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Abstract: The paper considers a class of large scale control systems described by a
finite set of linear systems with transitions between them determined by a homogeneous
Markov chain. Each individual system of this family describes the plant state variables in
the corresponding mode and is composed of a set of interconnected subsystems. At the
moment of a discontinuous mode change the plant state vector can be changed by jump.
A parametrization of the linear decentralized output feedback controllers that stabilize a
given system of this class in the mean square is presented. Sufficient conditions for an
output feedback controller to be robust stabilizing against the mode change parameter
uncertainty are obtained. These conditions along with the parametrization result lead to
an LMI-based algorithm for computation of the gain matrix of a robust stabilizing output
feedback control law. An illustrative example is giv€opyright©2005 IFAC
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1. INTRODUCTION of the static output feedback solution set (Iwasaki and
Skelton, 1995), which makes it a non-trivial computa-
One of the most important open questions in con- tional task, analytical and computational alike.
trol theory is the output feedback problem (Ceab , , .
al., 1998; Garciaet al, 2003; lwasaki and Skel- FOr jumping systems we have especially weak de-

ton, 1995; Kiera and DeSouza, 1995: Syrmes velopment of analytical and computational solution
al., 1997: Trofino-Neto and Kiera, 1993), despite met.hods of this problem (Mariton, 1990; Pakshin and
the fact that this type of feedback represents the Retinsky, 2003; Pakshin and Mitrofanov, 2004) and
simplestclosed loop control that can be realized in '€ferences therein; in the case of large scale jump-
practice. There exist necessary and sufficient condi-IN9 Systéms this problem has not been studied in the
tions for the output feedback stabilization (Cab current literature. _Boukast. aI.(1.997) conS|_der large
al. 1998: Iwasaki and Skelton, 1995: &era and scale systems which are linear in the continuous plant
DeSouza, 1995 Trofino-Neto and &ara, 1993) but state_and whose mode dyngmics are described via ran-
these conditions are not readily implemented as nu-d0m jumps modeled by a discrete-state Markov chain.
merical algorithms, except Caet al. (1998) where By use of decomposition and coord|nat|on. leading to
an iterative LMI-based algorithm is proposed and Yu a two-level cor_1t.rol system, the robustness in the_sense
(2004). The major difficulty is due to non-convexity of robust stability and guaranteed cost cpntrol is en-
sured for the partly unknown large scale linear system
with Markovian jumps. Two different structures are

! This work was supported in part by the Russian Foundation for proposed: decentralized and centralized one. In both
Basic Research.




the cases it is sgpposgd that the state vector of each ;! (1) = Al 2/ (¢) + Béiyfg(t)7 if r(t) =1, (4)
local subsystem is available to the controller. . L . _ ,

u,(t) = Cpize(t) + Deiy,(t), if r(t) =i, (5)
This paper considers a similar class of large scale . .
control systems described by a finite set of linear wherez! € R™ and matf'0954lcia Bl;, Cl;andD.;
systems with transitions between them determinedhave compatible dimensions.
by a homogeneoys Mark.ov chain. Each mdwujual The system (1)—(5) can be written as
system of this family describes the plant state variable
in the corresponding mode and is composed of a

-1 _ 7l l l l
set of interconnected subsystems. At the moment of & (t) = A (r(8))a(t) + B (r(t))u'(t) +

a discontinuous mode change the plant state vector L Ik A

can be changed by jump. A parametrization of the ZA (r(®)z"@),  (6)
linear decentralized output feedback controllers that k=1

stabilize a given system of this class in the mean y'(t) = C'(r(t)a(t), t>0, (7)
square is presented. Sufficient conditions for an output xl(T) — @éjxl(r —0), (8

feedback controller to be robust stabilizing against L ol . .
the mode change parameter uncertainty are obtained. u(t)= -Gy t), fr(t) =1, (9)
These conditions along with the parametrization result wherez! = [2/7 2!7)T € R™, u! € R™, ¢ €
and some ideas of (Boyet al, 1994; ElGhaoui and B b

