
NONLINEAR FEEDFORWARD AND

FEEDBACK TRACKING CONTROL WITH

INPUT CONSTRAINTS SOLVING THE

PENDUBOT SWING–UP PROBLEM

Knut Graichen Michael Zeitz

Institut für Systemdynamik und Regelungstechnik,

Universität Stuttgart, Germany

{graichen,zeitz}@isr.uni-stuttgart.de

Abstract: The swing–up maneuver of a pendubot is achieved by a tracking control
with separate design of a nonlinear feedforward and a linear feedback part. The
inversion–based feedforward control treats the swing–up as a two–point boundary
value problem with input constraints in the coordinates of the input–output normal
form and is numerically calculated by a standard Matlab solver. The feedback
part with time–variant gains is designed as an LQR controller for the pendubot
model linearized along the nominal trajectories. The tracking control is validated
in experimental swing–up maneuvers of the pendubot. Copyright c©2005 IFAC
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1. INTRODUCTION

The pendubot is a two–link planar robot arm
with an actuator at the shoulder and none at the
elbow, which is widely used in nonlinear control
education and research due to challenging features
like unstable internal dynamics, nonholonomic be-
havior, and the lack of feedback linearizability. A
particularly difficult control task is swinging up
the pendubot from its stable downward equilib-
rium position to the unstable upward equilibrium
position.

The swing–up problem has been studied by sev-
eral authors. Spong and Block (1995) used a
partial feedback linearization technique for the
swing–up maneuver, and a linear controller sta-
bilizes the pendubot in the upward position,
see (Spong, 1995) for further information. In
(Fantoni et al., 2000), a control strategy based on
energy considerations is studied on the basis of
simulation results. A further swing–up technique
presented by Absil and Sepulchre (2001) appropri-
ately switches between equilibrium points of the
actuator in order to pump energy into the system.

In this paper, the swing–up maneuver is addressed
in order to illustrate the nonlinear inversion–based
feedforward design technique proposed by the au-
thors (Graichen et al., 2004a; Graichen et al.,
2004b) as part of the two–degree–of–freedom con-
trol scheme illustrated in Figure 1. The inversion–
based feedforward control ΣFF solves the swing–
up maneuver of the pendubot Σ as a two–point
boundary value problem (BVP) defined on a
finite–time interval by employing the standard
Matlab function bvp4c (Shampine et al., 2000).
This approach is further elaborated by consider-
ing input constraints for the resulting feedforward
control trajectory u∗(t).
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Fig. 1. Two–degree–of–freedom control scheme
with system Σ, feedback control ΣFB , feed-
forward control ΣFF , and signal genera-
tor Σ∗.



The state feedback control ΣFB is required for the
stabilization of the swing–up maneuver. Due to
the accuracy of the nonlinear feedforward control,
ΣFB can be designed by linear methods with
the pendubot model linearized along the nominal
state trajectories x∗(t), which are provided by the
signal generator Σ∗. An experimental swing–up
maneuver of the pendubot is used to illustrate the
performance of the tracking control.

2. SWING–UP MANEUVER OF THE
PENDUBOT

The considered pendubot consists of an inner arm
with the angle φ(t), which is connected to an
actuator with the constrained torque |u(t)| ≤
umax, and an outer arm moving freely around
the joint M with the angle ψ(t), see Figure 2.
Detailed investigations on the pendubot and the
similar acrobot (with the actuator at the elbow
joint M) can be found in (Murray and Hauser,
1990; Spong, 1995; Block and Spong, 1995).
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Fig. 2. Scheme of the pendubot with the angles
φ(t), ψ(t), the input u(t), and the respective
mechanical parameters in Table 1.

The equations of motion are given by

A φ̈ +B ψ̈ + C = u(t), (1)

D φ̈ +E ψ̈ + F = 0 (2)

with

A = (J
(O)
1 +m2l

2
1), B = m2l1a2 cos(φ− ψ),

C = m2l1a2ψ̇
2 sin(φ− ψ)−(m1ga1+m2gl1) sinφ,

D = m2l1a2 cos(φ− ψ), E = J
(M)
2 ,

F = −m2l1a2φ̇
2 sin(φ− ψ) −m2ga2 sinψ.

Table 1. Parameters of the pendubot.

Parameter Value Parameter Value

J
(O)
1 0.0455 kg m2 l1 = l2 0.45 m

J
(M)
2 0.0076 kg m2 m2 0.11 kg

m1ga1 0.433 Nm a2 0.21 m

The swing–up maneuver of the pendubot within a
finite–time interval t ∈ [0, T ] means the transition

from its stable downward equilibrium φ(0) =
ψ(0) = −π to its unstable upward equilibrium
φ(T ) = ψ(T ) = 0 with φ(i)

∣

∣

0,T
= ψ(i)

∣

∣

0,T
=

0, i = 1, 2.

