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Abstract: In this paper, an output feedback discontinuous controller is proposed
for a class of nonlinear systems to attenuate the disturbance influence on the
system performance. Our main goal is to globally stabilize the nonlinear system
in the presence of unknown structural system uncertainties and external distur-
bances. Our approach consists of constructing a high gain nonlinear observer
to reconstruct the unavailable states, and then design discontinuous controller
using a backstepping like design procedure to ensure stability of the nonlinear
system. The design parameters of the observer and the controller are determined
in a complementary manner to ensure stability. As a result the whole system
can be stabilized while internal stability of the system states is also ensured.
Finally, an example is presented to show the effectiveness of the proposed scheme.
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1. INTRODUCTION

Output feedback stabilization has been the sub-
ject of constant research over the past several
decades. Despite these efforts, robust stabiliza-
tion of general nonlinear systems remains an open
problem (Khalil, 1996). For linear systems or non-
linear systems that can be linearized near the
equilibrium point, the well known H∞ control
method offers a systematic approach in which the
influence of system uncertainties can be directly
incorporated into the design. However, for non-
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linear systems, the solution of the nonlinear H∞
control problem has proven to be very difficult.
Indeed, the synthesis of H∞ optimal controller
requires solving the Hamilton Jacobi-Isaacs (HJI)
equation (James and Baras, 1995), which is either
very difficult or in most cases impossible to solve.
Solving the HJI equation can be avoided by the
inverse optimal design proposed as in (Krstić and
Li, 1998). However, in this approach, a prescribed
performance level cannot be guaranteed.

Several researchers have proposed various ap-
proaches for the disturbance attenuation problems
of nonlinear systems with different forms and as-
sumptions. In (Isidori and Lin, 1998), the nonlin-



ear functions in the system are linearized near the
equilibrium x = 0. The control law can then be
obtained by utilizing the solution of the Riccati
Algebraic Equation for the linearized plant to get
a global solution of the Hamilton Jacobi Isaacs
partial differential equation arising in the non-
linear H∞ control. Though the control target is
obtained, only a single input single output (SISO)
system with specific formulation is considered.
In (Marino and Tomei, 1999), a SISO nonlinear
system with unknown parameters is considered
and it is transformable to be a minimum phase
system where the nonlinearity depends on the
output only. It is the same situation as in (Ezal
et al., 2001) where the nonlinearity also solely
depends on the measured output and the distur-
bance attenuation with local optimality can be
realized according to the linearized plant. From
these references, we note that it would be interest-
ing to consider the disturbance attenuation task
for a more general nonlinear system.

Many kinds of observers have been proposed for
linear and nonlinear systems when the state vari-
ables are not available. When there are uncertain-
ties in the system, high gain observer owns the
advantage to acquire the states information while
neglecting the influence of disturbance (Farza et
al., 2004), Due to the high gain in the feedback
form, the observer is effective in ensuring the con-
vergence of the estimation error such that the real
states can be obtained for the controller design.

In this paper, we present a more general system
plant with null space dynamics and range space
dynamics together. Only partial states can be
measured and one subsystem in the null space
dynamics possesses a certain property with re-
spect to the Lyapunov stability theory. Our ap-
proach has two main objectives: (i) to globally
stabilize the nonlinear system, in the input-to-
state (ISS) sense, in the existence of the struc-
tural unknown system uncertainties and external
disturbance by an output feedback discontinuous
controller, and (ii) to attenuate the disturbance
influence on the system performance to a pre-
scribed level. The attribute of this approach is
that: (a) we can construct a high gain nonlinear
observer to observe the states and only partial
state estimation of the nonlinear system is neces-
sary; (b) a resulting discontinuous controller can
be designed according to the backstepping like
design procedure to ensure the stability of the
nonlinear system; (c) the design parameters in the
observer and the controller are related and should
be determined together to ensure stability. Hence
the whole system can be stabilized while inter-
nal stability of the system states is also ensured.
Usually, a discontinuous term is used to handle
the matched L∞[0,∞) type system disturbance
where the upper-bound knowledge is available

(Utkin, 1992) (Xu et al., 2003). However in this
paper, a discontinuous term is used to ensure
convergence of the observer since the switching
surface is defined to be a combination of the esti-
mated states while there are no uncertain term in
the observer dynamics. In the example, it is shown
that the stabilization can be achieved under the
proposed controller while the high nonlinear sys-
tem is originally not stable without control efforts.