[ 1 l [ — l l [ N
AitRami, 1996 AitRami and EIGhaoui, 1996) lead to AN N M=
an LMI-based algorithm for computation of the gain ncd ij = diag[®;; 0] if r(r—0) =1, (1) =
matrix of robust stabilizing output feedback control an
law. An illustrative example is given. o Ai)i 0 b B;ln 0 i e C;ln' 0

7 0 0 [ A 0 I’nc [ 0 Inc )
2. SYSTEM DESCRIPTION e [ABO0] DL, CL.
S ) Rt P A

Consider a decentralized system subject to random
jumps composed ofL interconnected subsystems
and described by the following differential equations

It is easy to see that this model gives a common
description for system with both static and fixed-order

(Siljak, 1991): dynamic output feedbacks.
The_ hybrid interconnected system (6)—(9) can be writ-
$§,,(t) _ Aé(T(t))Ié(t) + leo(r(t))ué(t) + ten in compact form
i Ao, i(t) = A(r(D)a(t) + Br(t)u(t) +
k=1 Ac(r(t)x(t),  (10)
yp(t) = Ch(r()z,(t), t>0, (2) y(t) = Cr(t)z(t), t>0, (11)
ab(r) =@l ab(r—0), (3) z(1) = ®yx(r —0),  (12)

u(t) = —Guyt), ifr(t) =4, (13)

.
where :ci, € R" is the local plant state vector,
wherez = [2'7

u! € R™» is the local control vectory! € R*» is
the local plant output vector:(t) is a homogeneous
Markov chain which state space is a set of integers

o u = Wt T

and the block matrices aredc = [AY]F A
diag[Al,...  AL], B = diag[B',...,BY], C =

; 1 L — A 1 L -
N = {1,2,...,v} and transition matrixP(§) = gizg{gf.“’%;]’ G = diag[G',...,G"], @y
[Pij(0))F = [Prob{r(t +0) = j | r(t) = i}}{ = B Bl
exp(Ilf), 0 < ¢t < t+0, II = [m;]7 with We also define the nominal plant model as a set of
mij >0, § # T = — >0,y T > to is the isolated subsystems:
moment of transition from (7 — 0) = i tor(7) = j;
®.;,(i,j € N) arenl, x nl, constant matrices, such #(t) = A(r()z(t) + Br(t))u(t), t>0, (14)
that ®., = I. For each possible value of the process B
r(t) € N we write Ai,(r(t)) _ Alpi? Bl(r(t) = which follows from (10), whem(r;) = 0.
lem Czl,(r(t)) = C’Il)i, when r(t) = 4. These
matrices have compatible dimensions and correspond 3. PRELIMINARIES

to different modes of the system.

Consider a fixed-order decentralized dynamic output Forevery: Nthe.plant state space of the_system'(.IO)
feedback controller in the form of the following equa- Can P& presented in the form of the following partition

tions: R™ = Im(C}") @ Ker(C;), (15)



where Im(C) and Ker(C;) are orthogonal sub-
spaces. For any € R" we can write

T =71+ IK,

wherez; € Im(CY) andxk € Ker(C;). Define the
matrices

Ei(i) = CFCy, Ex(i) =1 — FEi(i), (16)

where C;f is the Moore-Penrose inverse 6f. Ac-

cording to the partition (15) the matrices (16) are

projection matrices ohm(C') and onKer(C;) corre-

spondingly. These matrices are symmetric and unique.

We use the notatio * for a full rank matrix orthog-
onal to X. The matrixX ' exists if and only ifX has
linearly dependent rows and for a givéhthe matrix
X+ is not unique.

