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Abstract: Modeling and control of a viscoelastic beam ares@ered. Piezoelectrical
elements are bonded to the beam and used as actuators. Theidedso equipped
with a strain gauge that serves as a sensing device. The hestemsis described by
the Euler-Bernoulli beam equation, which is Fourier transfed and numerically solved
in the frequency domain. Then, two different approachessaeaduated to approximate
the infinite-dimensional system with a low order parametpproximation. Finally, LQG

control theory is applied to control both strain and tramsakvibrations. Especially, the
control of the strain shows promising resul@pyright(©2005 IFAC
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1. INTRODUCTION used as both actuators and sensors in a smart structure.
Using piezoelectric patches is a simple and cheap way
of integrating actuating and sensing devices in me-
chanical structures. Modeling and control of simple
flexible structures have received a lot of attention in
recentyears; see for example (Pota and Alberts, 1995),
(Moheimaniet al., 2003) and the references therein.

The presence of vibrations is a common problem in
mechanical structures, particularly in flexible parts,
for instance aircraft wings or robot arms. This can
be reduced by making such parts strong or heavy
enough. For many applications,g.in aircrafts and
spacecrafts, it is desirable to keep the weight as low A popular setup is to use a steel beam that is simply
as possible, which makes such solutions less suitablesupported at both ends. Often the beam is equipped
Instead, one would like to have a device which can with collocated piezoelectric actuator-sensor pairs
perform active damping of the vibrations without any which conveys that the tractable passivity property
substantial increase of the mass. In the case whercan be used for controller design. This is utilized in
such a device is embedded in the structure it is often(Halim and Moheimani, 2001), which employs the
referred to as a smart material or a smart structurepopular modal analysis technique, or assumed modes
(Preumont, 2002). approach, for describing the dynamics of the system.
In this method the orthogonality between vibration
modes is used to obtain transfer functions which have
the form of infinite sums; each term describing one
vibrational mode. The sum is then truncated to obtain

One way to design smart structures is to use piezo-
electric elements that are attached to the material.
Piezoelectric elements exhibit a significant deforma-
tion when an electric field is applied, and they produce
an electric field when deformed. Therefore they can be



a low order approximation of the infinite-dimensional Q)
system.

1 2 3

There are, however, a number of disadvantages related u(t) y(t)e(t)
to the modal analysis technique. First of all the method ¢ &
assumes pure elasticity which means that no damping
is present. This is most often compensated for by @
adding a small damping term to each vibrational mode v )
in an ad-hoc manner. In addition, the piezoelectric
sensor/actuator is assumed not to affect the structural 0

) . ) —Fy(s) b3
properties of the beam. To take the piezoelectrical ()

patches into account the system gets a more complex e(t)

structure and the modal analysis technique can nogig 1. An experimental setup of a viscoelastic beam

longer be applied. with piezoelectric patches (actuator) and a strain
In this paper we present a procedure for how to model sensor.

a viscoelastic beam structure where the piezoelements  Table 1. Properties of the beam and the

are taken into account. Furthermore, damping is in- piezoelement.

cluded in the modeling phase by using a complex

valued Young's modulus which was experimentally gzzcm”';)é':;th o \éaé‘:)e
determined in (Hillstroret al, 2003). Piezoelectrical Beam width [m] 0.01
patches are bonded to each side of the beam and used Beam thickness [m] 0.002
as actuators. As a sensing device a strain gauge is Beam density [kg/rfi] 1183
attached to the beam. It consists of a thin wire whose i!ezo- 't‘;h@ll(th [m][ : %%3(’)10%6
. H 1€Z0. thickness (m .
gffect on the structural properties of the beam is neg- Piezo. density [kg/f] 7878
ligible. Piezo. Young’s modulus [N/A]  5.78 x 1010
Length of first section [m] 0.202

model of finite order. This model should then be a
basis for model-based control. The properties of the