Notations: Rn denotes an n-dimension real vector
space; ‖ · ‖ is the Euclidean norm and induced
matrix norm; λi(A) denotes the i-th eigenvalue
of the matrix A; Re(·) denotes the real part
with respect to its argument; Dxf = ∂f(x,y)

∂x and
Dyf = ∂f(x,y)

∂y are row vectors.

2. PROBLEM FORMULATION

A general nonlinear system with control input u(·)
and uncertainties d(·) can be written as follows:

ẋ = f(t,x,u,d). (1)

Without any additional assumption, it is very dif-
ficult to design a suitable control law to stabilize
this nonlinear system. Hence, in this paper we
study a class of nonlinear systems in a cascade
form and only output information is available.
More explicitly, we consider a system of the form




ż = f0(t, z,y) + G0(t, z,y)d(t)
ẋ1 = Ax2 + f1(t, z,x1) + G1(t, z,x1)d(t)
ẋ2 = Bu + f2(t, z,x) + G2(t, z,x)d(t)
y = x1 := Cx

(2)

where z ∈ Rp, x1 ∈ Rn and x2 ∈ Rm are
the states, u ∈ Rm denotes the control input,
d ∈ Rl is the external disturbance. A ∈ Rn×n,
B ∈ Rm×m and C ∈ Rn×(n+m). The mappings
f0 ∈ Rp and G0 ∈ Rp×l are known and smooth
with respect to z, y and continuous with respect
to time t. f1 ∈ Rn, G1 ∈ Rn×l, f2 ∈ Rm and
G2 ∈ Rm×l are unknown functions. The relation
m ≤ n holds for the system.

This system maintains the popular triangular
structure used in the backstepping approaches
(Khalil, 1996) (Isidori and Lin, 1998), but ex-
tended with additional structure given by the
uncertainty terms and disturbances. In addition,
only the output y = x1, but not the state, is
assumed to be available. The control objective
of this paper is to stabilize the system, which is
originally not ISS stable in the existence of the
external disturbance input when u = 0, to be
ISS stable with respect to the external disturbance
by using the measurable output information. The
system in (2) satisfies the following assumptions.



Assumption 1. ‖f1‖2 ≤ c11‖x1‖2 + c12‖z‖2,
‖f2‖2 ≤ c21‖x‖2+c22‖z‖2, where cij (i = 1, 2, j =
1, 2) are known positive constants. ‖Gi(·)‖ ≤ βi,
where βi are positive constants.

Assumption 2. The function f2 has the following
property,

‖f2(t, z,x) − f̂2(t,x1, x̂2)‖2 ≤ α1‖e‖2 + α2‖z‖2,

(3)

where f̂2(t,x1, x̂2) is the estimate of the function
f2(t, z,x), e = x−x̂, α1 > 0 and α2 > 0 are known
positive constants.

We further make the following assumption on the
null space z-dynamics according to the definition
of the ISS Lyapunov functions (Sontag, 1989)
(Marquez, 2003). In the z-dynamics, y and u can
be treated as two external inputs.

Assumption 3. There is a nonempty set of ISS
Lyapunov Functions, V , such that, for any choice
of C1 function V0(t, z) ∈ V : Rn ×R+ → R+,

γ1(‖z‖) ≤ V0(t, z) ≤ γ2(‖z‖),
DtV0 + (DzV0) [f0(t,y, z) + G0(t,y, z)d(t)]

≤ −γ3‖z‖2 + γ4‖y‖2 + γ5‖d‖2, (4)

where γ1(·), γ2(·) : R+ → R+ are class K∞
functions, γ3, γ4 and γ5 are positive constants.

