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Abstract: We provide results for redesign of Lyapunov function based continuous
time controllers for sampled-data implementation, using a particular form of the
redesigned controller and the Taylor expansion of the sampled-data Lyapunov
difference. We develop two types of redesigned controllers that (i) make the
lower order terms (in T ) in the series expansion of the Lyapunov difference with
the redesigned controller more negative and (ii) make the terms in the Taylor
expansions of the Lyapunov difference for the sampled-data system with the
redesigned controller behave as close as possible to the respective values of the
continuous-time system with the original controller. Simulation studies illustrate
the performance of our controllers. Copyright c©2005 IFAC.
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1. INTRODUCTION

One of the most popular methods to design
sampled-data controllers is the design of a con-
troller based on the continuous-time plant model,
followed by a discretization of the controller (Chen
and Francis, 1995; Franklin et al., 1997; Laila et
al., 2002). This method, often called emulation,
is very attractive since the controller design is
carried out in two relatively simple steps. The
first (design) step is done in continuous-time, com-
pletely ignoring sampling, which is easier than
the design that takes sampling into account. The
second step involves the discretization of the con-
troller and there are many methods that can
be used for this purpose. Classical discretization
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methods, such as the Euler, Tustin or matched
pole-zero discretization are attractive for their
simplicity but they may not perform well in prac-
tice since the required sampling rate may exceed
the hardware limitations even for linear systems
(Katz, 1981; Anderson, 1993). For linear systems
this has lead to a range of advanced controller
discretization techniques based on optimization
ideas that compute ”the best discretization” of the
continuous-time controller, see (Anderson, 1993)
and (Chen and Francis, 1995).

Also for a large class of nonlinear sampled-
data systems emulation preserves a range of im-
portant properties, see (Laila et al., 2002), if
the discretized controller is consistent with the
continuous-time controller and the sampling pe-
riod is small enough. While optimization based
approaches could be probably carried out for non-
linear systems, these approaches inevitably re-



quire solutions of partial differential equations of
Hamilton-Jacobi type that are very hard to solve.

In this paper we present Lyapunov based re-
design techniques of continuous-time controllers
for sampled-data implementation. We assume
that an appropriate continuous-time controller
u0(x) has been designed together with an appro-
priate Lyapunov function V (·) for the closed-loop
continuous-time system. Then, we presuppose the
following structure of the redesigned controller

udt(x) = u0(x) +
N∑

i=1

T iui(x) ,

where T is the sampling period and ui(x) are
the terms that need to be designed. This struc-
ture yields a particularly useful structure of the
Taylor expansion of the first difference for V (·)
along solutions of the sampled-data system with
the redesigned controller which we use for the
systematic computation of the correction terms
ui.

This structure was obtained in several papers as
an outcome of the design procedure, see, e.g.,
(Arapostathis et al., 1989; Nešić and Teel, 2001).
Here, however, we impose this structure of the
controller, similar to the approach in (Laila and
Nešić, 2003) that used the Euler scheme and udt =
uct(x) + Tu1. Motivated by the promising results
in this reference our goal is to develop a systematic
methodology for controller redesign.

Our method is very flexible and allows for sev-
eral redesign objectives, two of them being ad-
dressed in this paper. The first is to make the
lower order terms in the Taylor expansions more
negative by choosing ui. This often leads to the
correction terms of the form ”−LgV ” useful in
robustification of continuous-time controllers (see,
e.g., (Corless, 1993; Sepulchre et al., 1997)). The
second objective is to make the first terms of the
expansion of the first difference for V (·) along
solutions of the sampled-data system with the
redesigned controller as close as possible to the
respective value for the ”ideal” response of the
continuous-time system.

The paper is organized as follows. In Section 2 we
present the notation, the main assumption and
pose the problem we consider. Section 3 contains
the main result on the Taylor expansion which is
used in Section 4 to show two distinct ways to
redesign continuous-time controllers. Simulation
results are given in Section 5 and conclusions are
presented in the last section.

2. PRELIMINARIES

As usual, a function γ : R≥0 → R≥0 is called
class K if it is continuous, zero at zero and strictly

increasing. It is of class K∞ if it is also unbounded.
The notation |·| always denotes the Euclidean
2-norm. We will say that a function G(T, x) is
of order T p and we write G(T, x) = O(T p) if,
whenever G is defined, we can write G(T, x) =
T pG̃(T, x) and there exists γ ∈ K∞ such that for
each ∆ > 0 there exists T ∗ > 0 such that |x| ≤ ∆
and T ∈ (0, T ∗) implies

∣∣∣G̃(T, x)
∣∣∣ ≤ γ(|x|).