An important role in the sequel together with the out-

L, ={H; = H' >0,3K; such that
(Ai — B;K;)"H; + Hi(A; — BiK;) +

Zﬂ'ijq)g;‘qu)ij <0, iEN},

j=1
X ={X;=XI'>0, BfAX;+ X;AT +
Z%)ob X', X;)B" <0, i €N},
—{Y—YT>O CTH(ATY; + Vi A; +
watb Y;®,,)C T <0, i e N},

Z/{(Xl,..., 1/) —{Rl > 0, Ql >0,
AT X + X;A; — XiB;R;'BI X; +

Zﬂ'ijq)g;‘qu)ij + Qi =0,1€ N}

put feedback control (13) plays also the state feedback j=1

decentralized control

u(t) = —K;x(t), if r(t) =1 @7
with K; = diag[K} ... KF].
Definition 1. The control law (13) is said to be decen-
tralized stabilizing output feedback (DSOF) control if

there exists a positive definite matfid; = HZ, (i €
N) such that the following inequalities hold

(A; + Aci — B;G:C:))T Hey +

Hei(Ai + Aci — BiGiCy) +
Zﬂ—ijq)g;’HCi@ij <0, ieN. (18)
j=1

Definition 2. The control law (17) is said to be decen-
tralized stabilizing state feedback (DSSF) control if
there exists a positive definite matiik; = Hg (i e

N) such that the following inequalities hold

(Ai + Aci — B;K)"Hey +
Hei(Ai + Aci — B K;) +

ij@ Hei®;; <0, i€N. (19)

WYi,...,.Y,)={V,>0, W; >0,
AYi + VAT —YiCT VTG +

ZMY@ Y Y + W =0, i € N}

4. PARAMETRIZATION OF STABILIZING
CONTROLLERS WITH STATIC OUTPUT
FEEDBACK

In this section following the approach by Iwasaki and
Skelton (1995) we obtain a characterization of a set
of the matrices of Lyapunov stochastic functiofis
and a parametrization of the stabilizing static output
feedback gains for the system (10)

Theorem 1. Let a set of block diagonal matrices
H; (i € N) be given. Then the following statements
are equivalent:

H;eL,, ieN; (20)

H;>0,ieN, U(Hy,...,H,) #0,
and W(H{ ..., HY ) #0;  (21)
H'eX and H;cY,ieN. (22

All the stabilizing static output feedback gains for the

Both DSOF control and DSSF control guarantee the Nominal system (14) are given by

exponential stability in the mean square (ESMS)
(Mariton, 1990; Kats, 1998) of the closed loop system

(10).

Define the following sets of block diagonal matrices
L,={H; =H! >0,3G; such that
(A; — B;G;C;))"H; + H;(A; — B;G;C;) +

> my®LH®y; <0, i € N},

j=1

Gi = R 'BiH;Q; 'O (C,Q7 ') ™!

O A (C,QICT) 5, ieN, (29)
where A, (i € N) are arbitrary matrices such that
| A; |<1, H;i €Ly, {Ri,Q;}€UH1,...H,)
and matrice®; > 0 (i € N) are defined by

O, = B! — BB H.Q; Qi -
CrC(CiQy ' CTY1CiQ; " HiBi R . (24)



If the matrix (23) is such that LMI's (18) are feasible lll. H; € L,5,1 € N;
with respect to the LMI variablé/o; > 0 thenitis a IV. H; is the unique positive definite solution of the
gain matrix of DSOF control. set of coupled Riccati equations

ATH; + H;A; — H;B;R;'BI' H; + Q.(9)
The theorem can be proved by the same way as

the parametrization theorem for single jump systems ZV:M‘((S)‘I)»T»H“I%‘ —0, ieN, feA,
(Pakshin and Mitrofanov, 2004). =~ T ’

forsomeR;(6) > 0andR; > 0,0 € A,, i € N;
5. PARAMETRIZATION OF DECENTRALIZED V. H; >0 andHi_l € Xs
ROBUST STABILIZING CONTROLLERS WITH

The gain matrix of RDSSF control in the form of (17)
STATE FEEDBACK

for the nominal system is given by

In real control problems the transition probabilites  x, = R, 'BI'P, + R;%Ai(5)Qi(5)% i €N, (25)
between the modes are not exactly known. Suppose h h . h .
that the matrixiI = TI(d) is an affine function of a where the matrices’, @, R; are the ones in IV.

