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1. INTRODUCTION

The stability and stabilizabilty problems for time-
delay systems have been extensively studied in re-
cent years due to direct applicability of the obtained
results to various technical problems (Boukas and
Liu, 2002; Gu and Niculescu, 2003; Richard, 2003).
Initiated in the background works (Kolmanovskii and
Nosov, 1986; Kolmanovskii and Myshkis, 1992; Hale
and Verduyn-Lunel, 1993), the stability theory for
linear time-delay systems is now actively developed.
The Lyapunov-Krasovskii or Lyapunov-Razumikhin
functionals are applied in the framework of the Lya-
punov direct method to prove the stability condi-
tions for a selected class of linear time-delay systems.
Two types of stability conditions can be obtained:
delay-independent, establishing stability for all pos-
sible delay values, or delay-dependent, correspond-
ing to some restricted values of delay shifts. While
the first type of conditions is comprehensive but con-
servative, the second one is more selective, flexible,
and, as a consequence, preferable. Some examples of
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delay-dependent stability conditions can be found in
(Kharitonov, 1999; Kharitonov and Melchor-Aguilar,
2000; Niculescu, 2001; Gu and Han, 2001; Fridman et
al., 2001) for various deterministic linear time-delay
systems and in (Mao et al., 1998; Liao and Mao,
2000; Xie and Xie, 2000; S.Xu and Chen, 2002; Kol-
manovskii et al., 2003) for stochastic ones. Note that
it is frequently needed to make a special transforma-
tion of an original time-delay system to obtain such
stability conditions. Nonetheless, virtually all known
results involving delay-dependent stability conditions
have been obtained for linear time-delay systems, with
certain or even uncertain coefficients.

This paper concentrates on design of the stability
conditions for nonlinear stochastic time-delay sys-
tems governed by nonlinear Ito scalar difference
equations with state delay and a nontrivial diffu-
sion term. The results are obtained using a modified
Lyapunov-Krasovskii functional, so-called degener-
ate functional, which was introduced and described
in details in (Kolmanovskii and Nosov, 1986; Kol-
manovskii and Myshkis, 1992). Applications of de-
generate functionals to design of the stability condi-
tions for various classes of deterministic functional-



differential equations can be found in (Kolmanovskii
and Nosov, 1986; Kolmanovskii and Myshkis, 1992;
Hale and Verduyn-Lunel, 1993). In the recent paper
(Rodkina and Nosov, 2003), the degenerate function-
als are used for obtaining delay-dependent stability
conditions for deterministic scalar delay-differential
equations. This paper extends the result of (Rodkina
and Nosov, 2003), generalizing it to discrete stochastic
nonlinear time-delay systems. The convergence the-
orem for semimartingale inequalities (Melnikov and
Rodkina, 1993) serves as a key tool for obtaining
stability conditions in terms of stochastic system co-
efficients, without any transformation of the original
system itself. The results are compared to some previ-
ously known asymptotic stability conditions (Rodkina
et al., 2000) for discrete nonlinear stochastic systems,
revealing that the conditions derived in this paper are
less restrictive: specific examples on this subject are
included. Another significant advance reached in this
paper in comparison to (Rodkina and Nosov, 2003)
is elimination of the Lipschitz condition for nonlin-
ear drift functions, replacing it by the linear growth
one. This means that the drift functions may have
unbounded variation but must grow not faster than a
linear map. The linear growth restriction seems to be
quite reasonable, taking into account that the solution
of an equation xi+1 = xi−x1+k

i−1 , x−1 = x0 = a, diverges
to ∞ for any integer k > 0 with a sufficiently large
a. Moreover, reduction to a one-step recursion, nor-
mally applied to linear systems (Kesten, 1973), leads
to unnecessary complications in this case, since one
scalar equation with a single delay of order k would
be transformed to a system of k equations with delays.
Finally note that design of a stabilizing controller for
a class of nonlinear stochastic systems, based on the
stability conditions given in this paper, would be a di-
rect application of the obtained results. (see (Orlov et
al., 2002) for a similar scheme of stabilizing controller
design for linear systems).

The paper is organized is follows. The basic defini-
tions and necessary results for the theory of stochas-
tic processes and, in particular, martingale-differences
and semimartingales, are given in Section 2. The sta-
bility problem is stated and the stability conditions
are derived for a scalar discrete nonlinear stochastic
system with state delay in Section 3. The derived sta-
bility conditions are directly expressed in terms of the
system coefficients. Nontrivial examples of nonlinear
systems satisfying the obtained stability conditions
are given. The obtained results are compared to some
previously known asymptotic stability conditions for
discrete nonlinear stochastic systems.

