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t: Se
ond-order nonlinear ordinary di�erential equations (ODE's) 
an beused for modeling periodi
 signals. The right hand side fun
tion of the ODEmodel is parameterized in terms of polynomial basis fun
tions. The least squares(LS) algorithm for estimating the 
oeÆ
ients of the polynomial basis gives biasedestimates at low signal to noise ratios (SNRs). This is due to approximating thestates of the ODE model using �nite di�eren
e approximations from the noisymeasurements. An analysis for this bias is given in this paper.Copyright 
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1. INTRODUCTIONModeling of periodi
 signals is a fundamentalproblem in many appli
ations, see (Abd-Elrady,2004; Abd-Elrady, 2005; Stoi
a and Moses, 1997).Many systems that generate periodi
 signals 
anbe des
ribed by se
ond-order nonlinear ODE'swith polynomial right hand sides. Examples in-
lude tunnel diodes, pendulums and predator-prey systems, see (Khalil, 2002; Perko, 1991).A se
ond-order nonlinear ODE is used in this pa-per to model periodi
 signals. The periodi
 signalis modeled as a fun
tion of the states of the ODE.The right hand side of this ODE is parameter-ized using polynomial basis fun
tions. The ODEapproa
h is expe
ted to obtain highly a

uratemodels by estimating only a few parameters. Dif-ferent estimators were developed in (Wigren etal., 2003a; Wigren et al., 2003b; Abd-Elrady etal., 2004) using the same idea.The LS estimator (Wigren et al., 2003b) givesbiased estimates espe
ially at low SNRs. This is1 This work was supported by Swedish Resear
h Coun
ilfor Engineering S
ien
es under 
ontra
t 98-654.

due to the fa
t that the derivatives of the modeledsignal evaluated using Euler approximations arehighly 
ontaminated with noise at low SNRs.A bias analysis for the LS estimate is given inthis paper assuming that the periodi
 signal is
ontaminated with zero mean Gaussian whitenoise. The obje
tive is to study the e�e
t of thesampling interval, the signal to noise ratio and thesystem parameters on the estimation bias.The paper is organized as follows. Se
tion 2 intro-du
es the ODE model. Se
tion 3 reviews the LSalgorithm given in (Wigren et al., 2003b). Di�er-ent estimation errors are dis
ussed in Se
tion 4. InSe
tion 5, bias analysis and dis
retization errorsfor some simple systems are evaluated. Se
tion 6gives a 
omparative simulation study betweenthree di�erent Euler approximation te
hniques.Con
lusions appear in Se
tion 7.2. THE ODE MODEL2.1 MeasurementsThe measured signal z(kh) is given byz(kh) = y(kh) + e(kh); k = 1; � � � ; N (1)



where y(t) is the periodi
 
ontinuous signal to bemodeled, y(kh) its sampled value, h the samplinginterval and e(kh) is zero mean Gaussian whitenoise, i.e.e(kh) 2 N(0; �2); E[e(kh)e(kh+ jh)℄ = Æj;0�2.2.2 Model Stru
turesThe idea here is to model the generation of thesignal y(t) by means of a nonlinear ODE parame-terized with an unknown parameter ve
tor �, i.e._x = f(x;�); y = h(x): (2)As shown in (Wigren and S�oderstr�om, 2003; Wi-gren et al., 2003b), it 
an often be assumed thatthe se
ond order ODE�y(t) = f�y(t); _y(t);�� (3)generates the periodi
 signal that is measured.Thus 
hoosing the state variables as x1 = y(t)and x2 = _y(t), the model given in (2) be
omes� _x1_x2 � = � x2(t)f�x1(t); x2(t);�� �y(t) = � 1 0 �� x1(t)x2(t)� : (4)2.3 ParameterizationThe right hand side of the se
ond state equationof (4) is expanded in terms of known basis fun
-tions, modeling the right hand side as a trun
atedsuperposition of these fun
tions. Polynomial basisfun
tions were 
hosen in (Wigren et al., 2003b) tomodel f�x1(t); x2(t);��, i.e.f�x1(t); x2(t);�� = LXl=0 MXm=0 �l;mxl1(t)xm2 (t) (5)� = � �0;0 � � � �0;M � � � �L;0 � � � �L;M �T : (6)3. THE LEAST SQUARES ALGORITHMNow Eqs. (4)-(6) result in the model_x1(t) = x2(t)_x2(t) = �T �x1(t); x2(t)� � (7)where�T �x1(t); x2(t)� =� 1 � � � xM2 (t) � � � xL1 (t) � � � xL1 (t)xM2 (t) � : (8)To estimate the parameter ve
tor � from (7), someapproximations are needed. Sin
e x1(t), x2(t) and_x2(t) are not known, their estimates should beused. In this 
ase, the se
ond state equation (7)results in (at t = kh)b_x2(kh) = �T �bx1(kh); bx2(kh)� � + "(kh): (9)The expression (9) follows by performing a Tay-lor series expansion of the regression ve
tor

