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Abstract: Second-order nonlinear ordinary differential equations (ODE’s) can be
used for modeling periodic signals. The right hand side function of the ODE
model is parameterized in terms of polynomial basis functions. The least squares
(LS) algorithm for estimating the coefficients of the polynomial basis gives biased
estimates at low signal to noise ratios (SNRs). This is due to approximating the
states of the ODE model using finite difference approximations from the noisy
measurements. An analysis for this bias is given in this paper.

Copyright ©2005 IFAC

Keywords: Bias, Discretization, Identification, Least squares, Nonlinear systems.

1. INTRODUCTION

Modeling of periodic signals is a fundamental
problem in many applications, see (Abd-Elrady,
2004; Abd-Elrady, 2005; Stoica and Moses, 1997).
Many systems that generate periodic signals can
be described by second-order nonlinear ODE’s
with polynomial right hand sides. Examples in-
clude tunnel diodes, pendulums and predator-
prey systems, see (Khalil, 2002; Perko, 1991).

A second-order nonlinear ODE is used in this pa-
per to model periodic signals. The periodic signal
is modeled as a function of the states of the ODE.
The right hand side of this ODE is parameter-
ized using polynomial basis functions. The ODE
approach is expected to obtain highly accurate
models by estimating only a few parameters. Dif-
ferent estimators were developed in (Wigren et
al., 2003a; Wigren et al., 2003b; Abd-Elrady et
al., 2004) using the same idea.

The LS estimator (Wigren et al., 2003b) gives
biased estimates especially at low SNRs. This is
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due to the fact that the derivatives of the modeled
signal evaluated using Euler approximations are
highly contaminated with noise at low SNRs.

A bias analysis for the LS estimate is given in
this paper assuming that the periodic signal is
contaminated with zero mean Gaussian white
noise. The objective is to study the effect of the
sampling interval, the signal to noise ratio and the
system parameters on the estimation bias.

The paper is organized as follows. Section 2 intro-
duces the ODE model. Section 3 reviews the LS
algorithm given in (Wigren et al., 2003b). Differ-
ent estimation errors are discussed in Section 4. In
Section 5, bias analysis and discretization errors
for some simple systems are evaluated. Section 6
gives a comparative simulation study between
three different Euler approximation techniques.
Conclusions appear in Section 7.

2. THE ODE MODEL
2.1 Measurements

The measured signal z(kh) is given by
2(kh) = y(kh) + e(kh), k=1, ,N (1)



where y(t) is the periodic continuous signal to be
modeled, y(kh) its sampled value, h the sampling
interval and e(kh) is zero mean Gaussian white
noise, i.e.

e(kh) € N(0,)2), Ele(kh)e(kh + jh)] = §;0A2.

2.2 Model Structures

The idea here is to model the generation of the
signal y(¢) by means of a nonlinear ODE parame-
terized with an unknown parameter vector 6, i.e.

i = f(2,0), y=h(z). (2)
As shown in (Wigren and Séderstréom, 2003; Wi-

gren et al., 2003b), it can often be assumed that
the second order ODE

i) = f(y(®),4(t),0) (3)
generates the periodic signal that is measured.
Thus choosing the state variables as z; = y(t)

and zy = y(t), the model given in (2) becomes

(5) = (o))
vo=(10)(79).

2.3 Parameterization

(4)

The right hand side of the second state equation
of (4) is expanded in terms of known basis func-
tions, modeling the right hand side as a truncated
superposition of these functions. Polynomial basis
functions were chosen in (Wigren et al., 2003b) to
model f(z1(t),z2(t),8), i.e.

L
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3. THE LEAST SQUARES ALGORITHM

Now Egs. (4)—(6) result in the model

T1(t) = z2(t)
iy (t) = @7 (21 (1), 22(1)) O ™
where
T Z1(l), T2 =
o7 (21(8), 22(1) -

(1w ad(t) - af () - 2l 2l (1))

To estimate the parameter vector 6 from (7), some
approximations are needed. Since z1(t), z2(t) and
Z2(t) are not known, their estimates should be
used. In this case, the second state equation (7)
results in (at ¢ = kh)

Za(kh) = @7 (Z1(kh), B2 (kh)) 0 +e(kh).  (9)

The expression (9) follows by performing a Tay-
lor series expansion of the regression vector

@7 (1 (kh), xa(kh)) around (Z1(kh) Z»(kh))"
In (9) the combined regression error, e(kh), has
been introduced.

The LS estimate of 8 has been studied in (Wigren
et al., 2003b) with Z(kh), Z»(kh) and @, (kh)
evaluated using finite difference approximation. It
was shown that the LS algorithm gives consider-
ably accurate models at high SNRs and further
research is needed to extend the operating region
toward low SNRs.