2. BASIC DEFINITIONS AND RESULTS

In this section, some basic definitions and results from
the theory of stochastic processes are briefly reviewed
(see ((Liptser and Shiryayev, 1989; Spreji, 2003) for
details).

Let (Ω,F,P) be a complete probability space with a
non-decreasing family of σ-algebras (filtrations) F =
{Fi}, i = 0,1,2, . . .. A random sequence Mi is said to
be an Fi-martingale, if E|Mi| < ∞ and E

(
Mi

∣∣F j

)
=

Mj for all 0 ≤ j < i and i = 0,1,2, . . .. A random
sequence is called a semimartingale if it admits the
representation Xi = X0 + Mi + Ai, where Mi is a mar-
tingale, M0 = 0, Ai is a sequence with almost surely
(a.s.) bounded variation, A0 = 0, and X0 is a random
variable.

Consider a sequence ξi such that ξ0 = 0 and ξi =
mi − mi−1 for i ≥ 1, where mi is a martingale.
Then, {ξi} is called an Fi-martingale-difference.
The following lemma (cf. (Liptser and Shiryayev,
1989)) presents the Doob-Meyer decomposition for
martingale-differences.

Lemma 1. Let {ξi} be an Fi-martingale- difference.
Then there exists an Fi-martingale- difference {µi}
and an a.s. positive Fi−1- measurable random se-
quence {ηi} such that the relation

ξ 2
i = µi +ηi. (1)

holds almost surely for each i = 1,2, . . ..

The next lemma, originally proved in (Melnikov
and Rodkina, 1993), presents a modification of the
martingale convergence theorems (cf. (Liptser and
Shiryayev, 1989; Spreji, 2003)) in terms of inequali-
ties for random sequences, which plays a key role in
establishing the asymptotic stability conditions.

Lemma 2. Let

Zi = Z0 +B1
i −B2

i +Mi, (2)

be a non-negative Fi-measurable semimartingale,
Mi be a Fi-measurable martingale, Z0 be a F0-
measurable random variable, and let A1

i , A2
i , B1

i , B2
i

be almost surely (a.s.) non-decreasing Fi−1- measur-
able random sequences such that B1

i ≤A1
i , B2

i ≥A2
i and

B1
0 = B2

0 = 0. Assume that lim
i→∞

A1
i < ∞ , a.s.. Then both

lim
i→∞

Zi < ∞ and lim
i→∞

A2
i < ∞ exist and are finite a.s..

3. STABILITY CONDITIONS FOR DISCRETE
NONLINEAR STOCHASTIC SYSTEMS WITH

STATE DELAY

In this section, the asymptotic stability problem is
considered for a scalar stochastic nonlinear difference
equation with discrete delay h = i− k and a nontrivial
diffusion term

xi+1 = xi −aN(xi)−bN(xi−k)+

σ(i,xi−k, . . . ,xi)ξi+1, (3)

with the initial values {x−k, . . . ,x0} ∈ R, where ξi+1 is
an Fi+1-martingale-difference.



Assume that there exist such constants K,λ > 0 and
a random variable η̄ that the following conditions are
satisfied almost surely

xN(x) > 0, x �= 0, N(0) = 0, (4)

|N(x)| ≤ K|x|, for any x ∈ R, (5)

a+b > 0, (6)

σ2(i,xi−k, . . . ,xi) ≤ λ
i

∑
j=i−k

N2(x j), (7)

sup
i=1,2,...

{ηi} ≤ η̄ , (8)

α =
[
(a+b+2k|b|)

2
+

λ η̄ (k +2)
2(a+b)

]
K < 1. (9)

The next theorem establishes asymptotic stability con-
ditions for solutions of the equation (3)

Theorem 1. Let conditions (4)-(9) be satisfied. Then,
lim

i→+∞
xi = 0 holds a.s. for all solutions x of the equation

(3) with arbitrary initial conditions {x−k, . . . ,x0} ∈ R.

