particular
ω such that ∆ = ∆1 = ∆2 = 0 we have not a
point but an extra singular line in the parameter
space. All these curves and lines generate D-
decomposition of R2.

Theorem 3. Polynomial family (13) has no more
than 2n(n − 1) + 3 root invariant regions in the
(λ1, λ2) parameter plane.

The proof is similar to the proof of Theorem 2.

Example 5 The following example demonstrates
that the number of root invariant regions N can
achieve O(n2). Let

P (s, λ) = a(s2) + s(λ1b(s2) + λ2c(s2) + α),

where a(t), b(t), c(t) are polynomials of degree
m,m − 1,m − 1 correspondingly (thus P (s, λ)
has degree n = 2m), a(t) has m negative real
roots −t2i , i = 1, . . . , m. Then D-decomposition
equation is P (jω, λ) = U(ω2) + jωV (ω2) = 0
and we get two equations U(ω2) = a(−ω2) = 0,
ωV (ω2) = ω(λ1b(−ω2) + λ2c(−ω2) + α) = 0.
The first equation does not depend on λ, it has
n real roots ωi = ±ti. Hence D-decomposition
is generated by singular straight lines λ1b(ω2

i ) +
λ2c(ω2

i ) + α = 0, their total number equals m.
The plane is divided into (m2 + m)/2 + 1 regions
by m straight lines of generic position (this well-
known fact can be confirmed by induction), thus
N = n2/4 + o(n2). In the example below we
do not intend to achieve the largest number of
root invariant regions, but our goal is to demon-
strate, how extraordinary D-decomposition can
look for the polynomials of this form. Let m = 4,



a(t) = (1+ t)(2+ t) . . . (8+ t), b(t) = (1+ t)(3+ t)
(5+t)(7+t), c(t)=(2+t)(4+t)(6+t)(8+t), α = 105.
Then we have six orthogonal lines λ1 = −7,
λ1 = 1, λ1 = 11 2

3 , λ2 = −7, λ2 = 1, λ2 = 11 2
3 .

It is not clear yet what is the maximal number of
stability regions. Below is an example, where the
stability domain consists of n−1 simply connected
regions.

Example 6 (Nikolaev, 2002). The polynomial
with an−1, a0 coefficients being the parameters

P (z) = zn + an−1z
n−1 + (1 + ε)zn−2 + a0,

0 < ε < 2/(n− 2) (15)

has n− 1 stability regions.

Figure 5 depict the parameter space decomposi-
tion into the root invariant regions for n = 5. The
behavior of the complex root boundary curve is
rather complicated. The curve runs to infinity for
some particular values of ω and has loops. The
stability regions are inside these loops.
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Fig. 5. Root invariant regions for Example 6

Besides an−1, a0 parameters there is a free param-
eter ε. The behavior of the stability regions while
ε increases is of interest. The stability regions
become smaller and simultaneously shrink for one
particular ε value. This critical value is ε = 2

n−2
and there is no stability for larger ε.

6. CONCLUSIONS

The root invariant regions geometry in the param-
eter space can be quite diverse. We prove that
for the one-parameter polynomial family the D-
decomposition divides the real axis into no more
than n + 1 parts. Thus, there exists no more
than

⌈
n
2

⌉
stability intervals. In other words, the

Nyquist diagram has no more than n + 1 inter-
sections with the real axis and there exists no
more than

⌈
n
2

⌉
stability intervals for the gain. We

construct an example with the maximal number
of the stability intervals and this example has
an obvious geometric interpretation. For the case
of one complex parameter the maximal possible

number of root invariant regions is n2 − 2n + 3,
and this upper bound is tight. Similar results
are valid for two real uncertain parameters. We
study the discrete-time system from (Nikolayev,
2002) (the parameters are two coefficients of the
polynomial), where the stability domain consists
of n−1 simply connected regions. In particular, we
show that all these regions simultaneously shrink
for one particular parameter value.

This results can be helpful for design of low order
controllers and for detailed robustness analysis
(compare Kiselev and Polyak, 1999). The main
limitation of the proposed approach is the low
dimensionality of the parameter space (one or
two).

The extension of D-decomposition technique for
the matrix case to construct the stability domain
in the parameter space for systems with scalar
gain and DIDO systems will be presented in the
separate paper.
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