�T �x1(kh); x2(kh)� around �bx1(kh) bx2(kh)�T .In (9) the 
ombined regression error, "(kh), hasbeen introdu
ed.The LS estimate of � has been studied in (Wigrenet al., 2003b) with bx1(kh), bx2(kh) and b_x2(kh)evaluated using �nite di�eren
e approximation. Itwas shown that the LS algorithm gives 
onsider-ably a

urate models at high SNRs and furtherresear
h is needed to extend the operating regiontoward low SNRs.4. ESTIMATION ERRORSThe LS estimates will su�er from two estima-tion errors, namely: random noise errors and dis-
retization errors. Random noise errors results dueto di�erentiating additive measurement noise. Onthe other hand, dis
retization errors are 
aused byapproximating the signal derivatives using �niteapproximations.To investigate how the LS estimate behaves whenthe data length N be
omes large, 
onsiderR = Eh��bx1(t); bx2(t)� �T �bx1(t); bx2(t)�i (10)r = Eh��bx1(t); bx2(t)� b_x2(t)i (11)where Ef(t) = limN!1 1N NXt=1 Ef(t): (12)Remark 1. E is used instead of the ordinaryexpe
tation E to a

ount for noise-free signals. Forfully random signals E = E.In this 
ase the asymptoti
 parameter ve
torestimate �� is given by�� = R�1 r = �0 + ~�b (13)where �0 is the true parameter ve
tor and ~�b isthe bias ve
tor. SimilarlyR = R0 + ~Rb (14)r = r0 + ~rb (15)whereR0 = Eh��x1(t); x2(t)� �T �x1(t); x2(t)�ir0 = Eh��x1(t); x2(t)� _x2(t)i (16)and ~Rb and ~rb are the bias 
ontributions to R0and r0, respe
tively, due to using estimated statesbx1(t) and bx2(t) instead of the true states.Now using (13)-(15) gives�� = (R0 + ~Rb)�1 (r0 + ~rb)= R�10 r0| {z }�0 +(R0 + ~Rb)�1(~rb � ~Rb�o)| {z }~�b (17)Remark 2. The bias ve
tor ~�b is a 
ontributionof random noise errors and dis
retization errors.



These 
ontributions are denoted by ~�n and ~�d,respe
tively. Hen
e~�b = ~�n + ~�d: (18)The bias ve
tor ~�b will depend on the samplinginterval (h) and the derivative approximations.In this paper the estimation of the parameterve
tor will be 
onsidered for the following threesimple �nite di�eren
e approximations of x2(kh)and _x2(kh) (in all approximations, we 
hosedbx1(kh) = z(kh) and i = 1; 2):� A1: Euler ba
kward approx. (EB)b_xi(kh) = �bxi(kh)� bxi(kh� h)�=h: (19)� A2: Euler forward approx. (EF)b_xi(kh) = �bxi(kh+ h)� bxi(kh)�=h: (20)� A3: Euler 
enter approx. (EC)b_xi(kh) = �bxi(kh+ h)� bxi(kh� h)�=(2h):(21)Remark 3. A1-A3 are 
hosen as examples for�nite di�eren
e approximation. Many other dif-ferent approximations 
an be 
onsidered. See(S�oderstr�om et al., 1997) for more details.It is well known from the numeri
al analysis lit-erature that EC approximation gives lower dis-
retization error 
ompared to EB and EF approxi-mations. Also, the dis
retization error is expe
tedto de
rease as h de
reases. On the other hand,random noise error is expe
ted to in
rease as hde
reases sin
e the noise will be highly ampli�edfor small h. Small values of h will only be suitablewhen the SNR is high.In the next se
tion some simple systems will be
onsidered to analyze di�erent estimation errors.The aim of this study is to know if the bias in theLS estimates will follow the same expe
tations asfor dis
retization errors and random noise errors,and if these two errors are additive so we 
an �ndan optimal sampling interval (hopt) that a
hievesthe lowest bias for ea
h system.5. EXPLICIT ANALYSIS FOR SIMPLESYSTEMSConsider the following two nonlinear systems:S1: � _x1_x2 � = � x2��x31 � : (22)S2: � _x1_x2 � = � x2�x1 + �x2 + 
x21x2 � : (23)Remark 4. Note that S1 does not have a uniquestable periodi
 orbit as the 
ase in S2. Therefore,the amplitude of the periodi
 signal generated byS1 is fully determined by the initial state.

