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Abstract: A fuzzy-modeling method for the emulation of expert decision behavior or for static as 
well as dynamic systems is presented. The input – output dataset of the system – or expert 
behavior is changed using fuzzy-sets into examples in linguistic form. These resulting examples 
build the fundament of the machine learning process for rule production (ID3). The fuzzy sets are 
optimized in order to minimize the mean square error  between the model and the system output. 
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1. INTRODUCTION 
 
In many sophisticated, hardly comprehensible 
processes, which for different reasons can not be 
fully automatized, humans often require very long 
times, to make competitive decisions. Frequently 
such processes are very difficult to model and the 
determination of data dependencies for diagnosis, 
monitoring, control/regulation and  decision-making 
is very complicated. 
 
Since the data, which describe the behavior of such 
processes and the decisions of humans, are often very 
inaccurate and information can be seized partly from 
qualitative descriptions, fuzzy systems offer above all 
a feasible way for information acquisition and 
processing.  It is possible to represent the relevant 
dependencies in form of rules, which at the same 
time contributes the understanding for humans.  
Therefore, the task is to optimally reproduce the 
process dependencies and/or the decisions of humans 
(fuzzy model).   

This task can be solved effectively with methods for 
automatic knowledge acquisition (machine learning).  
These include cluster methods (Bezdek, 1981), multi-
level methods (Vachkov, 1994) and the use of 
methods like ID3 or C4.5 from Quinlan (Srinivasan 
et al., 1993; Quinlan, 1992).  They allow the 
production of rule-sets from large I/O-data sets.  As a 
result, decision trees are produced, which include 
only significant dependencies as well as minimize the 
number of rules. 
 
In this contribution a new method for the production 
of Fuzzy models for the above-mentioned tasks for 
static and dynamic dependencies, is presented. 

 
2. RULE BASED MODELLING 

 
 
2.1 Method and System Description 
 
The decision behavior of an expert and the static  
and/or dynamic behavior of systems can be described  
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by the following equations:  
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                             y=f (u ,u ,u ,...,u )                      (1)
and

            y(k)= f (y(k-1),...,y(k-m),u(k-1),...,u(k-n))     (2)

where y is the output and u ,u ,u ,...,u  are the inputs 
          of a static MISO-System,
          y(k) is the output and y(k-1),..,y(k-m),u(k-1),..
          ,u(k-n) are the sampled output and input values
          of a dynamic SISO-System and 
          f    is a non-linear function.

The functional dependencies in equation (1) and 
equation (2) can be expressed in form of rules, if the 
input and output values of the system are described 
by linguistic attributes as a function of the measured 
values. In principle, there are two ways to determine 
the attributes for the inputs. In the first approach, the 
attributes are determined by dividing the entire range 
of the process inputs and outputs into a given number 
of n equal intervals.  In the second approach only the 
output is divided into equal intervals, while a 
machine learning method optimally specifies the  
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Table 1: Learning Examples for the ID3-Algorithm 
 
 

Static             y(k)    u1 (k)    u2 (k)    u3 (k)    u4 (k) 
 
Dynamic       y(k)   y(k-1)   y(k-2)   y(k-3)   y(k-4) 
 
 k=1               vvs      vb           b          vb         s 
 k=2               vvb     vvs         vb          b         vb 
 k=3                 b       vvb        vvs        vb         b 
 k=4                 s          b         vvb       vvs       vb 
   .                    .           .             .            .           . 
   .                    .           .             .            .           . 
   .                    .           .             .            .           . 
 

 
behavior, can then be derived from the decision tree. 
The decision tree is built in such a way that the 
information content of the attributes for the decision-
making process drops with increasing depth and the 
irrelevant attributes remain unconsidered. 
 