. . N beam are listed in Table 1.
Consider an experimental setup as in Figure 1. A

viscoelastic beam is fixed at one end and free at the
o_ther. The_beam is divided into three sections an_d 3 MODELING
piezoelectric patches are attached to the beam at its

middle section. Adistgrbance fo_rq%{t) enters at the ._Although the strain is measured, we first consider
tip of the beam, possibly as an impulse. The beam ISmodeling of the transversal deflectiom, at each

also equipped with one sensor that measures the Stra“nsection,k, of anelasticbheam. At a spatial coordinate
y(t) = (t,€), ata spatial positiog, thatarises due o ¢ o4 ime instance the deviation can be described by
the impact off (¢). The measured signal is corrupted o ppg

with additive noisee(t). 92 Pt €) Pt €)
Our goal is to dampen the vibrations in the beam by 3_52 EkaTQ’ T
applying a controller that uses the strain measure-WhiCh is called the Euler-Bernoulli beam equation

ments n a fe_edback Iqop. The cont_rol signa) (Timoshenko, 1955). The quantitids, A; and pg
is fed to the piezoelectric patches which are used as oo :
epresent the moment of inertia of a cross-section area,

actuators. The system can be schematically described . . :

. . . .~ _ cross-section area and density, respectively. These pa-
as in the lower part of Figure 1. By using the properties . : )

. . . rameters are assumed to be time invariant and spa-
of linear systems, the output signal can be viewed as. A

" : tially constant for each sectiof, of the beam. The

a superposition of the strains causedy) andf(z). Young’s modulus of elasticity is denoted ;. In
The control signal affects the output through the trans- 9 y ke

fer functionG(s), and the force contributes through the pure elastic case, thls quantity Is constant ?”d
. real-valued for each section of the beam. By Fourier
the transfer functiod (s).

transformation of (1) w.r.t. the temporal variable, the

The vibrations in the beam are mathematically de- PDE is transformed to a frequency dependent ordinary
scribed by a partial differential equation (PDE), which differential equation in the spatial domaip,

means that the system is of infinite order. The piezo- P (w, €)
electric patches are considerably stiffer than the rest Eklk#
of the beam. This is a fact that is accounted for in the dg
modeling. The strain sensor is, however, very small whereW; (w, ¢) is the Fourier transform aby (¢, €)

and of negligible weight. It should thus not contribute andw is the angular frequency [rad/s]. In the sequel
to the dynamics of the system. We aim at describ- we will deal with both the Fourier transform and the

ing the infinite dimensional system with a parametric Laplace transform. To separate the two transforms

2. PROBLEM FORMULATION

+ pr Ak =0 (1)

— pkAkaka(w,f) =0 (2



the superscript§ (Fourier) andZ (Laplace) will be
employed.

A viscoelasticbeam exhibit the property that if the

compatibility conditionsi(e. fully known). The input
signals enters through the right hand side of the equa-
tion. Using (4) and (5) we have

deformation is specified, the current stress depends Cj,(w) = P A~ (w) (BiF7 (w) + B2UT (w)) (6)

on the entire deformation history. This is described

by a Young’s modulus that is frequency dependent
and complex valued (Christensen, 1971). Based on

this, viscoelasticity can be introduced in a frequency
domain context by replacing;, in (2) with Ej(w).

whereP;, € R**12 is constructed such thi,C (w) =
Cy(w). Finally, combining (6) and (3) the frequency
responses from the inputs to the transversal deflection
at the coordinaté is extracted

The frequency dependent Young’s modulus was ex- W7 (w,£) = R} (w, )P A H(w) B F7 (w)

perimentally determined in (Hillstromt al., 2003). To

solve (2) a number of boundary values and compatibil-
ity conditions are needed. The (Fourier transformed)

boundary values of the cantilever beam are
W (w,0) = DW (w,0) = D*W{ (w,L) =0
By (w)3D°W5 (w, L) = F7 (w)
whereD = -4 is the differentiation operator. Fur-

+ RY (w, )PrA H(w)BU7 (w)
2 H (w0, F (w) + G} (w0, U (w) (7)

The subscriptw in the last line of (7) denotes that it
is the frequency response to ttiansversal deflection
and not thestrainas in Figure 1. To obtain an expres-
sion for the straing;, as a function of frequency and
space, compatibility conditions are utilized (Gere and

thermore the sections of the beam are tied together byrimoshenko, 1991)

four compatibility conditions at each point where two
sections meet. For example, if sectidnandk + 1
meet at the spatial coordinagg the following must
hold

W (w, &) = W, (w, &)
DWi (w, &) = DWi 4 (w, &)
M (w, &) = M{f (w, &)
T (w,&) = T (w, &)
whereM andT are the bending moment and transver-
sal force, respectively.

