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Abstract: We consider a problem of designing optimal smoothing spline curves
using normalized uniform B-splines as basis functions. Assuming that the data
for smoothing is obtained by sampling some curve with noises, an expression
for optimal curves is derived when the number of data becomes infinity. It is
then shown that, under certain condition, optimal smoothing splines converge to
this curve as the number of data increases. The design method and analyses are
extended to the case of periodic splines. Results of numerical experiments for
periodic case are included for contour synthesizing problem.
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1. INTRODUCTION

As is well-known, spline functions have been
used in various fields such as computer graphics,
numerical analysis, image processing, trajectory
planning of robot and aircraft, and data analysis
in general. Recently, in (Nakata and Kano, 2003),
the theory of smoothing splines is used to gen-
erate cursive characters based on an idea that
the underlying writing motions become smooth.
Thus splines have been studied extensively (e.g.
(Wahba, 1990)), and in particular, the theory
of ‘dynamic splines’ based on optimal control
theory provides a unified framework for gener-
ating various types of splines (e.g. (Zhang et
al., 1997)). Also, the authors studied B-splines
from the viewpoint of optimal control theory
(Kano et al., 2003).

One of the advantages of using spline functions
is in its computational feasibilities. In particular,

using B-splines as basis functions (de Boor, 1978)
yields extremely simple algorithms for designing
curves and surfaces. On the other hand, when
we are given a set of data corrupted by noises,
smoothing splines are expected to yield more fea-
sible solutions than interpolating splines. A theo-
retical issue in this regard is asymptotic analyses
of designed spline curves when the number of data
increases. Such a problem is studied in (Egerstedt
and Martin, 2003) in dynamical systems settings,
namely for splines generated as an output of linear
dynamical systems.

In this paper, using B-splines as basis functions,
we design optimal smoothing spline curves and
analyze their properties. Assuming that a number
of data is given by sampling some curve f(t)
with noises, we analyze statistical properties of
optimal smoothing splines and derive an expres-
sion of the splines as a functional of f(t) when



the number tends to infinity. Such a design and
analysis method is extended to the case where
f(t) is a periodic function, which can be used to
model contours or shapes (Blake and Isard, 2000)
of various objects.

For designing curves x(t), we employ normalized,
uniform B-spline function Bk(t) of degree k as
basis functions,

x(t) =
m−1∑

i=−k

τiBk(α(t− ti)), (1)

where, m is an integer, τi ∈ R is a weighting
coefficients called control points, and α(> 0) is a
constant for scaling the interval between equally-
spaced knot points ti with

ti+1 − ti =
1
α

. (2)

Then x(t) formed in (1) is a spline of degree k with
the knot points ti. In particular, by an appropriate
choice of τi’s, arbitrary spline of degree k can be
designed in the interval [t0, tm].

In the sequel, we briefly describe the normalized,
uniform B-spline functions: Bk(t) is defined by

Bk(t) =





Nk−j,k(t− j), j ≤ t ≤ j + 1,
j = 0, · · · , k

0, t ≤ 0, k + 1 ≤ t.

(3)

Here the basis elements Nj,k(t) are obtained re-
cursively as follows (e.g. (Takayama and Kano,
1995)): Let N0,0(t) ≡ 1 and, for i = 1, 2, · · · , k,





N0,i(t) =
1− t

i
N0,i−1(t)

Nj,i(t) =
i− j + t

i
Nj−1,i−1(t)

+
1 + j − t

i
Nj,i−1(t), j = 1, · · · , i− 1

Ni,i(t) =
t

i
Ni−1,i−1(t).

(4)

Thus, Bk(t) is a piece-wise polynomial of degree
k with integer knot points and is k − 1 times
continuously differentiable. It is noted that Bk(t)
for k = 0, 1, 2, · · · is normalized in the sense of∑k

j=0 Nj,k(t) = 1, 0 ≤ t ≤ 1, and this yields∫∞
−∞Bk(t)dt =

∫ k+1

0
Bk(t)dt = 1.

In particular, cubic B-spline B3(t) is frequently
used in various applications, and is given by

B3(t) =





1
6
t3 0 ≤ t < 1

1
6

(−3t3 + 12t2 − 12t + 4
)

1 ≤ t < 2
1
6

(
3t3 − 24t2 + 60t− 44

)
2 ≤ t < 3

1
6
(4− t)3 3 ≤ t < 4

0 otherwise.