Proof. Define a degenerate Lyapunov-Krasovskii func-
tional V = V1 +V2 +V3, where

V1 = (V1)i =

(
xi −b

i−1

∑
j=i−k

N(x j)

)2

, (10)

V2 = (V2)i = |b|(a+b)
i−1

∑
j=i−k

i−1

∑
l= j

N2(xl), (11)

V3 = (V3)i =
k−1

∑
l=0

ηi+1+l

k

∑
j=l+1

N2(xi+l− j), (12)

instead of the frequently encountered Lyapunov func-
tion V = x2. Note that the functional V is not negative
but also is not positive definite.

Let us estimate increments of three parts of the func-
tional V . First, note that

xi+1 −b
i

∑
j=i+1−k

N(x j) = xi+1 −b
i−1

∑
j=i−k

N(x j)−bN(xi)

+bN(xi−k) = xi −aN(xi)−bN(xi−k)+σ(. . .)ξi+1

−b
i−1

∑
j=i−k

N(x j)−bN(xi)+bN(xi−k) =

xi −b
i−1

∑
j=i−k

N(x j)− (a+b)N(xi)+σ(. . .)ξi+1. (13)

Taking into account (1), the increment of V1 is esti-
mated as

(V1)i+1 − (V1)i =

(
xi+1 −b

i

∑
j=i+1−k

N(x j)

)2

−
(

xi −b
i−1

∑
j=i−k

N(x j)

)2

=

(
xi −b

i−1

∑
j=i−k

N(x j)− (a+b)N(xi)

+σ(. . .)ξ 2
i+1 −

(
xi −b

i−1

∑
j=i−k

N(x j)

)2

= 2

(
xi −b

i−1

∑
j=i−k

N(x j)

)
(−(a+b)N(xi)

+σ(. . .)ξi+1 +
(−(a+b)N(xi)+σ(. . .)ξi+1

)2

= −2(a+b)N(xi)

(
xi −b

i−1

∑
j=i−k

N(x j)

)

+(a+b)2N2(xi)+σ2(. . .)ηi+1 +ρi+1,

where ρi is a martingale-difference given by

ρi+1 = 2

(
xi −b

i−1

∑
j=i−k

N(x j)

)
σ(. . .)ξi+1

+σ2(. . .)µi+1 − (a+b)N(xi)σ(. . .)ξi+1,

and µi and ηi are the martingale-difference and a.s.
positive random sequence, respectively, from the de-
composition (1). Using the inequality (7) and the in-
equality

2N(xi)

(
i−1

∑
j=i−k

N(x j)

)
≤ kN2(xi)

+
i−1

∑
j=i−k

N2(x j) (14)

yields the following estimate for the increment of V1

(V1)i+1 − (V1)i ≤−2(a+b)N(xi)xi +(a+b)2N2(xi)

+|b|(a+b)kN2(xi)+ |b|(a+b)
i−1

∑
j=i−k

N2(x j)+

λη i+1

i

∑
j=i−k

N2(x j)+ρi+1. (15)

Next, the increment of V2 has the form

(V2)i+1 − (V2)i = |b|(a+b)

[
i

∑
j=i+1−k

i

∑
l= j

N2(xl)

]

−|b|(a+b)
i−1

∑
j=i−k

i−1

∑
l= j

N2(xl). (16)

Defining

Λ j,i =
i

∑
l= j

N2(xl)

and noting that

Λ j,i−1 = Λ j,i −N2(xi), Λi−k,i−1 =
i−1

∑
l=i−k

N2(xl),

Λi,i = N2(xi),



the increment of Λ j,i in i is estimated as

i

∑
j=i+1−k

Λ j,i −
i−1

∑
j=i−k

Λ j,i−1 =
i

∑
j=i+1−k

Λ j,i

−
i−1

∑
j=i−k

(
Λ j,i −N2(xi)

)

=
i−1

∑
j=i−k

Λ j,i −
i−1

∑
j=i−k

Λ j,i −Λi−k,i +(k +1)N2(xi)

= −Λi−k,i +(k +1)N2(xi) = −Λi−k,i−1 + kN2(xi)

= −
i−1

∑
j=i−k

N2(x j)+ kN2(xi). (17)

Substituting (17) into (16) yields the following esti-
mate for the increment of V2

(V2)i+1 − (V2)i = |b|(a+b)[
kN2(xi)−

i−1

∑
j=i−k

N2(x j)

]
. (18)

Finally, the increment of V3 can be represented as

(V3)i = λ
k−1

∑
l=0

V3,i,l ,

where V3,i,l = ηi+1+l

k

∑
j=1+l

N2(xi+l− j).