vector parameted. That is, suppose that there exist 2nd Ai(9) if a matrix such thaf| A;(é) |< 1 and
real matricedl, ...,y all of the same dimension Ai(6)Qi(0)2 is independent ob. If the matrix (25)
asII such that such that LMI's (19) withll = TI(6) (6 € Ag) are

feasible with respect to LMI variabl&; > 0, then
I1(6(¢)) = Ho + 01111 + ... + dnTln it is the gain matrix of RDSSF control for the system

forall § € A. Let the uncertain parameteis, j = (10).
1,..., N take values in the intervad,;, ¢,] i.e.d; €

[0;, d;]. This means that the uncertainty of each inde- The proof is based on well known results from con-
pendent parameter is assumed to be bounded betweeyex analysis (Boyckt al, 1994) and parametrization
the two extremal values. Define the set of the cornerstheorem (Pakshin and Mitrofanov, 2004).

of the uncertainty region as

Do ={6=(01,...,0n | 0; € {8,, &;}, 6. ROBUST STABILIZATION VIA STATIC
P OUTPUT FEEDBACK

Developing some ideas by Trofino-Neto andd€ra

) (1993), Kitera and DeSouza (1995) in this section
we obtain new necessary and sufficient conditions for
robust stabilization via static output feedback of the
system (10), (11)

Definition 3. The control law (13) is said to be robust
decentralized stabilizing output feedback (RDSOF
control if there exist positive definite matricék:; =
HZ, (i € N) such that the inequalities (18) hold with
IT = TI(¢) for all perturbationss € A. If in addition
G; = G (i € N), then this control law is said to be

nonswitching RDSOF control. Theorem 3. The nominal system (14), (11) is robust

stabilizable via static output feedback if and only if for
some symmetric matricéd;(d) (6 € Ay), andR; >

0 (i € N) there exist positive definite solutiofif =
HY of the system of the coupled Riccati equations

Definition 4. The control law (17) is said to be robust
decentralized stabilizing state feedback (RDSSF) con-
trol if there exists a positive definite matrii{; =

HZ. (i € N) such that the inequalities (19) hold with

IT = II(6) for all perturbationss € A. If in addition ATH; + H;A; — H;B;R; 'BI'H; +
K, = K, i € N, then this control law is said to be v
nonswitching RDSSF control. M;(9) + Z Wij(é)@%Hj@ij =0 (26)
j=1

Denotel s andX;s the setsL, andX” with IT = TI(9), and matricesL; (i € N) of compatible dimensions,
whered € Ag. satisfying ford € A, the system of inequalities
Theorem 2. Suppose that the plant state vector is (A; — BiK:)TH; + Hi(A; — BiK:) +
available to the controlle(C; = I). Then the follow- y
ing statements are equivalent: Z ﬁij((;)@g;Hj@ij — (LiE; (i) —

I. there exists a gain matrix of RDSSF control for J=1

nominal system; BIHEx(i)TK; — KI'(L;E; (i) —
. L5 # 0; BI'H,Ek(i)) <0, (27)

Let a set of matriced; (i € N) be given.
Then the following statements are equivalent.  where



Ki=R;'B/H], ieN. (28) A ls) — pRY2BTQ:Q1*(5)

7

The robust stabilizing control for the nominal system ggi’;(” R;*BTQ,Q1”*(6) |)
(14) has the form of (13) where

G;=R;"(BI'H;+L,)C;", ie N.  (29)

where| p |< 1, Q; = max Q;(5) Define
i €A
If the gain matrix (29) is such that the LMI’s (18) with H, = P, + 0;Q;, (30)
IT = II(6) (6 € Ap) are feasible with respect to the 12T A1/2 .
LMI variable Ho; > 0, then it is the gain matrix of ~Wherea; = p(?elzfé I EZEBEQiQ () )
RDSOF control. According to equivalence Il from Collorary 1 it is
easy to see that in this cagg satisfies (26) for some
M;(8) = MT(5) and (25) is equivalent to (28). Taking
into account this fact we can formulate the algorithm
as follows.