3. HIGH GAIN OBSERVER DESIGN

In this section, a nonlinear observer with high
gain is proposed for the partial system dynamics
to estimate the state x = [x1,x2]T . Based on
the structure of the system plant, the observer is
constructed as the follows

{ ˙̂x1 = Ax̂2 + kK1(x1 − x̂1)
˙̂x2 = Bu + f̂2(t,x1, x̂2) + kK2(x1 − x̂1).

(5)

Define ei = xi − x̂i, then the error dynamics is

[
ė1

ė2

]
=

[−kK1 A
−kK2 0

] [
e1

e2

]
+

[
f1 + G1d

f2 − f̂2 + G2d

]
.(6)

In order to extract the design variable k in the
presentation of the state space equation (6), we
define e = [e1, e2/k]T . Then

ė = kEae + f + Gd (7)

where f =
[

f1
f2 − f̂2/k

]
, G =

[
G1

G2/k

]
, k > 1 is a

positive constant, K1 and K2 are designed gains

such that the matrix Ea =
[−K1 A
−K2 0

]
is Hurwitz,

i.e, ∃P > 0 such that PEa + ET
a P = −Q.

According to Assumption 1 and Assumption 2,
the terms f and Gd in (7) could be upper-bounded
as

‖f‖2 ≤ ‖f1‖2 +
‖f2 − f̂2‖

k2

≤ c11‖x1‖2 + (c12 +
α2

k2
)‖z‖2 +

α1

k2
‖e‖2

‖Gd‖ ≤ max{βi}(1 +
1
k

)‖d‖

≤ 2max{βi}‖d‖ �
= β‖d‖, i = 1, 2,

where β
�
= 2max{βi}.

Remark 1. Note that the term (f+Gd) is bounded
by the states, hence we cannot ensure a bounded
state estimation error by this observer design.
Fortunately, we have one degree of freedom to
increase the value of k. Furthermore, as shown in
the following section, we can design a nonlinear
discontinuous controller and also can increase k
such that the stability of the whole controlled
system can be finally ensured.

Remark 2. Assumption 2 implies that the func-
tion f2(·) cannot be highly nonlinear with respect
to the argument x2.

4. CONTROLLER DESIGN AND STABILITY
ANALYSIS

Since the system in (2) has a cascade form, we
can apply a backstepping like method to design
the controller as summarized in Theorem 1.

Theorem 1. Under the control law designed as

u = uc + us, (8)

uc =−Γ−1 [Dtσ + (Dx̂1σ)(Ax̂2 + kK1e1)

+(Dx̂2σ)(f̂2(t,x1, x̂2) + kK2e1)
]
, (9)

us =−ks
ΓT σ

‖ΓT σ‖ , (10)

where σ = x̂2 +
AT

r(t, x̂)
x̂1 ∈ Rm, Γ = (Dx̂2σ)B ∈

Rm×m, the designed function r(t, x̂) > 0 is a
positive scalar function and ks > 0 is a positive
constant, the system is globally ISS stable with
respect to the external disturbance input.

Proof: The proof can be seperated into the
following three steps.



Step 1: Construct a Lyapunov function V1(t, z, e) =
V0(t, z) + eT Pe where V0 satisfies (4), and select

γ6 such that
c12k

2 + α2

2γ6k2
< γ3, then the derivative

of the Lyapunov function V1(·) becomes

V̇1(t, z, e) = V̇0(t, z) + keT (PEa + ET
a P )e

+2eT P f + 2eT PGd

≤−γ3‖z‖2 + γ4‖y‖2 + γ5‖d‖2 − k‖Q‖‖e‖2

+2γ6‖P‖2‖e‖2 +
1

2γ6

[(
c12 +

α2

k2

)
‖z‖2 + c11‖x1‖2

+
α1

k2
‖e‖2

]
+ 2‖P‖2‖e‖2 +

β2

2
‖d‖2

=−
[
γ3 − (c12k

2 + α2)
2γ6k2

]
‖z‖2 +

(
γ4 +

c11

2γ6

)
‖y‖2

−
(

k‖Q‖ − 2γ6‖P‖2 − 2‖P‖2 − α1

2γ6k2

)
‖e‖2

+
(

β2

2
+ γ5

)
‖d‖2.