Consider the system

ẋ = g0(x) + g1(x)u , (1)

where x ∈ Rn and u ∈ R are respectively the
state and the control input of the system. We will
assume that all functions are sufficiently smooth.
For simplicity, we concentrate on single input
systems but the results can be extended to the
multiple input case u ∈ Rm,m ∈ N.

For several classes of systems (1), there exist
nowadays systematic methods to design a continu-
ous-time control law of the form

u = u0(x) , (2)

and a Lyapunov function V : Rn → R≥0 and
α1, α2, α3 ∈ K∞ such that

α1(|x|) ≤ V (x)≤ α2(|x|) (3)
∂V

∂x
[g0(x) + g1(x)u0(x))]≤−α3(|x|)∀x ∈ Rn. (4)

Examples are methods like backstepping (Krstić
et al., 1995; Freeman and Kokotović, 1996), for-
warding (Sepulchre et al., 1997) or Sontag’s for-
mula (Sontag, 1989).

In most cases the controller (2) is implemented
digitally using a sampler and zero order hold.
Since (2) is static, it is often proposed to simply
implement it as follows (see (Laila et al., 2002)):

u(t) = u0(x(k)) ∀t ∈ [kT, (k+1)T ), k ∈ N . (5)

It was shown, for instance, in (Laila et al.,
2002) that this digital controller will recover
performance of the continuous-time system in a
semiglobal practical sense (T is the parameter
that needs to be chosen sufficiently small). How-
ever, (5) typically requires very small sampling
periods T to work well and, hence, may not pro-
duce the desired behaviour for a fixed given T .
The purpose of this paper is to systematically
redesign the controller u0(·) so that the redesigned
sampled-data controller performs better than (5)
in an appropriate sense.

In order make this “appropriate sense” more pre-
cise, consider the solution y(t) of the scalar differ-
ential equation 2

ẏ = −α3 ◦ α−1
2 (y) y(0) = y0 . (6)

2 Without loss of generality we need to assume here that

α3 ◦ α−1
2 (·) is a locally Lipschitz function (see footnote in

(Khalil, 1996, pg. 153)).



Proposition 4.4 in (Khalil, 1996) states that the
function σ(y0, t) := y(t) is of class KL. Then with

β(s, t) := α−1
1 (σ(α2(s), t)) . (7)

we obtain that solutions of the closed loop system
(1), (2) satisfy:

|x(t, x0)| ≤ β(|x0| , t) ∀x0 ∈ Rn, t ≥ 0 , (8)

Based on these considerations we can now state
our main assumption.

Assumption 1. Suppose that a continuous static
state feedback controller (2) has been designed for
the system (1) so that the following holds:

(1) There exists a Lyapunov function V (·) and
functions α1, α2, α3 ∈ K∞ satisfying (3) and (4).
(2) The function β ∈ KL defined in (7) satisfies all
performance specifications in terms of overshoot
and speed of convergence.
(3) The controller (2) is to be implemented dig-
itally using a sampler and zero order hold, that
is for a given sampling period T > 0 we mea-
sure x(k) := x(kT ), k ∈ N and u(t) = u(k) =
const., t ∈ [kT, (k + 1)T ), k ∈ N.

Remark 2. At a first glance either item (i) and (ii)
in Assumption 1 may seem enough. However, in
our approach we will use both (i), since we need
the Lyapunov function V (·) in order to carry out
the redesign and (ii), because the objectives we
use in redesign rely on the function β. For in-
stance, in Subsection 4.1 the objective is to make
the Lyapunov difference for the sampled-data sys-
tem as close as possible to the Lyapunov differ-
ence along the continuous-time system. Hence, for
our controller redesign objective to be plausible
we need to assume that item (ii) of Assump-
tion 1 holds. In other words, the bound (ii) on
the continuous-time closed-loop response obtained
from the Lyapunov function is regarded as ”ideal”
or a ”reference” stability bound.

The exact discrete-time model of the system with
the zero order hold assumption is obtained by
integrating (1) starting from x0 = x(k) with the
control u(t) = u(k), t ∈ [kT, (k + 1)T ):

x(k + 1) = x(k) +

(k+1)T∫
kT

g0(x(s)) + g1(x(s))u(k)ds

=: F e
T (x(k), u(k)). (9)

3. TAYLOR EXPANSION

In this section we propose a particular structure
for the redesigned controller. This structure of
the controller yields an interesting structure of

the series expansion of the Lyapunov difference
along the solutions of closed loop system with
the redesigned controller and will allow us to
redesign the controller in a systematic manner. We
propose to modify the continuous-time controller
as follows:

udt(x) :=
M∑

j=0

ujT
j , (10)

where u0(x) comes from Assumption 1 and uj =
uj(x), j = 1, 2, . . . ,M are corrections that we
want to determine. Note that for fixed M and
T → 0 we obtain udt → u0. The number M of cor-
rection terms needed for a suitable performance
depends on the choice of ui, the chosen sampling
rate and the plant dynamics, see Remarks 7, 8.