The disturbance forcé” (w) = F[f(t)](w), and the
actuating voltagel/* (w) = Flu(t)](w), are treated
as input signals to the systerfl? (w) enters through
one of the boundary conditions ari@” (w) enters
through two of the compatibility conditions.

Using the above observations we replégeby Ey (w)

and solve (2). Its characteristic equation now reads

_ 2P
Ep(w)Ii

T

=0

with the solution
prAr

rrg =i <w2 AP
where i= v/—1. The solution to (2) is readily written
Wk}-(w, €) = et .. .eg”’“v“][ck,l(w) .. .ck’4(w)]T
£ R{ (w,§)Cr(w) 3

wherecy, ;(w) are unknown parameters that are to be
determined by using the boundary values and compat
ibility conditions. Now, denote

Cw) £[Cl(w) C3(w) C3W)]" €eRZ*'. (4)

Then, the following system of equations can be
formed

AW)C(w) = BiFT (w) + BU” (w) (5)

where A(w) € C'2*!2 B, and B, € R'Z*! are
completely determined by the boundary values and

/ ®)

whereh,, is the height of the beam at sectién To
find the frequency responsés’ (w, £) andG” (w, £),
(8) is simply applied to (7), noting tha is the only
term depending oé.

Y (w) =l (w,€6) = D*Wi (w,€)

Due to the complexity ofd(w) it is not possible to
obtain a simple closed form expression directly from
the above equations. Insteatf (w, ¢) andG” (w, £)

can be numerically computed for any frequency or
spatial coordinate. Typically, the spatial coordinate is
held fixed and the frequency is varied to obtain the
frequency responses. Utilizing this, we drop the spa-
tial dependence and introduce the shortened notations
H7 (w) andG7 (w). Solving (7) directly is, however,
not numerically sound. Instead, (5) is first solved by
means of an LU factorization and the result is put into
(3) in a second step. Finally, (8) is applied to get an
expression for the strain.

It is most often desirable to haveparametricmodel

of finite order that describes the dynamics of a system;
not the least if the model should be a basis for model
based control. In the following, two different strate-
gies for fitting parametric models to the frequency
responses are evaluated.

3.1 An Ad-hoc Approach

The first approach is to realize the transfer functions as

proper rational functions in the Laplace domaia,

Br(s) AL _ Ba(s)
ma G (S:QG) - A(S)
where A(s), Br(s) and Bg(s) are polynomials of
order na, nby and nbg, respectively. The param-
eter vectorfy contains the coefficients of the un-
known polynomialsA(s) and By (s), i.e. 6y
[a1 ... Gna bo ... bup,]T; Wwhereads only contains

HL(S,GH) =




the coefficients 0B (s). The reason for this conven- tinuous time parametric models are directly obtained.
tion should soon be clear. To firt); we attemptto  In addition, the method allows arbitrary spacing of

minimize a quadratic criterion the frequency points. It is thus possible to wesg.
N ) logarithmically spaced frequency response data to get
V(0y) = Z ‘Hf(wk) — I:IE(iwk, 0r)| W(ws) a natural weighting of the data. Nevertheless, there are
P some disadvantages. The most obvious one is that only