 
2.2 Generation of the Rule-Set 
 
In analogy to the classical fuzzy design, the data 
based system design is characterized by an unknown 
relation between the input and output variables (rule-
base). Generation of the rule base is based on the ) 
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analysis of the existing signals of both input and 
output variables. In the automatized design method 
presented here, the rule base is generated using the 
well-established ID3 algorithm according to (Quinlan 
1992; Otto 1995). In this algorithm, the fuzzy sets 
characterizing the signal are understood to be signal-
to-symbol transformations. Back transformation, i.e. 
defuzzification, is performed in the opposite 
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direction. The principle of the ID3 algorithm is based 
on the generation of a decision tree (equations (3), 
(4)). After starting the procedure with a primary 
configuration, the generated fuzzy sets are linked in 
the rules, and the latter are then checked for their 
"correctness" (mean information content). 
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This serves to determine those (if ... then...) rules, 
whose mean information content is maximum. 
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       H C X  = - P C X log P C X         (4)

H(C/a )  entropy of occurence of the fuzzy set C

                   for the input a

P(C / X )  probability of occurence of the fuzzy set 
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n             number of fuzzy sets of the output 
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In analogy to information processing, the entropy H 
expresses the expected value, i.e. it may be used as a 
criterion for evaluating the information content of the 
information source. After having calculated these 
minimums, the relations are deleted as are the 
relations with equivalent classes, where H(C/Xi) = 0. 
This procedure is repeated several times and the 
relations are combined in the decision tree. The ID3-
algorithm infers decision trees by growing them from 
the root downward, greedily selecting the next best 
attribute for each new decision branch added to the 
tree.  
 
ID3 searches a complete hypothesis space (i.e., the 
space of decision trees can represent any discrete-
valued function defined over discrete-valued 
instances). It thereby  avoids the major difficulty 
associated with approaches  that consider only 
restricted sets of hypothesis: that the target function 
might not be present in the hypothesis space. The 
inductive bias implicit in ID3 includes a preference 
for smaller trees; that is, it searches through the 
hypothesis space, grows the tree only as large as 
needed in order to classify the available training 
examples adequately. Because the training examples 
are only a sample of all possible instances, it is 
possible to add branches to the tree that improve 
performance on the training examples while 
decreasing performance on other instances outside 
this set. Post-pruning permits to avoid  overfitting as 
described in section 2.5 (Mitchell, 1997). 
 
Due to the characteristics of this process, not all 
fuzzy set combinations are considered in the rule 
base. Consequently, the generated rule base is 
reduced compared to a complete one, as only those 
rules are applied, which are really required to 
simulate the process. The defuzzification is done 
using the center of gravity method, whereby the 
individual terms are determined by the minimum 
inference method. 
 
 
2.3 Optimization of the Membership Functions   
 
Since, for the production of the rules, homogeneous 
membership functions were used for all attributes, a 
further improvement of the fuzzy models by using 
variable membership functions is expected.  In 
addition, the optimization of the fuzzy sets is done so 
that the mean square error between model and system 
output is minimized:   
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For this purpose, the membership functions of the 
input characteristics are described by four pivot 
places, so that arbitrary, rectangle, triangle and/or 
trapezoidal membership functions can be defined. 
The other conditions are that maximally 2 attributes 
are assigned to a measured value and the sum of the 
membership functions µ(u) is equal to one.  The 
parameters of these membership functions are 
therefore given by the start and end points of the 
intervals of the full membership (roof points η1, η2 
...,η2n-2).  The bottom (foot) points are equal to the 
points of the roof of the membership functions of the 
neighboring attributes (see Figure 2). As a result 2(n-
1) parameters, η1, η2 ...,η2n-2 must be optimized for a 
fuzzy set with n membership functions. 
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2.4 Determination of the number of output classes 
 
During the evaluation of the performance of the 
models, one can find that  the mean square error  
continuous decreases  for the learning data   with 
increasing number of output classes n. However, the 
complexity of the models also enlarges 
simultaneously by enlargement of the number of 
rules. A heuristic criterion is employed for the 
definition of the initial classes here in the form of the 
predicted squared error (PSE) for independent data 
which are not used for training.  The PSE is given by: 
 