4. ESTIMATION ERRORS

The LS estimates will suffer from two estima-
tion errors, namely: random noise errors and dis-
cretization errors. Random noise errors results due
to differentiating additive measurement noise. On
the other hand, discretization errors are caused by
approximating the signal derivatives using finite
approximations.

To investigate how the LS estimate behaves when
the data length N becomes large, consider

R=E[(71(1),7(1) ¢" (21(2). 72(0)) | (10)
r=E[p(@ (1),50) 0] (1)

where
Ef(t) = lim %ZEf(t). (12)

Remark 1. E is used instead of the ordinary
expectation E to account for noise-free signals. For
fully random signals E = E.

In this case the asymptotic parameter vector
estimate @ is given by

6=R'r=60,+6, (13)
where O is the true parameter vector and 0y is
the bias vector. Similarly

R=Ry+ R, (14)
r=17ry+7 (15)
where
Ro = E|¢(a1 (1), 22(8)) ¢" (21 (). 2 (1) |
ro = B¢ (w1(t),22(1)) ()] (16)

and Ry and 7, are the bias contributions to Rg
and g, respectively, due to using estimated states
Z1(t) and Z»(t) instead of the true states.

Now using (13)-(15) gives

0= (Ro+Ry) " (ro+7)
:R51T0+(R0+Rb)71(’l~“b _Rbgo) (17)
—— ~ ~ v
90 éb

Remark 2. The bias vector 0 is a contribution
of random noise errors and discretization errors.



These contributions are denoted by 6, and 6,
respectively. Hence

éb = én + éd. (18)

The bias vector 8 will depend on the sampling
interval (h) and the derivative approximations.
In this paper the estimation of the parameter
vector will be considered for the following three
simple finite difference approximations of z(kh)
and #2(kh) (in all approximations, we chosed
Z1(kh) = z(kh) and i = 1,2):

e Al: Euler backward approx. (EB)

&i(kh) = (Zi(kh) = Zi(kh — ) /b (19)
e A2: Euler forward approx. (EF)

zi(kh) = (Zi(kh + h) — Z;(kh)) /h.  (20)
e A3: Euler center approx. (EC)

zi(kh) = (Zi(kh + h) — Zi(kh — b)) /(2h).
(21)

Remark 3. A1-A3 are chosen as examples for
finite difference approximation. Many other dif-
ferent approximations can be considered. See
(Soderstrom et al., 1997) for more details.

It is well known from the numerical analysis lit-
erature that EC approximation gives lower dis-
cretization error compared to EB and EF approxi-
mations. Also, the discretization error is expected
to decrease as h decreases. On the other hand,
random noise error is expected to increase as h
decreases since the noise will be highly amplified
for small h. Small values of h will only be suitable
when the SNR is high.

In the next section some simple systems will be
considered to analyze different estimation errors.
The aim of this study is to know if the bias in the
LS estimates will follow the same expectations as
for discretization errors and random noise errors,
and if these two errors are additive so we can find
an optimal sampling interval (hop) that achieves
the lowest bias for each system.

5. EXPLICIT ANALYSIS FOR SIMPLE
SYSTEMS

Consider the following two nonlinear systems:

St: _
(2)-(Ga) e

T1 _ T2
(:bg) - <axl + Bz + fﬂ%@) - (23)

Remark 4. Note that S1 does not have a unique
stable periodic orbit as the case in S2. Therefore,
the amplitude of the periodic signal generated by
S1 is fully determined by the initial state.

S2:

5.1 Random noise errors

Now let 7; (k‘h) = (k‘h) + Z1 (kh) where Z; (k‘h)
represents the noise contribution. It is clear from
Eq. (1) that #,(kh) = e(kh). Similarly, we can
evaluate i(kh) and @y(kh) for Eqs. (19)-(21).
Therefore, the noise contribution in Zz(kh) and
o (kh) are as follows:

o Al: (EB)

o) = UL =R =10

By (h) = EER) = 2e(kh 712h) + e(kh — 2h)
e A2: (EF)

Fo(kh) = SR h})L — e(kh)

oty = L 20) = 20k £ 1) + ol
o A3: (EC)

Fa(kh) = SERE h>2—he(kh — h)

Fa(iny = CERE 20 = 2ekD) + ol = 20)

In the following two examples, the bias contribu-
tion due to random noise errors is analyzed.
Example 1. Random noise errors of S1.
Here ¢p = —7%. Thus R = E(3%) and r = E(-73,).
Straightforward calculations give