9 one data set is used to identify the pole polynomial.
where N is the number of frequency points at This could be a real problem if pole-zero cancellation
which H” (w) is computed andW (w) is a user s hidden in the data set chosen for the first iden-
chosen weighting function. To minimiz€ (A ) the tification step. It is also not obvious how to choose
MATLAB function i nvfreqs is used. It applies model orders and how to realize the system in a state
a damped Gauss-Newton iterative search algorithmspace representation; not the least if a large number of
(Ljung, 1988). Once acceptable estimatesi¢f) and outputs are used. Further, the numerical search proce-
By (s) are obtainedA(s) is used when determining  dure in the first identification step is quite expensive
G- (s,0c) = Ba(s)/A(s) in a second step. This is  computationally.
performed by using the same type of loss function as
in (9). SinceA(s) is now known this will be a linear
problem which is solved by using a standard weighted 3.2 Subspace-based Identification
least squares procedure. It is then straightforward to

carry on and compute zero-polynomials for any sensorthe supspace based algorithm is the algorithm de-
location along the beam, using the pole polynomial gteq Algorithm 1 in the paper (McKelveyet al,
from the first identification step. 1996). It utilizes frequency response data from infinite-

Example 1 Now, this method is applied to the beam- dimensional systems to identify MIMO state space
system in Section 2. A collocated actuator-sensor con-models. The frequency response data are restricted to
figuration is usedie. the sensor is attached on top of D€ generated from equidistant frequency samples.

one of the actuators. Figure 2 shows the magnitude ofthe method is based on estimating the impulse
the numerically computed/” (w) and its low order  regponse coefficients by using the inverse discrete
approximationt/ “ (s, ) evaluated on the imaginary  Fourier transform on the frequency response data.
axis;i.e.s = iw. H” () is used as frequency domain Then the coefficients are used to construct a block
data for the first identification step. In addition, the Hankel matrix on which a singular value decomposi-
magnitude of the error between the two frequency re- tjon (SVD) is performed. The sub-matrices from the
sponses is depicted. The thick dash-dotted line denotessy/p that correspond to the most significant singular
an ideal low-pass filter which is used to delimit the \5)yes are used to construct the state space representa-
part of the frequency response that is utilized for the tjon_ |n contrast to the ad-hoc approach outlined in the
identification. The rational transfer functidh“(s,6)  previous section, this method estimates discrete-time
has four zeros and six poles, that are fitted to the datamggels. To convert the models to continuous-time the
set. zero-order hold approach is utilized.

il - :fﬁfﬁ,’,e) f ] Example 2 Now, the subspace-based approach is ap-

-~ H(w) - HY(iw,8)

plied to find a low order approximation o (w)

as in Example 1. Once again, the dashed-dotted line
denotes an ideal low pass filter which defines the part

of the frequency response that is used for the identifi-

cation. In Figure 3 a state space representation of order
six is chosen.

Magnitude

The solid and dashed lines depict that a quite good
| fit between the parametric model and the frequency
Freavency fradls] 10 response data is obtained. However, the dash-dotted

line indicates that the high performance of the ad-hoc
Fig. 2. Magnitude plot of the numerically computed approach is not attained. ]

transfer functionH” (w) (solid), the low order , )

parametric approximatiorf/(iw,§) (dashed) The advantage of this method is that frequency re-

and the error (dash-dotted). sponse data from all transfer functions are used to
estimate the low order parametric approximation in

a single step. The retrieved model is a MIMO state

The figure shows that a very good fit between the : S
) . space representation, which is useful for controller
frequency response data and the parametric model is,” . . )
. design purposes. In addition, the singular values of the
obtained. [ ] ; . S
Hankel matrix provide a tool for determining the order
The advantage of this simple method include that fre- of the representation. The disadvantage is primarily

guency weighting is easily performed and that con- the lack of a frequency weighting possibility.



— o : and the variance of the measurement nof3g, are
e T : ] treated as design variables. The val#gs= 5 - 107
' andR, = 1 are chosen.

The system is simulated in MATLAB, with a small
noise term added to the measured signal. Figure 4
shows the time responsg(t), to an impulse distur-
bance f(t). The disturbance is of low-pass character-
istics and has its main power within the modeled part
of the spectrum. The figure shows that the disturbance

10°F

Magnitude

10 &
Frequency [rad/s] x 10

: — Closed loop
| - - Open loop

Fig. 3. Magnitude plot of the numerically computed
transfer function” (w) (solid), the low order
parametric approximatior < (iw, ) (dashed)
and the error (dash-dotted). The parametric
model is generated from the subspace-based ap-
proach.