PSE=FSE+KP (6)
 
where FSE is the fitting squared error of the model 
on the training data and KP is a complexity penalty. 
Figure 3 shows the relationship between the FSE, 
PSE, and KP. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Determination of the number of output classes 

 
The complexity penalty, KP, is determined by the 
equation: 

2nKP =CPM× S (7)
N

where n, N and S2 are determined by the database of 
training examples and CPM is a adjustable 
Complexity Penalty Multiplier. n is the number of 
output classes, N is the number of training data and 
S2  is an a-priori estimate of the true unknown model 
error variance. The number of output classes for 
which the PSE becomes minimal is designated as 
optimal. 
 
 
2.5 Treatment of noise in the data 
 
The ID3 algorithm attempts always to classify all 
examples of the learning data correctly, independent 
of the strength of the noise that is contained in the 
data. As a result, the complexity of the decision tree 
increases and the classification rate for not learned 
examples decreases (Overfitting). For avoidance of 
this "Overfitting", a cutting of the tree (Pruning) is 

necessary. The success of cutting is checked at a 
separate test dataset. The pruning contains the 
following steps: 
 

1. Consider each of the decision nodes in the 
tree to be candidates for pruning. 

2. Removing the subtree rooted at that node, 
making it a leaf node, and assigning it the 
most common classification of the training 
examples affiliated with that node. 

3. Nodes are removed only if the resulting 
pruned tree performs no worse than the 
original over the test dataset. 

4. Nodes are pruned iteratively, always 
choosing the node whose removal most 
increases the decision tree accuracy over the 
test dataset. 

5. Pruning of nodes continues until further 
pruning is harmful. 

 
The impact of reduced-error pruning on the accuracy 
of the decision tree is illustrated in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Determination of the optimal complexity of 
       the tree 
 
One quite successful method for finding high 
accuracy hypothesis is a technique called rule post-
pruning (Mitchell, 1997). Rule post-pruning involves 
the following steps: 
 

1. Infer the decision tree from the training set, 
growing the tree until the training data is fit 
as well as possible and allowing overfitting 
to occur. 

2. Convert the learned tree into an equivalent 
set of rules by creating one rule for each 
path from the root node to a leaf node. 

3. Prune (generalize) each rule by removing 
any preconditions that result in improving 
its estimated accuracy. 

4. Sort the pruned rules by their estimated 
accuracy, and consider them in this 
sequence when classifying subsequent 
instances. 

PSE 

KP
FSE 

nOptimal Model
   Complexity 

 
Complete tree

Pruned tree 

Accuracy 
Training data

Pruning

Test data 

Overfitting 

Optimal tree 

Complexity of the tree 



2.6 Simulation Results 
 
The above described algorithm for the fuzzy concept 
was realized in the program system FuzzyOpt (Dung 
et al. 1997) (equal large attribute ranges for the 
inputs) and FuzzyMod (optimal attribute borders), 
which can both be used separately or in combination 
with the Fuzzy Control Design Toolbox for 
MATLAB (Koch et al. 1996).  Here the function of 
the system is going to be demonstrated on an 
example of a simulated nonlinear dynamic system 
with Hammerstein-structure: 
 
Simulink-Model where: 
TS = 1s;   -1  u 1;   (TS = Sampling time) 

 
 

 
 
        non-linearity:  f(u) = 1.36*u-2.06*u3+1.7*u5 

 

Fig. 5. Simulated non-linear System 
 
The fuzzy model was determined from a training 
sequence with 2500 randomly distributed input 
values with the method, which classifies the model 
input values optimally and automatically.  The 
number of output classes was preset to 75. The 
optimal number of the output classes was determined 
with an independent test-data set by increasing 
stepwise the number of classes until the mean square 
error reached a minimum.  