R= E(l‘l + i‘l)6

=E(2}) + 15X E(2]) + 45X E(27) + 15)°
N——
Ry R,

r = E[—(21 + #1)" (&2 + 22)]
= nE(2}) —3E(2})E(#142) 4+ 3X’nE(z}) — E(2} 1)
! N

v

0 Tn

Now, the bias 8, can be evaluated using Eq. (17)
for Al1-A3 by replacing E(#142) and E(#}ty)
by their corresponding values. Straightforward
calculations assuming high SNR, see (Abd-Elrady
and Soderstrom, 2004), give

§FB _ gPF
_ —[E@)]? - 129E@])E(@=f)  (29)
SNR E(z%)
570« EEDP — IEEEED
" SNR E(z9)
Therefore, 0,, satisfies the following relation:
~ 1
On < J25NR (26)



Example 2. Random noise errors for S2.

In this case, we have ¢” = (Z» 2 Z3%») and

0= (8 a ~)T. Therefore
R=E(po")=E | 217, 72 &z |, (27)
2232 233, 3132
Fas
1Toy

Similarly as done in Example 1, replacing % Ty, T
and &2 by (21 + 1), (22 + 332) and (iy + o),
it follows (for high SNR and small h?) that, see
(Abd-Elrady and Soéderstrom, 2004),

~ 3 1
TSN S
where

£ =E(}) (B} Blate3) + B} E(aia})

- (30)
~ B(z}a3) - E(z})E(23a3))
Q = E(e}) (E(aiad) + B E(3) o
~ E(2})E(a}) - B(a})E(aia})).
Hence
Bl ¢~ — (32)
I h2SNR

5.2 Discretization errors

In this section the evaluation of discretization
errors is considered. The data are assumed to
be noise-free (i.e. ZTi(kh) = =z1(kh)) and the
estimates 7, (kh) and (kh) are chosen as one

of A1-A3.

The discretization error contributions to Zs(kh)
and 7, (kh) can be evaluated using Taylor series
expansions assuming the solution to the ODE
model described by Eq. (4) is sufficiently differ-
entiable. The discretization errors for 41-43 can
be summarized as follows, see (Abd-Elrady and

Soderstrom, 2004):
e Al: (EB)
=~ h 2 h2 3 3
To(kh) = =5 D1 (kh) + = D"a1 (kh) + O(h?)
2
To(kh) = —hD?z4(kh) + %D3x2(kh) + O(h*)
e A2: (EF)

2
By (kh) = gDQxl(kh) + %D%l(kh) + O(h?)

2
&9 (kh) = hD?zs(kh) + %D%g(kh) +O(h?)

e A3: (EC)
h? h*
Eo(kh) = FD%l(kh) + 1—2017%1(%) + O(h%)
iy (kh) = %2D3x2(kh) + O(h*)

In the next two examples, discretization errors of
S1 and S2 are evaluated.

Example 3. Discretization errors of S1.
Here ¢ = —z}. Thus R = E(2¢) andr = E
Eq. (13) gives

(—a3s).

b E(- 3312132) _ E(_—:U?asg) +E(_—CU?CEQ) (33)
E(zf) E(z?) E(z?)
ke S
Taking into account that z%D3zy = —6nziz? +

3%}, straightforward calculations give

2B _ ZEF _ Th*n EQ2zia} — nzf)
iy I (34)
4 E(zf)

E(zf)
It can be concluded from Eqgs. (34)-(35) that
04 o h? (36)

Now the total estimation bias 8 can be found for
S1 by the addition of Egs. (34)-(35) and Eqs. (24)-
(25), respectively. Differentiating || w.r.t. h to
find the optimal sampling interval value that
minimize the total bias 0 gives, see (Abd-Elrady
and Soderstrom, 2004) for details,

6[E(2?))?
WER = W & LG ) e
NR E(2z{z3 — nz7)
15 ~ §< %)E( !
ort SNR E(2z{z3 — nzf)

SNR E(2z7z2 — naf) H
24n[E () ) @

(1—%—

Example 4. Discretization errors of S2.

In this case, we have ¢! = (Z» 1 x37).
Therefore
flﬁ\g 5612/13\2 ZIZ%Z/B\%
- = 2 T
R=E(¢pop")=E| 2,72 2} 222 |, (39
2232 233, 2172
Fais
r = E(¢i2) = T1T2 | - (40)
.’E%&?QQ"]Q

Straightforward calculations in (Abd-Elrady and
Soderstrom, 2004) for A3 at high SNR show that

18al] o« 1? (41)

and the analytic expression of hopt is given by
Eq. (42).