Define ν = γ3 − (c12k
2 + α2)

2γ6k2
, µ =

β2

2
+ γ5 and

δ = k‖Q‖ − 2γ6‖P‖2 − 2‖P‖2 − α1

2γ6k2
, then

V̇1(t, z, e) +
µ‖y‖2

ρ2
− µ‖d‖2

≤ −ν‖z‖2 − δ‖e‖2 +
(

γ4 +
c11

2γ6
+

µ

ρ2

)
‖y‖2.

Step 2: In this step we would like to find a desired
signal x̂∗

2 to stabilize the x̂1 subsystem. First con-
struct a new Lyapunov function V2(t, z, e, x̂1) =
V1(t, z, e) + 1

2 x̂
T
1 x̂1, then

V̇2 = V̇1 + x̂T
1 Ax̂2 + x̂T

1 kK1e1, (11)

a desired x̂∗
2 = − AT

r(t, x̂)
x̂1 can be designed,

where r(·) is a positive scalar function, then (11)
becomes (q > 0)

V̇2 = V̇1 − ‖A‖2

r
‖x̂1‖2 + kx̂T

1 K1e1

≤ V̇1 −
(‖A‖2

r
− k2‖K1‖2

2q

)
‖x̂1‖2 +

q

2
‖e1‖2.

⇒ V̇2 +
µ‖y‖2

ρ2
− µ‖d‖2

≤ −ν‖z‖2 − δ‖e‖2 + (γ4 +
c11

γ6
+

µ

ρ2
)‖y‖2

−
(‖A‖2

r
− k2‖K1‖2

2q

)
‖x̂1‖2 +

q

2
‖e1‖2.(12)

If
‖A‖2

r
− k2‖K1‖2

2q
≥ 0 is to be ensured, and

using ‖x̂1‖2 = ‖x1 − e1‖2 ≥ ‖x1‖2 − ‖e1‖2 and
‖e1‖2 ≤ ‖e‖2, then (12) becomes

V̇2 +
µ‖y‖2

ρ2
− µ‖d‖2

≤ −ν‖z‖2 −
[
δ − q

2
−

(‖A‖2

r
− k2‖K1‖2

2q

)]
‖e‖2

−
[(‖A‖2

r
− k2‖K1‖2

2q

)

−
(

γ4 +
c11

γ6
+

µ

ρ2

)]
‖y‖2, (13)

where r and q are designed such that

‖A‖2

r
− k2‖K1‖2

2q
≥ 0,

[
δ − q

2
−

(‖A‖2

r
− k2‖K1‖2

2q

)]
≥ 0,

[‖A‖2

r
− k2‖K1‖2

2q
− (γ4 +

c11

γ6
+

µ

ρ2
)
]
≥ 0,

should be satisfied at the same time. The feasibil-
ity of the proposed controller is based on whether
we can obtain such a solution r(·) to satisfy all
the three conditions, i.e,

δ − q

2
≥ ‖A‖2

r
− k2‖K1‖2

2q

≥ γ4 +
c11

γ6
+

µ

ρ2
> 0. (14)

Hence if we obtain a solution r(·) to satisfy the
inequality in (14), then (13) becomes V̇2 + µ‖y‖2

ρ2 −
µ‖d‖2 ≤ 0.