5.1 Random noise errorsNow let bx1(kh) = x1(kh) + ~x1(kh) where ~x1(kh)represents the noise 
ontribution. It is 
lear fromEq. (1) that ~x1(kh) = e(kh). Similarly, we 
anevaluate ~x2(kh) and ~_x2(kh) for Eqs. (19)-(21).Therefore, the noise 
ontribution in bx2(kh) andb_x2(kh) are as follows:� A1: (EB)~x2(kh) = e(kh)� e(kh� h)h~_x2(kh) = e(kh)� 2e(kh� h) + e(kh� 2h)h2� A2: (EF)~x2(kh) = e(kh+ h)� e(kh)h~_x2(kh) = e(kh+ 2h)� 2e(kh+ h) + e(kh)h2� A3: (EC)~x2(kh) = e(kh+ h)� e(kh� h)2h~_x2(kh) = e(kh+ 2h)� 2e(kh) + e(kh� 2h)4h2In the following two examples, the bias 
ontribu-tion due to random noise errors is analyzed.Example 1. Random noise errors of S1.Here � = �bx31. ThusR = E(bx61) and r = E(�bx31b_x2).Straightforward 
al
ulations giveR = E(x1 + ~x1)6= E(x61)| {z }R0 +15�2E(x41) + 45�4E(x21) + 15�6| {z }~Rnr = E[�(x1 + ~x1)3( _x2 + ~_x2)℄= �E(x61)| {z }r0 �3E(x21)E(~x1~_x2) + 3�2�E(x41)� E(~x31~_x2)| {z }~rnNow, the bias ~�n 
an be evaluated using Eq. (17)for A1-A3 by repla
ing E(~x1~_x2) and E(~x31~_x2)by their 
orresponding values. Straightforward
al
ulations assuming high SNR, see (Abd-Elradyand S�oderstr�om, 2004), give~�EBn = ~�EFn� � 3h2 [E(x21)℄2 � 12�E(x21)E(x41)SNR E(x61) (24)~�ECn � 32h2 [E(x21)℄2 � 12�E(x21)E(x41)SNR E(x61) : (25)Therefore, ~�n satis�es the following relation:~�n / 1h2SNR (26)



Example 2. Random noise errors for S2.In this 
ase, we have �T = (bx2 bx1 bx21bx2) and� = (� � 
)T . ThereforeR = E(��T ) = E0� bx22 bx1bx2 bx21bx22bx1bx2 bx21 bx31bx2bx21bx22 bx31bx2 bx41bx22 1A ; (27)r = E(�b_x2) = E0� bx2b_x2bx1b_x2bx21bx2b_x21A : (28)Similarly as done in Example 1, repla
ing bx1, bx2and b_x2 by (x1 + ~x1), (x2 + ~x2) and ( _x2 + ~_x2),it follows (for high SNR and small h2) that, see(Abd-Elrady and S�oderstr�om, 2004),k~�nk � "2h2SNRrL2 +Q2 + 1"2 (29)whereL = E(x21)�E(x21)E(x21x22) + E(x21)E(x41x22)� E(x41x22)� E(x41)E(x21x22)� (30)Q = E(x21)�E(x21x22) + E(x41)E(x22)� E(x21)E(x22)� E(x21)E(x21x22)�: (31)Hen
e k~�nk / 1h2SNR (32)5.2 Dis
retization errorsIn this se
tion the evaluation of dis
retizationerrors is 
onsidered. The data are assumed tobe noise-free (i.e. bx1(kh) = x1(kh)) and theestimates bx2(kh) and b_x2(kh) are 
hosen as oneof A1-A3.The dis
retization error 
ontributions to bx2(kh)and b_x2(kh) 
an be evaluated using Taylor seriesexpansions assuming the solution to the ODEmodel des
ribed by Eq. (4) is suÆ
iently di�er-entiable. The dis
retization errors for A1-A3 
anbe summarized as follows, see (Abd-Elrady andS�oderstr�om, 2004):� A1: (EB)~x2(kh) = �h2D2x1(kh) + h26 D3x1(kh) +O(h3)~_x2(kh) = �hD2x2(kh) + 7h212 D3x2(kh) +O(h3)� A2: (EF)~x2(kh) = h2D2x1(kh) + h26 D3x1(kh) +O(h3)~_x2(kh) = hD2x2(kh) + 7h212 D3x2(kh) +O(h3)