4. CONTROLLER DESIGN

Strain [1]

In order to apply controller design the system is real-

ized in state space form Time [5]
&(t) = Ax( ) + Bu(t) + Nf(t) Fig. 4. The time response of the strain. Closed loop
z(t) = Mz(t) + Diu(t) (solid) and open loop (dashed).
y(t) = Cx(t) + Dau(t)
() = y(t) + e(t) (10) is well damped if control action is applied. To analyze

. stability due to unmodeled dynamics the Bode dia-
wherey(t), z(t) ande(t) are the strain, transversal gram of the loop gain is drawn. Here, themerically
deflection and measurement noise, respectively. Thecomputedfrequency respons&” (w) is employed.
unit of the strain ig1] and the unit of the transversal |; ig performed by evaluating the controller (11) for
deflection is[m]. Although the strain is measured, (jfferent frequencies and the result is multiplied with
z(t) = w(t,§) is also modeled. The reason for this G” (w). The Bode plot of the loop gain is depicted
is that it may be desirable to control the transversal j, Figure 5. In addition, the sensitivity functioss,
deflection. and the complementary sensitivity functiofi, are

This section is divided into two parts. First, LQG- Visualized in the upper part of the figure.

control theory is applied to control the strain. There- o
after, an attempt is made to control the transversal de-
flection. For simplicity, the subspace-based approach
is utilized to model the beam system. This method
directly yields a model of the form (10).

— loop gain
S

;
10 10° 10 10 10° 10

4.1 Control of the Strain sof \ \ \

For controller design purposes the machinery of LQG
control theory is utilized, see.g.(Glad and Ljung,
2000). A controller of the form -100}

u(t) = —Lz(t) 10 10 10 10 10

. Frequency [rad/s]

(t) = Ad(t) + Bu(t) + K(§(t) — Ca(t) — Dou(t)) ’

(12) Fig. 5. The Bode plots of the loop gain (solid,
(dashed) and’ (dash-dotted).

-50f

Phase [deg]

is then retrieved.

To find the controller, the following quadratic criterion I view of the figure it should be clear that the closed
is employed loop system is robust against the ignored dynamics,

0o since the high frequency content 6 (w) is well
J =/ [q,0%(t) + ¢.2%(t) + u?(t))dt ~ (12)  damped by the controller. The sensitivity function
0 shows howsensitivethe closed loop system is to
with ¢, = 10% andg. = 0. When determining the modeling errors. Thus, in frequency regions where
Kalman gain kK, the variance of the disturbande,, S is small the closed loop system is insensitive to



modeling errors. The figure shows tlfais quite small 5. CONCLUSIONS

in regions wherelf* (w) is large. Often, one would

like to obtainS(0) a2 0 (integral action in the control  Inthis paper, modeling and control of the vibrations in

loop), in order to get rid of stationary errors. However, a viscoelastic beam have been considered. For control

due to the nature of the disturbance force (impulse), purposes the beam is equipped with a piezoelectrical

there is no need for integral action in the control loop. actuator and a strain sensor. The aim has been to ac-

The complementary sensitivity also has a reasonablecurately model the beam system by taking the struc-

behavior. tural properties of the piezoelectrical actuator into ac-
count. In addition, viscoelasticity is introduced in a
frequency domain context by employing a frequency

4.2 Control of the Transversal Deflection dependent Young's modulus of elasticity. The system
is described by equations of infinite order and two ap-

Now, the transversal deflection(t), is controlled.  proaches for model reduction have been treated. Both

Still, the model (10) is employed,e. the strain is  methods showed nice results.

measured. The parameters= 0, ¢, = 1 andR; =

108 are adjusted. The time response of the transversa

deflection is depicted in Figure 6. Once againitis seen

Finally, LQG control theory was applied to the system.
First the strain was controlled with promising result.
Then, the transversal deflection was controlled by
oosf + using the strain me_asu_rements in a feedback loop.
Even though the vibrations were well damped the
Bode plot of the loop gain indicated severe robustness
problems.
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a very small phase margin is obtained. The sensitivity
function and the complementary sensitivity function T
also have a very unpleasant appearance. The result
indicates that it is quite hard to control the transversal
deflection from strain measurements.



