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Abstract: In this paper the problem of sub-optimal sensor scheduling with a guaranteed
distance to optimality is considered. Optimal in the sense that the sequence that minimizes
the estimation error covariance matrix for a given time horizon is found. The search is
done using relaxed dynamic programming. The algorithm is then applied to one simple
second order system and one sixth order model of a fixed mounted model lab helicopter.
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1. INTRODUCTION

Recently a great deal of attention has been given to the
subject of wireless sensor networks. As the number
of sensors in an area increases, the communication
limitations imposed by bandwidth constraints will be
more and more evident. Thus not allowing all sensors
to communicate their measurements at each sampling
interval could be very useful. Also, sensors might be
battery powered and thus saving power is an essential
factor. To save power a sensor can be put in stand-
by mode and then woken by the estimator at certain
points in time. There could also be situations where it
is impossible to use two sensors at the same time due
to the nature of the sensors, ultra sonic sensors is one
example.

All these problems urge for algorithms that not only
decide how to weight different sensors at different
points in time, but also which sensors to use. How
to choose which sensor or sensors to use at a specific
moment is a nontrivial task studied by many others. In
(Meier III et al., 1967) the problem of discrete time
sensor scheduling is solved by enumeration of all pos-
sible sensor schedules. The combinatorial explosion

limits this approach to very short sensor schedules.
A local gradient search is also proposed, but this ap-
proach doesn’t guarantee that the global optimum is
found. It is also shown that if the state estimates are
to be used for state feedback, the plant control policy
can be determined separately from the measurement
schedule. The optimal sensor schedule on the other
hand depends on the plant control policy. In (Chung
et al., 2004) an effort is made to prune the search
tree by the use of a sliding window algorithm and a
thresholding algorithm.

The sensor scheduling problem has also been ap-
proached from a continuous time direction. In (Athans,
1972) it is shown that the sensor scheduling prob-
lem can be transformed to a discrete-valued optimal
control problem. This problem is then solved using
a gradient search algorithm. In (Lee et al., 2001)
the discrete-valued optimal control problem of sensor
scheduling is transformed into a continuous-valued
optimal control problem by the use of a control param-
eterization enhancing transform (CPET). A method
for robust sensor scheduling is developed in (Savkin et
al., 2001). Here the problem with growing complexity
is tackled in a model predictive way.



Another related problem studied by many others is
that of choosing the time distribution of measure-
ments with one sensor given a measurement budget.
This problem is studied for discrete time systems in
(Shakeri et al., 1995) and for continuous time systems
in (Skafidas and Nerode, 1998).

In this paper a method of choosing the sensor switch-
ing strategy as well as the Kalman estimator gain for
a discrete time system is presented. The objective is
to minimize a function of the estimation error covari-
ance matrix at the final time step. The method finds a
sub-optimal strategy within a pre-specified distance to
optimality. The complexity of the algorithm typically
increases rapidly in the first iterations, but then levels
out below a constant level. The paper is organized as
follows. In Section 2 the class of system to which
the algorithm applies is presented and an estimator
structure is proposed. In Section 3 the optimization
algorithm is presented and the connection to the work
by (Lincoln, 2003) and (Lincoln and Rantzer, 2002)
is developed. Section 4 presents two examples and
finally Section 5 talks about problems and future ex-
tensions.

2. PROBLEM FORMULATION

Consider a discrete time system described by

{
x(n + 1) = Ax(n) + Bu(n) + v(n)

yi(n) = Cix(n) + ei(n)

where x(n)∈Rn is the state of the process, v(n)∈Rn

a white Gaussian stochastic process with zero mean.
The system is observed through M sensor groups i ∈
I = {1 . . .M} with outputs yi ∈ R pi all disturbed by
zero mean white Gaussian noise ei(n). The process
noise and measurement noise has the following cor-
relation matrix.

E
[

v(n)
ei(n)

][
v(n)
ei(n)

]T

= Ri

At each time instant the system can only be observed
through one sensor group. To estimate the state of the
system a Kalman filter of the following form will be
used.

x̂(n + 1) = Ax̂(n) + Bu(n) + K(n)ỹk(n)

ỹk(n) = yk(n)−Ck(n)x̂(n)

Here k ∈ κ(n) denotes a specific sequence in the set
κ(n) of all possible sequences and K ∈Λ(n) a specific
gain sequence in the set Λ(n) of all possible gain
sequences.. For a fixed sequence k and gain sequence
K the estimation error covariance is given by equation
(1) see (Åström and Wittenmark, 1997).

P(n + 1,k,K) =

(A−K(n)Ck(n))P(n,k)(A−K(n)Ck(n))
T

+

[
I

−KT (n)

]T

Rk(n)

[
I

−KT (n)

]
(1)

The initial estimation error covariance P(0) = P0
which should reflect the knowledge of the initial state.
The aim is to find a switching sequence k and a gain
sequence K such that the following function is mini-
mized.