� A3: (EC)~x2(kh) = h26 D3x1(kh) + h4120D5x1(kh) +O(h6)~_x2(kh) = h23 D3x2(kh) +O(h4)In the next two examples, dis
retization errors ofS1 and S2 are evaluated.Example 3. Dis
retization errors of S1.Here � = �x31. ThusR = E(x61) and r = E(�x31b_x2).Eq. (13) gives�� = E(�x31b_x2)E(x61) = E(�x31 _x2)E(x61)| {z }� + E(�x31~_x2)E(x61)| {z }~�d (33)Taking into a

ount that x31D3x2 = �6�x41x22 +3�2x81, straightforward 
al
ulations give~�EBd = ~�EFd � 7h2�4 E(2x41x22 � �x81)E(x61) (34)~�ECd � h2�E(2x41x22 � �x81)E(x61) : (35)It 
an be 
on
luded from Eqs. (34)-(35) that~�d / h2 (36)Now the total estimation bias ~� 
an be found forS1 by the addition of Eqs. (34)-(35) and Eqs. (24)-(25), respe
tively. Di�erentiating j~�j w.r.t. h to�nd the optimal sampling interval value thatminimize the total bias ~� gives, see (Abd-Elradyand S�oderstr�om, 2004) for details,hEBopt = hEFopt � ���� 6[E(x21)℄27� SNR E(2x41x22 � �x81) ���� 14 (37)hECopt �� 6E(x21)E(x41)SNR E(2x41x22 � �x81)��1�s1� SNR E(2x41x22 � �x81)24�[E(x41)℄2 �� 12 (38)Example 4. Dis
retization errors of S2.In this 
ase, we have �T = (bx2 x1 x21bx2).ThereforeR = E(��T ) = E0� bx22 x1bx2 x21bx22x1bx2 x21 x31bx2x21bx22 x31bx2 x41bx22 1A ; (39)r = E(�b_x2) = E0� bx2b_x2x1b_x2x21bx2b_x21A : (40)Straightforward 
al
ulations in (Abd-Elrady andS�oderstr�om, 2004) for A3 at high SNR show thatk~�dk / h2 (41)and the analyti
 expression of hECopt is given byEq. (42).