(5)

2. OPTIMAL SMOOTHING SPLINE CURVES

In this section, we present basic results on smooth-
ing spline problems. For simplicity, we restrict
ourselves to the case of k = 3.

Equation (1) in the case of k = 3 is written as

x(t) =
m−1∑

i=−3

τiB3(α(t− ti)). (6)

Suppose that we are given a set of data

D= {(ui; di) : t0 ≤ u1 < · · · < uN ≤ tm,

di ∈ R, i = 1, · · · , N}, (7)

and let τ ∈ RM be the weight vector defined by

τ =
[
τ−3 τ−2 · · · τm−1

]T
, (8)

where M = m + 3.

Then, a basic problem of optimal smoothing
splines is to find a curve x(t), or equivalently a
vector τ ∈ RM , minimizing a cost function,

J(τ) = λ

∫

I

(
x(2)(t)

)2

dt +
N∑

i=1

wi (x(ui)− di)
2
,

(9)

where λ(>)0 is a smoothing parameter, wi(0 ≤
wi ≤ 1) are weights for error, and the integration
interval I is taken as either I = (−∞, +∞) or
I = (t0, tm).

In order to express the right hand side of (9) in
terms of τ , we introduce the following notations:
Let a vector b(t) ∈ RM be

b(t) =
[
B3(α(t− t−3)) B3(α(t− t−2)) · · ·

· · · B3(α(t− tm−1))
]T

, (10)

and a matrix B ∈ RM×N be

B =
[
b(u1) b(u2) · · · b(uN )

]
. (11)

Then, we can show that the cost function is
written as follows:

J(τ) = λτT Qτ + (BT τ − d)T W (BT τ − d). (12)



Here, Q ∈ RM×M is a Gramian defined by

Q =
∫

I

d2b(t)
dt2

d2bT (t)
dt2

dt, (13)

and

W = diag{w1, w2. · · · , wN}, (14)

d =
[
d1 d2 · · · dN

]T
. (15)

We then see that optimal weight τ is obtained as
a solution of

(λQ + BWBT )τ = BWd. (16)

Note that this equation has at least one solution,
since in general the relation

rank[S + UUT , Uv] = rank(S + UUT ) (17)

holds for any matrices S = ST ≥ 0, U and vector v
of compatible dimensions. Obviously, the solution
is unique if and only if λQ + BWBT > 0.

The Gramian Q ∈ RM×M in (13) is computed
explicitly. By changing integration variable, it
holds that

Q = α3R. (18)

Here R ∈ RM×M is defined by

R =
∫

Î

b̂(2)(t)
(
b̂(2)(t)

)T

dt, (19)

where Î = (−∞,+∞) if I = (−∞,+∞) and
Î = (0,m) if I = (t0, tm), and

b̂(t) =
[
B3(t− (−3)) B3(t− (−2)) · · ·

· · · B3(t− (m− 1))
]T

, (20)

Denoting R for the case of Î = (−∞, +∞) by R∞,
we obtain

R∞ =
1
6




16 −9 0 1
−9 16 −9 0 1
0 −9 16 −9 0 1
1 0 −9 16 −9 0 1

. . . . . . . . .
. . . . . .

. . . . . .
1 0 −9 16




, (21)

and RF for the case of Î = (0,m), is obtained by

RF = R∞ − (R− + R+), (22)

where

R− =
1
6




14 −6 0
−6 8 −3 03,M−3

0 −3 2
0M−3,3 0M−3,M−3


 , (23)

and

R+ =
1
6




0M−3,M−3 0M−3,3

2 −3 0
03,M−3 −3 8 −6

0 −6 14


 . (24)

It holds that Q∞ = α3R∞ > 0 and QF = α3RF ≥
0 with rankRF = M − 2. Thus (16) has a unique
solution when I = (−∞,+∞). When I = (t0, tm),
although it depends on the data points ui, i =
1, · · · , N , there may be infinitely many solutions.
In such a case we employ the minimum norm
solution, namely the solution τ with minimum
Euclidean norm, which is guaranteed to be unique.