J(N) = min
k(0)...k(N−1)

K(0)...K(N−1)

tr(P(N)W) (2)

The problem can be solved by iterating equation (1)
and expanding the search tree for all possible se-
quences. The size of the search tree ‖κ(n)‖ will how-
ever grow as Mn which makes this procedure impossi-
ble in practice.

3. FINDING AN α-OPTIMAL SEQUENCE

To address the problem of increasing complexity a
way of pruning the search tree has to be developed.
In (Lincoln, 2003) and (Lincoln and Rantzer, 2002)
a way of pruning the search three for the problem
of choosing a switching control law is developed. As
expected that problem turns out to be the dual of the
estimation problem addressed here and thus the algo-
rithm could be used with only small modifications.

Let Π(n) denote the set of all potentially α-optimal
estimation error covariances at time step n. α-optimal
means that the estimation error covariance matrix as-
sociated with the found sequence fulfills

α min
π∗∈Π∗

π∗ ≤ min
π∈Π(n)

π ≤ α min
π∗∈Π∗

π∗

where π∗ ∈ Π∗(n) denotes an element in the optimal
set. The initial set Π(0) is equal to the initial estima-
tion error covariance P0. Further let κopt(n−1) denote
the set of corresponding sequences and Λopt(n−1) the
set of corresponding gain sequences.

To continue the iteration first define

Pi(n + 1) = (A−K(n)Ci)π(n)(A−K(n)Ci)
T

+

[
I

−KT (n)

]T

αRi

[
I

−KT (n)

]

and

Pi(n + 1) = (A−K(n)Ci)π(n)(A−K(n)Ci)
T

+

[
I

−KT (n)

]T

αRi

[
I

−KT (n)

]

where π(n)∈Π(n). Then an upper Π and lower bound
Π for Π(n + 1) is calculated as

Π =

{
min
K(n)

Pi(n + 1) |π(n) ∈Π(n) , i ∈ I
}

Π =

{
min
K(n)

Pi(n + 1) |π(n) ∈Π(n) , i ∈ I
}
.

(3)



That is for each π ∈ Π and i ∈ I the estimation error
covariance matrix is computed by minimizing over
K(n). Next the set of possible sequences

κcand =
{[

k i
]
|k ∈ κopt(n−1) , i ∈ I

}

is computed. The set of corresponding gain matrix
sequences is then computed using Procedure 1.

Procedure 1
For each π ∈Π(n)
(1) Pick the corresponding sequence K ∈

Λopt(n−1)
(2) For each i ∈ I

• Calculate the minimizing

K(n) = argmin
K(n)

Pi(n + 1)

• Add the concatenated sequence[
K K(n)

]
to Λcand .

Now the objective is to find a set Π(n + 1) such that

min
π∈Π

π ≤ min
π∈Π(n+1)

π ≤min
π∈Π

π (4)

Together with the set Π(n + 1), a set of corresponding
sequences κopt(n) and a set of matrix gain sequences
Λopt(n) are also needed. This problem is solved by
Procedure 2 which is a more detailed version of Pro-
cedure 3.2 in (Lincoln, 2003).

Procedure 2
(1) Sort Π so that

trπ i ≤ trπ j ∀i < j

Λcand and κcand are ordered in the same way.
(2) Let Π(n + 1) = κopt(n) = Λopt(n) =�
(3) Pick the first π ∈Π and remove it from Π.
(4) If there exists x s.t.

xT πx< xT πx ∀π ∈Π(n + 1)

then
• Pick the first π ∈ Π, k ∈ κcand and K ∈

Λcand .
• Add this π to Π(n + 1) and remove π

from Π.
• Add this k to κopt and remove k from

κcand .
• Add this K to Λopt and remove K from

Λcand .
• Go to step 3

(5) Remove the first π from Π.
Remove the first k from κcand .
Remove the first K from Λcand .
If Π 6=� go to step 3.

The new set of possibly α-optimal estimation error co-
variance matrices can now be used to compute upper
and lower bounds for the next iteration. The iteration
procedure can be ended when the old set fulfills (4)
that is

min
π∈Π

π ≤ min
π∈Π(n)

π ≤min
π∈Π

π

or when n=N.

The slack parameters α and α are used to control the
tradeoff between complexity and accuracy. To find the
α-optimal sequence it is enough to find the element in
Π(N) that minimizes (2) and pick the sequence asso-
ciated with that estimation error covariance matrix.

4. EXAMPLES

In this section two examples will be given to illustrate
the optimization algorithm presented in section 3. First
a very simple second order system will be used to
show the basic principle. Then a sixth order fixed
mounted helicopter from the lab at Lund Institute of
Technology will be used to illustrate that the proce-
dure is applicable to problems of higher order.

4.1 A Second Order System

Consider the following discrete second order system
with two sensors





x(n + 1) =

[
0.9 0.009

0.009 0.9

]
x(n) + v(n)

y1(n) =
[
1 0
]

x + e1(n)

y2(n) =
[
0 1
]

x + e2(n)

with noise covariance matrices

R1 =




10 0 0
0 10 0
0 0 1


 R2 =




10 0 0
0 10 0
0 0 r


 P0 = I.