hECopt � ������ 9(SNR)2 � jR0j2[E(x21)℄2 + "2[E(x21)℄2(T 21 + T 25 )4jR0j2[E(x21)℄4T 24 + 4(T 22 + T 26 ) + "2(T 23 + T 27 ) + 4"(T2T3 + T6T7) ������ 18 (42)whereT1 = E(x21)E(x21x22)� E(x41x22)� E(x41)E(x21x22) + E(x21)E(x41x22)T2 = E(x41x22)E(x2D3x2)� E(x21x22)E(x21x2D3x2)T3 = E(x21x22)E(x21x2D2x2)� E(x41x22)E(x2D2x2)� E(x21x22)E(x41x2D2x2) + E(x41x22)E(x21x2D2x2)T4 = E(x1D3x2)� "2E(x1D2x2) + "2E(x31D2x2)T5 = E(x21x22)� E(x21)E(x22)� E(x21)E(x21x22) + E(x41)E(x22)T6 = E(x22)E(x21x2D3x2)� E(x21x22)E(x2D3x2)T7 = E(x21x22)E(x2D2x2)� E(x22)E(x21x2D2x2)� E(x21x22)E(x21x2D2x2) + E(x22)E(x41x2D2x2)
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Fig. 1. k~�nk vs SNR.6. NUMERICAL STUDYIn this se
tion a numeri
al study of the estimationerrors of S2 using A1-A3 is given. The study isbased on numeri
al evaluation of the trun
atedanalyti
al expressions derived in Se
tion 5. Anumeri
al study of S1 
an be found in (Abd-Elrady and S�oderstr�om, 2004). In the numeri
al
al
ulation of the derived expressions, E(f(t)) wasapproximated by 1N PNt=1 f(t).Example 5. Random noise error study.In this example 104 samples were generated fromS2 using the Matlab routine ode45 for � = �1,� = 2 and 
 = �2. The initial state of S2was sele
ted as �x1(0) x2(0)�T = �2 0�T . First,the bias error was studied at di�erent SNRs withh = 0:05 s. Se
ond, the bias was studied at di�er-ent sampling intervals with SNR of 60 dB. Theresults are shown in the log-log s
ale Figs. 1-2.As it is shown in Fig. 1, log k~�nk using A1-A3is proportional to �� log(SNR) + 
onstant� (formoderate and high SNR). Also, we 
an 
on-
lude from Fig. 2 that log k~�nk is proportionalto �� log(h) + 
onstant�. These results mat
h thederived asymptoti
 results in Eq. (32), and ourearlier expe
tation that random noise errors 
an
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Fig. 2. k~�nk vs h.
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ECFig. 3. k~�dk vs h.be redu
ed by in
reasing the sampling time h orusing smaller h whenever the SNR is high. Also,it 
an be noti
ed that A3 gives the lowest bias asexpe
ted.Example 6. Dis
retization error study.In this example, a noise-free data length of 104samples was generated from system S2 as done inExample 5. The bias 
orresponding to dis
retiza-tion errors (~�d) was evaluated. The results areplotted in the log-log s
ale Fig. 3.
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Fig. 4. k~�k vs h.The results of Fig. 3 show that log k~�dk is propor-tional to � log(h) + 
onstant�, see Eq. (41). Thisresult also mat
hes our earlier expe
tation thatthe dis
retization error in
reases as the samplingtime is in
reased. It 
an be noti
ed also from Fig. 3that A3 gives the lowest dis
retization bias.It 
an be 
on
luded from Examples 5 and 6 thatthere are two 
ontradi
ting requirements to obtainan a

urate estimate for the parameter ve
tor �using the LS algorithm. A small h is needed toredu
e ~�d, and a large h is required to redu
e~�n. Therefore, it is expe
ted that there is anoptimal sampling interval hopt that a
hieves min-imal total estimation bias. This hopt 
an be easilydetermined by adding the two bias 
ontributionsand plotting the results versus h as shown inFig. 4. Figure 4 shows that hopt = 0:03 s for S2in 
ase EB or EF approximations are used. Onthe other hand, if EC approximation is used, ishopt = 0:02 s. The expression of hECopt in Eq. (42)gives 0:0190 s.Also in (Abd-Elrady and S�oderstr�om, 2004), ~�nand ~�d were studied with the nonlinear systemparameters �, �, � and 
. The results showthat k~�nk and k~�dk in
reases as the value ofthese parameters is in
reased. This is so be
ausethe nonlinear dynami
s of the systems S1 andS2 be
ome more e�e
tive as these parametersin
rease. Then the signals generated by S1 andS2 be
ome more nonlinearly distorted and thea

ura
y of the �nite di�eren
e approximationsde
reases. 7. CONCLUSIONSIn this paper, estimation errors in least squaresestimation of periodi
 signals using se
ond-ordernonlinear ODE model have been studied. Thestudy has 
onsidered the estimation of two non-linear systems using Euler approximations for thederivatives of the modeled signal. The bias analy-sis shows that

k~�nk / 1h2SNR and k~�dk / h2It is shown in the paper how an analyti
al ex-pression for an optimal sampling interval hoptthat a
hieves the lowest estimation bias 
an bederived in a systemati
 way for di�erent periodi
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