3. SMOOTHING SPLINE CURVES FOR
SAMPLED DATA

We assume that the data di in (7) is obtained
by sampling a function f(t) which is assumed
to be continuous in the interval [t0, tm]. In order
to analyze asymptotic properties of spline curves
as the number of data points N increases, we
consider the following cost function instead of (9),

JN (τ ) = λ

∫

I

(
x(2)(t)

)2

dt

+
1
N

N∑

i=1

(x(ui)− f(ui))
2
. (25)

When the data di is obtained by sampling the
function f(t) with additive noises

di = f(ui) + εi, i = 1, 2, · · · , N, (26)

we consider a cost function

Jε
N (τ) = λ

∫

I

(
x(2)(t)

)2

dt

+
1
N

N∑

i=1

(x(ui)− f(ui)− εi)
2
. (27)

We assume that the noises are zero-mean and
white, namely E{εi} = 0 and E{εiεj} = σ2δij

for all i, j. Moreover, for analyzing the asymptotic
properties, we introduce a cost function

Jc(τ) = λ

∫

I

(
x(2)(t)

)2

dt +

tm∫

t0

(x(t)− f(t))2 dt.(28)

The solutions that minimize the cost functions
JN (τ), Jε

N (τ) and Jc(τ) are obtained as follows.



The first two cases follow directly from the result
in the previous section: The solution τN minimiz-
ing JN (τ) is obtained as a solution of

(
λQ +

1
N

BBT

)
τ =

1
N

Bf, (29)

where Q and B are given in (13) and (11) re-
spectively, and f =

[
f(u1) f(u2) · · · f(uN )

]T
.

Obviously, τ ε
N minimizing Jε

N (τ) is a solution of
(

λQ +
1
N

BBT

)
τ =

1
N

B(f + ε), (30)

where ε =
[
ε1 ε2 · · · εN

]T
. On the other hand,

Jc(τ) can be written as

Jc(τ) = τT (λQ + R)τ

−2τT

tm∫

t0

b(t)f(t)dt +

tm∫

t0

f2(t)dt, (31)

where

R =

tm∫

t0

b(t)bT (t)dt = α−1R0, (32)

R0 =

m∫

0

b̂(t)b̂T (t)dt. (33)

Thus optimal τ denoted by τc is obtained as a
solution of

(λQ + R)τ =

tm∫

t0

b(t)f(t)dt. (34)

It can be shown that R0 = RT
0 > 0, hence optimal

τc exists uniquely. Moreover, R0 can be obtained
explicitly as in the case of RF in (22).

Convergence properties are established under the
following assumption.

(A1) The sample points ui, i = 1, 2, · · · , N , are
such that

lim
N→∞

1
N

N∑

i=1

g(ui) =

tm∫

t0

g(t)dt (35)

for every continuous function g(t) in [t0, tm].

We now have the following results for the case
I = (−∞, +∞).

Theorem 1. Assume that the condition (A1)
holds. Then,

(i) The optimal solutions τN , τ ε
N and τc exist

uniquely.
(ii) τN converges to τc as N →∞.

(iii) E{τ ε
N} = τN and τ ε

N converges to τc as
N →∞ in mean squares sense.

(Proof) (i) As noted in the previous section, the
Gramian Q in the case of I = (−∞,+∞), namely
Q∞, is positive-definite, and hence equations (29),
(30) and (34) have unique solutions.

(ii) In (29) and (34), we show that

lim
N→∞

1
N

BBT = R (36)

lim
N→∞

1
N

Bf =

tm∫

t0

b(t)f(t)dt. (37)

Regarding the first assertion, (11) and (10) yield

BBT =
N∑

i=1

b(ui)bT (ui),

and denoting BBT = [cjk]m−1
j,k=−3, we get

cjk =
N∑

i=1

B3(α(ui − tj))B3(α(ui − tk)).