Step 3: In this step, we would like to design
a robust discontinuous control signal to realize
the regulation problem. To begin with, design
the switching surface as σ = x̂2 − x̂∗

2 = x̂2 +
AT

r(t,x̂) x̂1 ∈ Rm. If all the states are measurable, the
switching surface should be selected as a function
of the states σ(x1,x2). However, here the states
are not measurable, so we use the estimated one
x̂ instead. Define a fourth Lyapunov function

V3(t, z, e, x̂1, σ) = V2(t, z, e, x̂1) +
1
2
σT σ. Then

σ̇ = Dtσ + (Dx̂1σ)(Ax̂2 + kK1e1)

+(Dx̂2σ)(Bu + f̂2(t,x1, x̂2) + kK2e1).

Design u as in equation (8) in Theorem 1, then
V̇3 = V̇2 + σT σ̇. Hence

V̇3 +
µ‖y‖2

ρ2
− µ‖d‖2

≤ σT [Dtσ + (Dx̂1σ)(Ax̂2 + kK1e1)

+(Dx̂2σ)(Bu + f̂2(t,x1, x̂2) + kK2e1)
]

= −ks‖ΓT σ‖ ≤ 0. (15)

Integrating both sides of (15), and simplifying the
definition V3(t) = V3(t, z(t), e(t), x̂1(t), σ(t)) and
V3(0) = V3(0, z(0), e(0), x̂1(0), σ(0)), we have



V3(t) − V3(0)≤ − µ

ρ2

t∫
0

‖y‖2dτ + µ

t∫
0

‖d‖2dτ,

(16)

⇒
t∫

0

‖y‖2dτ ≤ βv(·) + ρ2

t∫
0

‖d‖2dτ, (17)

where βv(·) �
= ρ2

µ V3(·) is a function related to the
initial condition only.

From (15), we have σT σ̇ ≤ −ks‖ΓT σ‖ < 0, hence
it is straightforward that the sliding manifold will
be reached in finite time.

Corollary 1. Under the proposed output feedback
controller (8) - (10), we have: (a) if d ∈ L2[0,∞),
all the system states are bounded; (b) if d ∈
L2[0,∞) ∩ L∞[0,∞), limt→∞ y(t) = 0, and z, x2

are bounded.

Proof: (a) If d ∈ L2[0,∞), then
∫ t

0 ‖d‖2dτ ≤
Md, where Md is a finite constant. From (16),

V3(t, z(t), e(t), x̂1(t), σ(t))

≤ V3(0, z(0), e(0), x̂1(0), σ(0)) + µMd. (18)

Because V3(·) is radially unbounded in z, e, x̂ and
σ, (18) means that z, e, x̂ and σ are bounded.

Furthermore x1 = e1 + x̂1, x̂2 = σ − AT

r
x̂1,

x2 = e2 + x̂2, hence x is also bounded.

(b) If d ∈ L2[0,∞) ∩ L∞[0,∞), then we have∫ t

0 ‖d‖2dτ ≤ Md and ‖d‖ ≤ εd, where εd

is a constant. Inequality (15) becomes V̇3 ≤
− µ

ρ2 ‖y‖2 + µε2d, which shows that ‖y‖ ≤ ρεd is
bounded. Thus from the system dynamic in (2),
ẋ1 is bounded and as a result y = x1 is uni-
formly continuous. Note that in (17),

∫ t

0
‖y‖2dτ

is bounded because d ∈ L2[0,∞). Using Bar-
balat’s Lemma (Narendra and Annaswamy, 1989),
it is straightforward to reach the conclusion that
limt→∞ y(t) = 0.

Note that the discontinuous unit vector control
law us in (10) may cause chattering when the
system enters the sliding mode in a finite time.
In order to eliminate the chattering phenomenon,
us can be modified as

us = −ks
ΓT σ

‖ΓT σ‖ + εe−λt
, (19)

where ε and λ are positive constants.

Corollary 2. Consider the uncertain nonlinear sys-
tem in (2), with d ∈ L2[0,∞), the controller in
(8), (9) and (19) guarantees that: (i) a finite L2

gain performance is achieved; and (ii) all the state

variables are bounded. Moreover, if d ∈ L2[0,∞)∩
L∞[0,∞), then y converges to zero asymptoti-
cally.