Taking into account the equalities

V3,i,0 = ηi+1

k

∑
j=1

N2(xi− j) = ηi+1

i−1

∑
j=i−k

N2(x j),

V3,i+1,0 = ηi+2

k

∑
j=1

N2(xi+1− j) = ηi+2N2(xi)

+ηi+2

k

∑
j=2

N2(x2
i+1− j) = ηi+2N2(xi)+V3,i,1,

V3,i+1,1 = ηi+3

k

∑
j=2

N2(xi+2− j) = ηi+3N2(xi)

+ηi+3

k

∑
j=3

N2(xi+2− j) = ηi+3N2(xi)+V3,i,2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V3,i+1,l = ηi+l+2N2(xi)+V3,i,l+1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V3,i+1,k−2 = ηi+kN2(xi)+ηi+kN2(xi−1)

= ηi+kN2(xi)+V3,i,k−1,

V3,i+1,k−1 = ηi+k+1N2(xi),

and the inequality (8) yields the following estimate for
the increment of V3

∆(V3)i = λ
k−1

∑
l=0

V3,i+1,l −λ
k−1

∑
l=0

V3,i,l

= λ N2(xi)
k

∑
l=1

ηi+1+l +λ
k−1

∑
l=1

V3,i,l −λ
k−1

∑
l=0

V3,i,l

= λ N2(xi)
k

∑
l=0

ηi+1+l −λV3,i,0

= λ N2(xi)
k

∑
l=0

ηi+1+l −λη i+1

k

∑
j=1

N2(xi− j)

= λ N2(xi)
k

∑
l=0

ηi+1+l −λη i+1

i−1

∑
j=i−k

N2(x j)

= λ N2(xi)[
k

∑
l=0

ηi+1+l +ηi+1]−λη i+1

i

∑
j=i−k

N2(x j)

≤ λ N2(xi)[(k +2)η̄ ]−λη i+1

i

∑
j=i−k

N2(x j). (19)

Using the obtained estimates (15), (18), (19) and ap-
plying the inequality (9) yield the estimate for the
increment of the whole functional V

∆(V )i ≤−2(a+b)N(xi)xi +((a+b)2 + |b|(a+b)k

+|b|(a+b)k +λ η̄ (k +2))N2(xi)

+ρi+1 ≤−2(a+b)

×(1−
[
(a+b)

2
+

|b|k
2

+
|b|k

2
+

λ η̄ (k +2)
2(a+b)

]
N(xi)

xi
)

×N(xi)xi +ρi+1 ≤−2(a+b)(1− [
(a+b+2|b|k)

2

+
λ η̄ (k +2)
2(a+b)

]K)N(xi)xi +ρi+1

≤−2(a+b)(1−α )N(xi)xi +ρi+1. (20)

Summarizing both parts of (20) over i from 0 to n
yields the formula

Vn ≤V0 −A2
n +A1

n +mn+1, (21)

where A2
n = 2

n
∑

i=0
(1 − α )(a + b)N(xi)xi and A1

n = 0

are almost surely non-decreasing processes, mn+1 =
n
∑

i=0
ρi+1 is a martingale, and P{A1

∞ < ∞} = 1. More-

over, Vn is a nonnegative semimartingale. Applying
Lemma 2 implies that

P

{
{V →}∩{A2

∞ < ∞}
}

= 1. (22)

where {V →} means that the limit of V exists and is
finite as i → ∞.

It can be proved now that P

{
lim
i→∞

xi = 0

}
. Indeed,

suppose the opposite: there exist a.s. a finite random
variable ζ0(ω) > 0 and a subsequence of random mo-
ments ik = ik(ω) such that P(Ω1) = p0, where Ω1 =



{ω: |xtk
|(ω) > ζ0(ω) > 0}. In view of continuity of

the function N, there exists a.s. another finite random
variable ζ1(ω) > 0 such that |xik

N(xik
)|(ω) > ζ1(ω)

if ω ∈ Ω1. Let k(n) be the number of elements in
the subsequence {ik} belonging to the interval [0,n].
Then, for ω ∈ Ω1,

A2
n = 2

n

∑
i=0

(1−α )(a+b)N(xi)xi

≥ 2(a+b)(1−α )
n1

∑
k=1

N(xik
)xik

≥ 2(a+b)(1−α )ζ1k(n) → ∞,

as n → ∞, since k(n) → ∞ as n → ∞. Hence, P{A2
∞ =

∞} ≥ p0 > 0, which contradicts (22). Theorem 1 is
proved.