Ro|”
BEC 9 B}

ool=

+e?[B(a)*(T7 + T3)

T} +A(T? +T) +e2(T2 + T?) + 4e(ToT5 + TeTx)

DE(z173)

E(2222)E(ztzyD%xy) + E(ztzl)E(2? 29 D?25)

opt (SNR) 4|Ro|?
[E(«?)]*
where
Ty = E(«})E(«123) — E(z123) — E(z1)E(2723) + E(z
T, = E(z122)E(zyD?1y) — E(2222)E(22 25D 25)
Ts = E(2222)E(z?2yD%xy) — E(2t22)E(xyD%ay) —
Ty = E(z,D%z») — %E(xlp%g) n %E( 3D%z,)
= E(z123) — E(2})E(3) - E(21)E(2123) + E(21)E(23)
(
(

— E(2323)E(ziza D%xy) + E(m%)ﬁ(az%ng%g)
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Fig. 1. ||0,|| vs SNR.

6. NUMERICAL STUDY

In this section a numerical study of the estimation
errors of 2 using A1-A3 is given. The study is
based on numerical evaluation of the truncated
analytical expressions derived in Section 5. A
numerical study of S1 can be found in (Abd-
Elrady and Séderstrom, 2004). In the numerical
calculation of the derived expressions, E(f(t)) was
approximated by % Ztlil f(@).

Example 5. Random noise error study.

In this example 10* samples were generated from
S2 using the Matlab routine ode45 for a = —1,
B = 2 and ¥ = —2. The initial state of §2
was selected as (z1(0) CUQ(O))T =(2 O)T. First,
the bias error was studied at different SNRs with
h = 0.05 s. Second, the bias was studied at differ-
ent sampling intervals with SNR of 60 dB. The
results are shown in the log-log scale Figs. 1-2.

As it is shown in Fig. 1, log||0,|| using A1-43
is proportional to ( —log(SNR) + constant) (for
moderate and high SNR). Also, we can con-
clude from Fig. 2 that log||@,| is proportional
0 ( —log(h) + constant). These results match the
derived asymptotic results in Eq. (32), and our
earlier expectation that random noise errors can

Norm of the bias vector [dB]
\

—a0 L L L L L L L L L
-3 -28 -26 -2.4 -22 -2 -1.8 -16 -1.4 -1.2 -1

log (M)

Fig. 2. ||0,]| vs h.
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Fig. 3. [|04]| vs h.

be reduced by increasing the sampling time A or
using smaller h whenever the SNR is high. Also,
it can be noticed that 43 gives the lowest bias as
expected.

Example 6. Discretization error study.

In this example, a noise-free data length of 10%
samples was generated from system S2 as done in
Example 5. The bias corresponding to discretiza-
tion errors (f4) was evaluated. The results are
plotted in the log-log scale Fig. 3.



Norm of total estimation bias vector [dB]
\

Fig. 4. ||0]| vs h.

The results of Fig. 3 show that log||@4]| is propor-
tional to (log(h) + constant), see Eq. (41). This
result also matches our earlier expectation that
the discretization error increases as the sampling
time is increased. It can be noticed also from Fig. 3
that A3 gives the lowest discretization bias.

It can be concluded from Examples 5 and 6 that
there are two contradicting requirements to obtain
an accurate estimate for the parameter vector 6
using the LS algorithm. A small A is needed to
reduce éd, and a large h is required to reduce
0,,. Therefore, it is expected that there is an
optimal sampling interval h,,: that achieves min-
imal total estimation bias. This h,,: can be easily
determined by adding the two bias contributions
and plotting the results versus h as shown in
Fig. 4. Figure 4 shows that h,p; = 0.03 s for S2
in case EB or EF approximations are used. On
the other hand, if EC approximation is used, is
hopt = 0.02 s. The expression of hE( in Eq. (42)
gives 0.0190 s.

Also in (Abd-Elrady and Séderstrém, 2004), 6,
and 0, were studied with the nonlinear system
parameters 7, «, f and 7. The results show
that ||@,|| and ||| increases as the value of
these parameters is increased. This is so because
the nonlinear dynamics of the systems S1 and
S2 become more effective as these parameters
increase. Then the signals generated by S1 and
S2 become more nonlinearly distorted and the
accuracy of the finite difference approximations
decreases.

7. CONCLUSIONS

In this paper, estimation errors in least squares
estimation of periodic signals using second-order
nonlinear ODE model have been studied. The
study has considered the estimation of two non-
linear systems using Euler approximations for the
derivatives of the modeled signal. The bias analy-
sis shows that

~ 1

180l = e
It is shown in the paper how an analytical ex-
pression for an optimal sampling interval hop
that achieves the lowest estimation bias can be
derived in a systematic way for different periodic
nonlinear systems.

and  ||04]| x h?
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