The system consists of two weakly interconnected
states, each observed through a separate sensor. The
goal is to minimize (2) with W = I and N = 50.

The α-optimal sequence was computed for three dif-
ferent values of the parameter r = {10 , 50 , 110}.
These values correspond to sequence k1, k2 and k3
in Figure 1. The slack parameters where chosen as
α = 1.01 and α = α−1, which gave a set Π(50) of
size 5.

As the variance of the measurement noise at sensor 2
increases the number of samples taken from sensor 2
also increases up to a certain point. For this particular
example sensor 2 is not used at all for a value of r >
104. The singular values of the observability Gramian

σ (Wo) =

[
5.5534
0.0138

]
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Fig. 1. Sequences for measurement noise variance r =
{10 , 50 , 110} at sensor two.

give an indication that x2 has a low degree of ob-
servability from sensor 1. Thus the observer needs to
use sensor 2 despite the large amount of measurement
noise associated with it. When the noise on sensor
two exceeds a certain level, the observer can get more
information from sensor one and thus sensor two is
not used. This is counterintuitive, but is detected by
the algorithm.

4.2 The Model Helicopter

In this section a sensor switching strategy for a fixed
mounted model helicopter will be developed. The
model helicopter is situated in the Automatic Control
Lab at Lund Institute of Technology. For a detailed
description of the helicopter see (Gäfvert, 2001). The
helicopter can be modeled by a sixth order system
with the following state vector.

State Description
w1 Angular Velocity of Propeller 1
w2 Angular Velocity of Propeller 2
φ Yaw angle
φ̇ Yaw rate
θ Pitch angle
θ̇ Pitch rate

A discrete time model with sample time h = 0.05
linearized around the forced equilibrium point x0 =[
w0

1 w0
2 0 0 0 0

]T is given by

x(n + 1) = Ax + v(n).

The system is observed through one yaw position sen-
sor, one pitch angle sensor and one angular velocity
sensor for propeller 1. The three sensors denoted y1,
y2 and y3 are disturbed by white Gaussian noise.




y1(n)
y2(n)
y3(n)


=




0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0


x(n) + e(n)

The corresponding covariance matrices are
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Fig. 2. α-optimal sequence kopt together with traces of
P(n) for kopt and for the sequence

[
1 2 3

]
.

R1 = R2 = R3 = P0 = I.

The objective parameters where chosen as N = 100
and W = I. Because of the higher complexity of this
problem the the slack parameters where chosen as
α = 1.5 and α = α−1. This resulted in a set Π(100)
of size 4.

The α-optimal sequence was computed and is given
in part one of Figure 2. The sequence is periodic
with the period

[
1 2 1 2 3 2

]
except for the first 14

samples. The reason for this is the influence of the
initial estimation error covariance P0. The trace of the
error covariance matrix P(n) was also calculated for
the α-optimal sequence and for a periodic sequence
consisting of the triple

[
1 2 3

]
. As a comparison the

trace of P(n) was also computed for a Kalman filter
which uses all three sensors at each sampling instant.
These traces are found in part two and three of Figure
2.

To illustrate the pruning of sequences the size of the
sequence candidate set κ is plotted in Figure 3. Here
one can see the rapid increase in size the first 10 or
so samples, but then instead of growing exponentially
the size levels out. The size of κ(n) never exceeds 7.
If the slack parameters α and α are changed the shape
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Fig. 3. Complexity in terms of the size of the sequence
candidate set κ(n).

of the complexity graph will remain the same, but the
steady state level will be greater.

5. CONCLUSIONS AND FUTURE WORK

In this paper, the problem of minimizing the estima-
tion error covariance matrix at the final step for a time
discrete linear system, when only one sensor group
may be used at each sampling interval is considered.
The estimation problem was solved by slightly mod-
ifying the the procedure given in (Lincoln, 2003) for
minimizing the quadratic cost with respect to a control
sequence. The procedure uses relaxed dynamic pro-
gramming where the parameters α and α are used
in the tradeoff between complexity and distance to
optimality, see (Lincoln and Rantzer, 2002) for details.
The procedure was applied to two different examples,
one simple second order example and one more com-
plex sixth order example.

One drawback with the procedure presented here is
that it minimizes the error covariance matrix at the
final step only. Future work would include to extend
the procedure to more general cost functions such as

J(N) = min
k(0)...k(N−1)

K(0)...K(N−1)

N

∑
0

tr(P(n)W(n)).

This is possibly a more difficult task, because the
choice of sensor and Kalman gain not only effects the
covariance in the next sample, but the value of the cost
function for all future samples.

Work is also going on to combine switching observers
with switching controllers to achieve sub-optimal per-
formance of control systems with limited communica-
tion abilities.
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