Altogether 526 rules were generated. 
 
In Figure 6 a comparison of the simulated and the 
output values estimated by the fuzzy model for an 
independent test sequence, is presented. 
   
A number of practical applications have shown that 
the presented identification procedure can be applied 
to various problems, including modelling the 
decision behaviour of human experts. 
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A part of the generated rule set is represented in the 
following:   
 
1. IF ( y(k-1) = Term_3_0 ) THEN y(k) := Term_0 ; 
2. IF ( y(k-1) = Term_3_1 ) THEN y(k) := Term_1 ; 
3. IF ( y(k-1) = Term_3_2 ) THEN y(k) := Term_2 ; 
4. IF ( y(k-1) = Term_3_3 ) THEN y(k) := Term_0 ; 
5. IF ( y(k-1) = Term_3_4 ) AND ( y(k-2) = 
Term_4_0 ) THEN y(k) := Term_3; 
6. IF ( y(k-1) = Term_3_4 ) AND ( y(k-2) = 
Term_4_1 OR Term_4_2 OR Term_4_3 OR 
Term_4_4 OR Term_4_5 OR Term_4_6 OR 
Term_4_7 OR Term_4_8 OR Term_4_9 OR 
Term_4_10 OR Term_4_11 OR Term_4_12 OR 
Term_4_13 OR Term_4_14 OR Term_4_15 OR 
Term_4_16 OR Term_4_17 OR Term_4_18 OR 
Term_4_19 OR Term_4_20 OR Term_4_21 OR  
Term_4_58 OR Term_4_59 OR Term_4_60 OR 
Term_4_61 OR Term_4_62 OR Term_4_63 OR  
Term_4_64 OR Term_4_65 OR Term_4_66 OR 
Term_4_67 ) THEN y(k) := Term_1 ; ….. 
 
526. IF ( y(k-1) = Term_3_228 ) THEN y(k) := 
Term_74 ; 

Figure 7 shows a part of the determined optimal 
membership functions. 
 
 

 
 
Fig. 7. Part of the Determined Optimal Membership 
       Functions 



3. CONCLUSION 
 
This paper has shown that fuzzy models can describe 
nonlinear static and dynamic systems very well.  By 
using  machine learning methods (ID3-algorithm 
proposed by Quinlan), the declarative knowledge in 
form of the rule base can be determined problem-
free. The structure of such systems also allows for an 
interpretation of the interactions between the system 
variables. 
 
A further improvement of the model is possible by an 
additional optimization of the membership functions.  
Since, in the method with equally large intervals for 
the inputs, the arrangement of the measured values to 
the attributes can change, an iterative approach is 
necessary in this case.  This leads after approx. 2 to 4 
optimization steps for the given number of attributes 
to an "optimal" fuzzy model in the sense of the 
minimization of the mean square error between 
model and system output. 
 
This method has the advantage that ascertaining the 
rules is limited to the part of state space relevant to 
the description of system behavior so that a 
combinatorial explosion which is possible in the case 
of other methods is avoided. The generated rule base 
is reduced compared to a complete one, as only those 
rules are applied, which are really required to 
simulate the process. 
 
The running time of the algorithm is only 
proportional to the number of the training examples. 
For systems with stronger noises, an overfitting can 
be avoided by pruning of the decision tree or of the 
rules. 
 
The described algorithm for Fuzzy modeling was 
implemented in the program system FuzzyOpt (Dung 
et al. 1997) (equal large attribute ranges for the 
inputs) and FuzzyMod (optimal attribute borders), 
which can both be used separately or in combination 
with the Fuzzy Control Design Toolbox for 
MATLAB (Koch et al. 1996). 
 
Further examples of the application of the Fuzzy 
modeling method introduced here are given in (Koch 
et al., 1995; Heine, 1999; Malberg at al., 2001; 
Malberg at al., 2002; Mönch and Otto, 2002).   
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