Proof: The proof is similar as in Corollary 1.

5. ILLUSTRATIVE EXAMPLE

In this section, the nonlinear system as in (2) is
considered with the z dynamics of the form

ż = −z3 + zy1 + zy2 + zd1(t) + zd2(t), (20)

where y = x1 = [y1, y2]T , x1 = [x11, x12]T , x2 =
[x21, x22]T , d = [d1(t), d2(t)]T = [e−0.1t, e−0.5t],
f1(t, z,x1) = [h1(t)x11sin(z), h2(t)x12cos(z)]T ,
h1(t) = 0.1sin(πt), h2(t) = 0.1cos(πt), A = B =
I2×2, f2(t, z,x) = [x21sin(x11), x22sin(x12)]T , and

G1(t, z,x1) = 0.5
[

cos(x11) cos(x12)
sin(x11) sin(x12)

]
,

G2(t, z,x) = 0.5
[

sin(x21) sin(x22)
cos(x21) cos(x22)

]
.

For z dynamics, V0(z, t) = 1
2z2 is selected. Hence

we have γ3 = 0.75, γ4 = 2 and γ5 = 2. The
following parameters can be α1 = 1, α2 = 0,
c11 = 1, c12 = 0, q = 4, γ6 = 0.5, β =

√
2 and

µ = 1.5. In the observer design: K1 = K2 = I2×2,
k = 18. The minimum disturbance attenuation
level in this case is ρ =

√
3. For an identity

Q = I2×2, from PEa + ET
a P = −Q, we have

P =




1.0 0 −0.5 0
0 1.0 0 −0.5

−0.5 0 1.5 0
0 −0.5 0 1.5


 .

Hence σ = x̂2 + AT

r x̂1, where r is selected
as 0.02197 ≤ r = 0.0222 ≤ 0.02222. In
the controller design, ks = 1 is selected. The
initial conditions are [z(0),x1(0)T ,x2(0)T ]T =
[1, 5, 4, 3, 2]T and x̂(0) = 0.

Simulation results are shown as the follows. In
Fig.1, u = 0 is first applied. It is shown
that the states diverge which means that the
system is not stable without an output feed-
back stabilization controller. In the following dis-
cussion, according to (19), a smooth function
is then constructed instead of sign function as
us = −ks

σ

‖σ‖ + 0.1e−0.01t
. In Fig.2(a)(b),the es-

timated states from the observer and the real
states are compared. The estimation errors con-
verge to zero asymptotically as shown in Fig.2(c)(d).
Since our control target is to minimize the desired
L2 disturbance attenuation level. From Fig.3, the
output integration term

∫ t

0
‖y(τ)‖2dτ is smaller



than the disturbance term
∫ t

0
‖d(τ)‖2dτ which

means the real disturbance attenuation level is
ρreal < 1. Hence it is obvious that the desired
attenuation level ρ =

√
3 derived from theory is

obtained finally. Also the switching surface profile
is as shown in Fig.4.

6. CONCLUSIONS

For a class of nonlinear system with unknown
systems uncertainties and external disturbances,
we have realized an output feedback control law
based on a high gain nonlinear observer that
achieves desired global Input-to-State Stability
with disturbance attenuation. The problem dealt
with in this paper has triangular structure which
is a general form in dealing with output feedback
stabilization problems.

REFERENCES

Ezal, K., P. V. Kokotović, A. R. Teel and
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Fig. 1. The system states without controller.
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Fig. 2. (a) x21(t) and x̂21(t); (b) x22(t) and x̂22(t);
(c) e21(t) = x21(t) − x̂21(t); (c) e22(t) =
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Fig. 3. The integration of ‖y‖2 and ‖d‖2.
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Fig. 4. The evolution of σ(t): (a) σ1(t); (b) σ2(t).