Then noting that the function gjk(t) given by

gjk(t) = B3(α(t− tj))B3(α(t− tk))

is continuous in [t0, tm], and using the assumption
(A1), it holds that

lim
N→∞

1
N

cjk =

tm∫

t0

gjk(t)dt.

Thus

lim
N→∞

1
N

BBT = lim
N→∞

[
1
N

cjk

]m−1

j,k=−3

=

tm∫

t0

[gjk(t)]m−1
j,k=−3 dt =

tm∫

t0

b(t)bT (t)dt = R.

The second assertion (37) follows similarly by
noting that f(t) is assumed to be continuous in
[t0, tm].

(iii) Taking expectations of both sides of (30) and
noting E{ε} = 0, we get

(
λQ +

1
N

BBT

)
E{τ} =

1
N

Bf, (38)

and we see that E{τ ε
N} = τN holds. On the other

hand, (30) and (38) yield
(

λQ +
1
N

BBT

)
(τ ε

N − E{τ ε
N}) =

1
N

Bε.



Letting

PN = E{(τ ε
N − E{τ ε

N}) (τ ε
N − E{τ ε

N})T },

and using E{εεT } = σ2IN , we have

(
λQ +

1
N

BBT

)
PN

(
λQ +

1
N

BBT

)T

=
σ2

N

(
1
N

BBT

)
.

Noting (36), this equation in the limit of N →∞
reduces to

(λQ + R)P∞(λQ + R) = 0,

and P∞ = 0. Since E{τ ε
N} = τN , we see that τ ε

N

converges to limN→∞ τN = τc. (Q.E.D.)

Remark 1. On the other hand, when I = (t0, tm),
the matrix Q(= QF ) has rank deficiency 2. Thus it
is possible that the coefficient matrix λQ+ 1

N BBT

in (29) and (30) becomes singular depending on
the matrix B, i.e. on the data points ui, i =
1, · · · , N . In such a case, there exist infinitely
many solutions since these equations are guaran-
teed to be consistent. It is then obvious that the
above theorem still holds with the understanding
that we take minimum norm solutions.

4. PERIODIC SMOOTHING SPLINES

We consider to construct periodic smoothing
splines. Specifically, the cost functions in previous
sections are minimized subject to the continuity
constraints

x(i)(t0) = x(i)(tm), i = 0, 1, 2, (39)

and we assume that the function f(t) to be
sampled satisfies f(t0) = f(tm).

Using (6), (5) and (2), we can show that x(i)(t0) =
x(i)(tm) for i = 0, 1, 2 is written respectively as

1
6
τ−3 +

4
6
τ−2 +

1
6
τ−1 =

1
6
τm−3 +

4
6
τm−2 +

1
6
τm−1

−τ−3 + τ−1 =−τm−3 + τm−1

τ−3 − 2τ−2 + τ−1 = τm−3 − 2τm−2 + τm−1,

yielding τ−3 = τm−3, τ−2 = τm−2 and τ−1 =
τm−1. Thus (39) is written as a linear constraint,

CT τ = 0, (40)

where the matrix C ∈ RM×3 is defined by

C =
[
I3 03,M−6 −I3

]T
. (41)

Minimizing the cost functions subject to the con-
straint (40) is now a straightforward task. For the

cost function J(τ) in (9), i.e. (12), we form the
following Lagrangian function,

L(τ, µ) = λτT Qτ + (BT τ − d)T W (BT τ − d)

+µT (CT τ), (42)

where µ ∈ R3. Then, by taking derivatives with
respect to τ and µ, we get

2λQτ + 2BWBT τ − 2BWd + Cµ = 0

CT τ = 0, (43)

or
[

λQ + BWBT C

CT 0

] [
τ
1
2
µ

]
=

[
BWd

0

]
. (44)

It can be shown that this equation is consistent,
namely

rank
[ [

λQ + BWBT C

CT 0

]
,

[
BWd

0

] ]

= rank
[

λQ + BWBT C

CT 0

]
.