4. COMPARISON TO PREVIOUSLY KNOWN
RESULT

The purpose of this section is to compare the condi-
tions (4)-(9) with the conditions previously obtained
in (Rodkina et al., 2000), where the asymptotic sta-
bility for solutions of the discrete nonlinear stochastic
equation

xi+1 =
i

∑
j=0

gi, j

(
xi− j

)
+ f

[
i,xi,xi−1, . . . ,x0

]
+ σ

[
i,xi,xi−1, . . . ,x0

]
ξi+1 (23)

was established under the conditions

|gi, j

(
xi− j

)
| ≤ |ai, j||xi− j|, (24)

θi =
∞

∑
l=0

(
i+l

∑
j=0

|ai+l, j|
)
|ai+l,l | < 1, (25)

∣∣σ [i,xi,xi−1, . . . ,x0

]∣∣2 ≤ i

∑
j=0

λ 2
i, jL(x2

i− j), (26)

∞

∑
i=0

∞

∑
l=0

ηi+1+lλ
2
i+l,l < ∞. (27)

Here, L(u) is a function growing not faster than u+lnu
(see (Rodkina et al., 2000)).

Consider the equation (3) with the function N(u) =
Cu3

1+u2 , C = const. To cast it in the form (23), the
functions gi, j should be assigned as

gi,0(u) = u−aN(u) = u− aCu3

1+u2 , gi,k(u) =
bCu3

1+u2 ,

and gi, j(u) ≡ 0, if j �= 0,k.

To satisfy (24), the function gi,0(u) is estimated as

|gi,0(u)| = |u− aCu3

1+u2 | = |u+u3 −aCu3

1+u2 |

= |1+u2(1−aC)
1+u2 ||u| ≤ 1|u|,

where the constant ai,0 = 1 cannot be reduced because
of the limit

lim
u→0

|1+u2(1−aC)
1+u2 | = 1.

Similarly, the function gi,k(u) is estimated as

| bCu3

1+u2 | ≤ |bC||u|,

where the constant ai,k = |bC| is also irreducible. All
other constants ai, j, j �= 0,k are equal to 0. Since

∞

∑
l=0

(
i+l

∑
j=0

|ai+l, j|
)
|ai+l,l | =

∞

∑
l=0

(1+ |bC|) |ai+l,l |

= (1+bC)2 > 1,

the condition (25) is not satisfied for N(u) = Cu3

1+u2 , if
Cb �= 0, although the condition (5) holds.

Furthermore, the condition (26) takes the form (7),
provided that the coefficients λi, j are assigned as

λi, j ≡ λi ≡ λ , j = 0, . . . ,k, and λi, j ≡ 0, otherwise.

However, if ηi ≡ 1, the condition (27) is not satisfied,
since

∞

∑
i=0

∞

∑
l=0

ηi+1+lλ
2
i+l,l = λ 2

∞

∑
i=0

k

∑
l=0

ηi+1+l = λ 2
∞

∑
i=0

k = ∞,

although the condition (7) holds.

Thus, the conditions (4)-(9) given in this paper notice-
ably weaken the asymptotic stability requirements for
solutions of a discrete nonlinear stochastic equation
(3) in comparison to the previously obtained set of
conditions (Rodkina et al., 2000).

5. CONCLUSIONS

The asymptotic stability problem has been considered
for a scalar discrete nonlinear stochastic system gov-
erned by a difference equation with two drift terms,
with and without state delay, and a nontrivial dif-
fusion. No Lipshitz condition has been assumed for
the nonlinear drift terms in the system. The global
almost sure asymptotic stability conditions have been
obtained and directly expressed in terms of the sys-
tem coefficients. The Lyapunov- Krasovskii and de-
generate functionals techniques have been used for
establishing asymptotic stability in the framework of
the Lyapunov direct method. The convergence the-
orem for semimartingale inequalities has served a
key tool for obtaining stability conditions in terms
of stochastic system coefficients, without any trans-
formation of the original system itself. The obtained
results have occurred to be less restrictive than some
previously known asymptotic stability conditions for
discrete nonlinear stochastic systems. The paper has



introduced a systematic approach which would be ap-
plicable to design of the stability conditions for other
classes of discrete nonlinear stochastic systems with
state delay.
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