The idea is to use the Lyapunov function V as
a control Lyapunov function for the discrete-time
model (9) of the sampled-data system with the
modified controller (10) where we treat ui, i =
1, 2, . . . ,M as new controls which are determined
from the Lyapunov difference

V (F e
T (x, udt(x)))− V (x)

T
. (11)

Since in general it is not possible to compute
F e

T (x, u) in (9) exactly we need to work with
an approximation of (11). For this purpose we
use the following Taylor expansion of (11) that
is particularly suitable for controller redesign.

Theorem 3. Consider system (1) and controller
(10) and suppose that Assumption 1 holds. Then,
for sufficiently small T , there exist functions
pi(x, u0, . . . , ui−1) such that we can write:

V (F e
T (x, udt))− V (x)

T
(12)

= Lg0V + Lg1V · u0

+
M∑

s=1

T s[Lg1V · us + ps(x, u0, . . . , us−1)]

+ G(T, x, u0, u1, . . . , uM ) ,

where G(T, x, u0, u1, . . . , uM ) = O(TM+1). �

The proof follows from a careful examination of
the terms in the Fliess series expansion (Isidori,
2002, formula (3.7)) 3 of V (F e

T (x, udt) in T , using
our controller structure. Details can be found in
(Nešić and Grüne, 2005).

The functions ps can be obtained by straightfor-
ward computations where computer algebra sys-
tems like, e.g., maple can be efficiently used. For
instance, for s = 1, 2 we obtain

3 Since udt ≡ const on [0, T ] the Fliess expansion coincides
with the usual Taylor expansion along solutions of ODEs.



p1 =
1

2!

(
Lg0Lg0V + (Lg1Lg0V + Lg0Lg1V )u0 (13)

+Lg1Lg1V u2
0

)
.

p2 =
1

2!

(
u1(Lg0Lg1V + Lg1Lg0V + 2g1Lg1V u0)

)
+

1

3!

(
Lg0Lg0Lg0V

+(Lg0Lg0Lg1V (14)

+Lg0Lg1Lg0V + Lg1Lg0Lg0V )u0

+(Lg0Lg1Lg1V

+Lg1Lg0Lg1V + Lg1Lg1Lg0V )u2
0

+Lg1Lg1Lg1V u3
0

)
.

4. REDESIGN TECHNIQUES

In this section we propose controller redesign
procedures that are based on (12). There is a lot
of flexibility in this procedure and in general one
needs to deal with systems on a case-by-case basis.
Here we consider two different goals for controller
redesign in Subsections 4.1 and 4.2.

4.1 High gain controller redesign

Our first case is reminiscent of the Lyapunov
controller redesign of continuous-time systems for
robustification of the system (see (Corless, 1993;
Khalil, 1996)), providing more negativity to the
Lyapunov difference. This typically yields high
gain controllers that may have the well known
”−LgV ” structure which was used, for example,
in (Sepulchre et al., 1997).

Observe that the terms in the series expansion
have the following form:

O
(
T 0

)
: Lg1V · u0 + Lg0V (15)

O
(
T 1

)
: Lg1V · u1 + p1(x, u0) (16)

O
(
T 2

)
: Lg1V · u2 + p2(x, u0, u1) (17)

O
(
T 3

)
: Lg1V · u3 + p3(x, u0, u1, u2) (18)

...
...

This special triangular structure allows us to use
a recursive redesign. Assuming that u0 is designed
based on the continuous-time plant model (1), at
each step s ∈ {1, . . . ,M} we design us to make
the terms of order O(T s) more negative. For this
purpose we can use ps(x, u0, . . . , us−1) since at
stage s all previous ui, i = 0, 1, 2, . . . , s − 1 have
already been designed.