The proof is based on the results by Pakshin and
Retinsky (2003) and Pakshin and Mitrofanov (2004).

Corollary 1. The nominal system (14), (11) with Step 1.Solve LMI's with respect to variabl&; (i €
C; = C, (i € N) is robust stabilizable via nonswitch- N) :

ing static output feedback if and only if for some sym- I'11(0) T'12(9)

metric matricesM;(9) (0 € Ap),andR; > 0 (i € N) {Fﬂ(é) | } <0,

there exist positive definite solutiofg = HiT of the where
system of the coupled Riccati equati¢@8) and ma-

tricesL; (¢ € N) of compatible dimensions, satisfying

for § € Ay the system of inequalities (27) and the [1(0) = BiL (Yidi + AiY; + mii(0)Y:) By,
following system of equations Ty = [B; Yim}[2(6)®7 ... B; Vi /2 (5)®%

R7NBIH; + Li) = R}y (Bf Hity + Liga). By Yo/ (6)®% ., ... B Yim 2 (6)T), § € Ao,
The robust stabilizing control for the nominal system Iy =diag[-Y1...—- Y1 —Yiy1...=Y,].

(14) has the form of (13) where the gain matrix is
given by (29) for an arbitrary fixed € N. If the  Step 2FindQ;(J) andR; * as a solution of LMI's
gain matrix (29) is such that the LMI's (18) with

II = II(§) (6 € Ap) are feasible with respect AY + VAT +V.0.(8)Y, — B.R—BT
to the LMI variable Ho; > 0, then it is the gain Y+ Yidy +YiQi(0)Y: il B
matrix of nphswitching RDSOF cor_1t_ro|. Ifin addit_ion Zﬂ'ij((s)yiq)g;y(j)_lq)ijyi —0,ieN,6e A
®,; =1, (i,j € N) and the inequalities (18) admit a
common solutioflc; = He > 0 (¢ € N), then this
control stabilizes the system (10) independently of the
mode change process.

Jj=1

Step 3.Find P, = Y;', i € N, @ =
max Qi(0); pmin =minp: [p| <1, Pi+a;Q; > 0.
0

The obtained results lead to the following algorithms Step 4PutH; = P;, i € N, p = puin.
for computing the stabilizing feedback gain matrices Step 5Find K; = R~ BT H,

G; (i € N).

( : ) . . . . Step 6.If the LMI's (26) are feasible with respect to
Algon_thm based on direct solution of coupled Riccati |/, variable L;, then findG, according to the formula
equations(CRE) (29) else putp = p + Ap, Hy = P + a0, if
Step 1.Solve the system of CRE (26) by LMI opti- | p [> 1, then stop, else go to Step 5.

mization method (AitRami and ElGhaoui, 1996; El- ; :
. . ; \ ' . Step 71f the LMI's (18) with IT = I1(d) (§ € A) are
Ghaoui and AitRami, 1996) and find the matrices feasible with resp((act)to the LMI v(aziegbch-Oi 0

H; = HI >0andK;, i € N. thenG; is gain matrix of DSOF control, stop, else put
Step 2.If the LMI problem (27) is not feasible then p:=p+ Ap, H; = P; +aQ;, if | p [> 1, then stop,
correct the LQR parameters (weighting matrices) and else go to Step 5.

go to step 1, else if this LMI problem is feasible find

the matricesl; and calculate the matrices; by the
formula (29). 7. AN EXAMPLE

Algorithm based on parametrization of stabilizing so- ~qnsider a dynamic system composed of two inverted
lutions of CRE pendulums connected with a spring (Siljak, 1991).
According to Corollary 1 in the state feedback stabi- This system is described by the following equations
lizing gain matrices given by the formula (25). Be-

cause in this formula\;(d) is arbitrary matrix with 1 |01 4 (0] 1 0 0 ; [00] 4
| Ai(d) ||< 1, we can suppose = {a 0] S {6} ut [—7 0] S [7 O] o
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Typical impulse responses for the first pendulum in
mode 1 are presented on Fig.1.
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Fig. 1. Impulse responses for the first pendulum.