Here, if λQ + BWBT > 0, then the coefficient
matrix in (44) is nonsingular and the solution
is unique. In case it is singular, we employ the
minimum norm solution, yielding unique τ .

By letting W = 1
N IN and d = f in (44), the

corresponding result for the cost function JN (τ)
in (25) follows as

[
λQ +

1
N

BBT C

CT 0

][
τ
1
2
µ

]
=

[ 1
N

Bf

0

]
, (45)

and the case of Jε
N (τ) in (27) is obtained by

replacing f in (45) by f + ε. Similarly, for the
cost function Jc(τ) in (28), i.e. (31), we obtain

[
λQ + R C

CT 0

] [
τ
1
2
µ

]
=




tm∫

t0

b(t)f(t)dt

0


 . (46)

Here, noting R > 0, we can show that this
coefficient matrix is nonsingular, and the solution
exists uniquely.

Finally we examine the properties of solutions for
cost functions JN (τ) and Jε

N (τ). By noting the
relations (36) and (37), we readily see that the
same assertions as in Theorem 1 and Remark 1
hold also for the present periodic case.

5. SIMULATION STUDIES

We examine performances of smoothing splines for
a periodic case.



Let (p(t), q(t)) be a periodic curve with period 36
in pq-plane,

p(t) = 3 + r(t) cos
2πt

36
, q(t) = 3 + r(t) sin

2πt

36
(47)

with r(t) = 2+sin 10πt
36 , and let a periodic function

f(t) to be sampled be given by

f(t) =
√

p2(t) + q2(t), 0 ≤ t ≤ 36. (48)

Moreover, in (6), we set m = 36, α = 1, t0 = 0
and tm = 36. Thus the knot points ti are taken as
integers as ti = i.

We applied the method described in the previous
section to the data obtained by sampling the
curve f(t). Here the number of data points N
is set as N = 30, and they are equally spaced
in the interval [0, 36]. The noise magnitude is
set as σ = 0.02 and the integration interval as
I = [t0, tm] = [0, 36]. The smoothing parameter λ
is estimated by employing the so-called ’leaving-
out-one’ method (Wahba, 1990): An optimum
λ as the minimizer of ordinary cross-validation
function was obtained as λ = 0.0178.

The optimal weights τ ε
N and τc are computed,

and Fig.1 shows the corresponding curves xε
N (t)

(black line) and xc(t) (green line) together with
the data points (asterisks) and the original curve
f(t) (dashed red line). Note that xc(t) and f(t)
are almost indistinguishable, implying that xε

N (t)
can approximates f(t) almost perfectly as the
number of data points N is increased. The cor-
responding results are plotted in the pq-plane. On
recovering (p, q) information from the curve xε

N (t)
(and xc(t)), we assume that they are related as in
(47) and (48). Specifically, the equations used for
xε

N (t), for example, are

(pε
N (t), qε

N (t)) = (xε
N (t) sin θ(t), xε

N (t) cos θ(t)) ,

where θ(t) is computed using the two-argument
arctangent function atan2(·, ·) as

θ(t) = atan2
(

3 + r(t) cos
2πt

36
, 3 + r(t) sin

2πt

36

)
.

6. CONCLUDING REMARKS

We considered a problem of designing optimal
smoothing spline curves using B-splines as ba-
sis functions. For given data (ti, f(ti) + εi), i =
1, · · · , N , the expression for optimal smoothing
curve is derived in the limit of N →∞. It is then
shown that, under a very natural assumption,
optimal smoothing splines converge to this curve
as N → ∞. The design and analysis methods
are extended to the case of periodic splines. The
results for the case of periodic splines are verified
numerically for contour synthesizing problem. As
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Fig. 1. Optimal periodic smoothing spline curves.
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Fig. 2. Recovered contours in the pq-plane.

the applications, we are planning to model con-
tours or shapes of various objects including living
bodies.
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