For the actual design of us we now discuss some
possible choices. It is obvious from (12) that any
function uj with

uj = uj(x) such that
{

uj ≤ 0 if Lg1V ≥ 0
uj ≥ 0 if Lg1V ≤ 0

will achieve more decrease of V (·). For example,
one such choice is

uj(x) = −γj(V (x)) · (Lg1V (x)) , (19)

where γj ∈ K is a design parameter that can be
determined using the ps(x, u0, . . . , us−1) functions
from (12), e.g., chosing γj such that the sign indef-
inite functions ps(x, u0, . . . , us−1) are dominated
by the negative term us(x)Lg1V (x). The following
theorem shows that this can be accomplished up
to higher order terms.

Theorem 4. Consider the system (1) and sup-
pose that Assumption 1 holds. For any j ∈
{0, 1, 2, . . . ,M} denote uj(x) :=

∑j
i=0 T iui(x).

Then, suppose that whenever F e
T is well defined,

we have for some j ∈ {0, 1, 2, . . . ,M} that the
following holds:

V (F e
T (x, uj(x)))− V (x)

T
≤ −α3(|x|) + G1(T, x) ,

(20)
and G1(T, x) = O(T p) for some p ∈ N. Suppose
now that the controller uj+1(x) is implemented,
where uj+1(x) := −γj+1(V (x)) · LgV (x). Then,
whenever F e

T is well defined, we have that:

V (F e
T (x, uj+1(x)))− V (x)

T
(21)

≤ −α3(|x|)− T j+1γj+1(V (x))
(

∂V

∂x
g(x)

)2

+G1(T, x) + G2(T, x) ,

where G1(T, x) is the same as in (20) and
G2(T, x) = O(T j+2). �

The proof follows directly from Theorem 3.

Remark 5. Whenever Lg1V (x) 6= 0 we can in
principle dominate the terms ps(x, u0, . . . , us−1)
by increasing the gain of us. However, due to
saturation arbitrary increase in gain is not fea-
sible. If we know an explicit bound on the control
signals, such as |uj | ≤ γ(|x|), then the control
that produces most decrease of V (·) under this
constraint is

uj(x) =
{
−γ(|x|) if Lg1V (x) ≥ 0

γ(|x|) if Lg1V (x) ≤ 0 .

We will use such a controller in the jet engine
example presented below.

Remark 6. It is well known (see (Sepulchre et
al., 1997)) that the control laws of the form
(19) robustify the controller to several classes
of uncertainties and lead to improved stability
margins. Our results show that adding the −Lg1V
terms of the form (19) robustifies the controller
also with respect to sampling.



Remark 7. The approach indicated above needs
the sampling period T to be sufficiently small
so that terms of order O(TM+1) are negligible.
Since the O(TM+1) terms depend in general on
u0, u1, . . . , uM , larger magnitudes of ui will in gen-
eral make these terms less negligible, cf. (13) and
(14). Nevertheless, we will show in our example
that a judicious choice of ui and T does produce
controllers that perform better than (5).

Remark 8. We again emphasize that the proce-
dure we described above is very flexible and we
only outlined some of the main guiding principles.
However, even the simplest choice of redesigned
controller of the form udt(x) = uct(x)−TLg1V (x)
improves the transients of the sampled-data sys-
tem. If this is not significant then exploiting the
structure of ps terms becomes important.

Remark 9. Often the redesign procedure is more
important for states away from the origin, because
near the origin the simple controller (5) either
works well or can be replaced by a linear con-
troller. This simplifies the difficult task of finding
a control Lyapunov function satisfying Assump-
tion 1, because we can restrict ourselves to the
“interesting” region of the state space. This is the
situation in the example in Section 5, below.

4.2 Model reference based controller redesign

In this subsection, the goal of the controller re-
design procedure is to make the sampled data
Lyapunov difference V (F e

T (x, udt(x))) − V (x) as
close as possible to the continuous time Lyapunov
difference V (φ(T, x))−V (x), where φ(T, x) is the
solution of the continuous time closed loop system
(1), (2) at time t = T and initialized at x(0) = x.
This makes sense in situations when we want the
bound on our sampled-data response to be as close
as possible to the ”ideal” bound on the response
generated by the solution of the continuous-time
closed-loop system (1), (2). We use the following
notation:

∆Vdt(T, x, u) := V (F e
T (x, u))− V (x)

∆Vct(T, x) := V (φ(T, x))− V (x) .

The main result of this subsection is:

Theorem 10. If Assumption 1 holds then we have

∆Vct(T, x)−∆Vdt(T, x, u0(x)) = O(T 2) . (22)

Defining udt(x) = u0(x) + Tu1(x) with

u1(x) =
1
2

∂u0(x)
∂x

[g0(x) + g1(x)u0(x)] (23)

we have

∆Vct(T, x)−∆Vdt(T, x, udt(x)) = O(T 3) . (24)

�

The proof follows from Theorem 3 by comparing
∆Vdt(T, x, u0 +Tu1) with the Taylor expansion of
∆Vct(T, x) in T = 0.

Observe that in contrast to the control law from
the previous section this controller does not de-
pend on the Lyapunov function.

Remark 11. It may be tempting to repeat this
procedure iteratively for N ≥ 2 in order to obtain
O(TN+2) in (24). However, the computations in
(Nešić and Grüne, 2005) show that even though
some higher order terms in (24) above can be
canceled for all N ≥ 2, we can not in general make
(24) smaller than O(T 3).

5. AN EXAMPLE

Consider the following simplified Moore-Greitzer
model of a jet engine taken from (Krstić et al.,
1995, Section 2.4.3)

ẋ1 = −x2 −
3
2
x2

1 −
1
2
x3

1, ẋ2 = −u .

The control law u0(x) = −k1x1 + k2x2 and the
Lyapunov function V (x) = 1

2x2
1 + c0

8 x4
1 + 1

2 (x2 −
c0x1)2, have been derived in (Krstić et al., 1995,
pg. 72), where k1, k2, c0, c1 and c2 are design
parameters. Using k1 = 7, k2 = 5, c0 = 2, c1 = 7

8
and c2 = 3

7 we obtain u0(x) = −7x1 + 5x2 and

V (x) =
1
2
x2

1 +
1
4
x4

1 +
1
2
(x2 − 2x1)2, (25)

and the closed loop system becomes

ẋ1 = −x2 −
3
2
x2

1 −
1
2
x3

1, ẋ2 = 7x1 − 5x2,

which has a very nice response. However, the
Lyapunov function (25) does not satisfy our As-
sumption 1 because it does not capture this nice
response. Indeed, while the trajectories converge
very quickly with no overshoot, the Lyapunov
function (25) has level sets that are elongated very
much along the x2 axis and, hence, the function
β ∈ KL from (7) allows for very large overshoots.
Motivated by simulations we try to use the Lya-
punov function

V1(x) =
1
2
x2

1 +
1
2
x2

2 . (26)

Direct calculations show that V̇1 is strictly neg-
ative on the set S := S1 ∪ (SC

1 ∩ S2) with
S1 := {x ∈ R2 : x1 6∈ [−4,+1], x2 ∈ R} and
S2 := {x ∈ R2 : 2x2

1 − 6x1x2 + 5x2
2 > 18.1}.

Hence, V1 is a Lyapunov function on the above set
and, moreover, it satisfies our Assumption 1 since
it shows that trajectories are converging without
any overshoot.

We use V1 as a control Lyapunov function for
redesign of the controller on the set S. Based



on Theorem 4 and Remark 5 and noting that
Lg1V1 = −x2, we implemented the controller

uLf
dt (x) =

{
u0(x) + TuLf

1 (x) if x ∈ S
u0(x) otherwise

with

uLf
1 (x) =

{
x2

1 + x2
2 if Lg1V1 = −x2 < 0

−(x2
1 + x2

2) otherwise
.

The chosen gain γ(|x|) = |x|2 here was tuned such
that the redesigned controller yields a significant
improvement in the response in the state space
region [−25, 25]2 with sampling rate T = 0.1.

For this example the model reference controller
from Theorem 10 reads umr

1 (x) = 35
2 x1 + 21

4 x2
1 +

7
4x3

1 − 9x2. As for uLf
dt we used a saturation with

γ(|x|) = |x|2, which allows for a “fair” comparison
between the two controllers uLf

dt and umr
dt .

Figure 1 shows the trajectories (top), sampled
control values (bottom left) and the Lyapunov
function V1(x) (bottom right) for initial value
x0 = [22, 21] and sampling rate T = 0.1. The
curves show the continuous time system (un-
marked), the sampled continuous time controller
udt = u0 (circles), the controller uLf

dt (squares)
and the controller umr

dt (crosses).
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Fig. 1. Solutions for different controllers

As expected, the trajectory corresponding to uLf
dt

tends to 0 faster while umr
dt keeps the trajec-

tory closer to the continuous time one. Both re-
designed controllers avoid the overshoot in the x2–
component visible in the sampled continuous time
controller.

6. CONCLUSIONS

We have presented a method for a systematic
redesign of continuous-time controllers for digital
implementation. This method is very flexible and
we illustrated its usefulness through an exam-
ple. Many variations of this method are possible

and the main directions for further improvement
are including dynamical and observer based con-
trollers and relaxing some of the assumptions that
we use at the moment.
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