With respect to the two–degree–of–freedom con-
trol scheme in Figure 1, the feedforward con-
trol ΣFF has to provide a nominal input trajec-
tory u∗(t) which steers the pendubot from the
downward equilibrium to the upward equilibrium
within the time t ∈ [0, T ]. Since the actual con-
straints of the actuator are |u(t)| ≤ umax =
1 Nm, the nominal input trajectory is specified to
|u∗(t)| ≤ û = 0.7 Nm, in order to leave sufficient
torque reserve for the underlying feedback con-
trol ΣFB which stabilizes the pendubot along the
nominal trajectories, see Figure 1.

2.1 Nonlinear input–output normal form

The inversion–based feedforward control u∗(t), t ∈
[0, T ] of the swing–up maneuver is designed in the
input–output normal form coordinates of the pen-
dubot model (1)–(2), cf. (Graichen et al., 2004a;
Graichen et al., 2004b). By choosing the angle of
the inner arm as the output y = φ, the system
(1)–(2) has the relative degree r = 2. With the
coordinates (y, η) = (φ, ψ), the nonlinear input–
output normal form (Isidori, 1995)

ÿ =
E

G

(BF

E
− C + u(t)

)

= α(y, ẏ, η, η̇, u), (3)

η̈ =
D

G

(

−
AF

D
+ C − u(t)

)

= β(η, η̇, y, ẏ, u) (4)

with G = AE − BD comprises the input–output
dynamics (3) and the internal dynamics (4). 1

An intrinsic feature of the pendubot is that the
zero dynamics associated to (4) is stable for the
downward equilibrium position y = η = −π, and
is unstable for the upward equlibrium position
y = η = 0, i.e. both minimum phase and non–
minimum phase behavior occur.

The swing-up of the pendubot within the finite–
time interval t ∈ [0, T ] means that the solutions
of the ODEs (3)–(4) have to satisfy the boundary
conditions (BCs)

y(0) = −π, y(T ) = 0, ẏ|0,T = 0, (5)

η(0) = −π, η(T ) = 0, η̇|0,T = 0. (6)

From a mathematical point of view, the two sec-
ond order ODEs (3)–(4) and the eight BCs (5)–(6)
form two coupled nonlinear two–point BVPs for
y(t) and η(t). The solutions y(t) and η(t) defined
on t ∈ [0, T ] essentially depend on the swing–
up time T and the constrained input trajectory
|u(t)| ≤ û.

1 With the parameters in Table 1, G = AE − BD > 0
holds, and the relative degree r = 2 is well–defined due to
E 6= 0.



2.2 Swing–up time and time scaling

The swing–up time T is an intrinsic property of
the swing–up problem, which has to be deter-
mined appropriately in course of the feedforward
control design. This instance can be illustrated

by considering the equilibria (φs, ψs) with φ
(i)
s =

ψ
(i)
s = 0, i = 1, 2 in dependence of the stationary

input us. In view of the pendubot model (1)–(2),
the following sets of equilibria

Sk =

{

(φs, ψs) ∈ R
2 : (φs, ψs) =

(

arcsin
us

m2gl1+m1ga1
, k π

)

, us∈R

}

, k∈N 0

are derived. Thereby, the downward equilibrium
(φs, ψs) = (−π,−π) ∈ S−1 and the upward
equilibrium (φs, ψs) = (0, 0) ∈ S0 lie in two
non–connected sets, and therefore no stationary
connection exists between the lower and the up-
per equilibrium. This directly associates that the
swing–up of the pendubot is not possible arbi-
trarily slowly with a corresponding long transition
time T .

Furthermore, the consideration of input con-
straints |u∗(t)| ≤ û, t ∈ [0, T ] for the feedforward
control will result in a modified swing–up time
T with respect to a swing–up time T0 in the
unconstrained case. This instance is taken into
account by introducing the time transformation

t = ετ, T = εT0 (7)

with the new time coordinate τ ∈ [0, T0]. The
scaling factor ε denotes the variation of the swing–
up time T with respect to T0 in the unconstrained
case, which has to be reasonably determined.

By applying the time scaling (7) to the input–
output normal form (3)–(4), the right–hand sides
become αε(y, y

′, η, η′, u, ε) := α(y, y′/ε, η, η′/ε, u)
and βε(η, η

′, y, y′, u, ε) := β(η, η′/ε, y, y′/ε, u) with
(·)′ = d/dτ . 2 Then, the input–output dynamics
(3) and the internal dynamics (4) can be expressed
in the new time coordinate τ ∈ [0, T0] with

y′′ = ε2αε(y, y
′, η, η′, u, ε), (8)

η′′ = ε2βε(η, η
′, y, y′, u, ε) (9)

subject to the eight BCs

y(0) = −π, y(T0) = 0, y′|0,T0
= 0, (10)

η(0) = −π, η(T0) = 0, η′|0,T0
= 0, (11)

which directly follow from (5)–(6). The two cou-
pled nonlinear two–point BVPs (8)–(9) with (10)–
(11) are defined on the fixed time interval τ ∈
[0, T0], in contrast to the original BVPs (3)–(6).
The solutions y(τ) and η(τ) depend on the scal-
ing factor ε and the constrained input trajectory
|u(τ)| ≤ û. The determination of y(τ), η(τ), ε,

2 To simplify matters, the symbols y, η, and u represent
the same quantities in both time coordinates t and τ .

and u∗(τ) is the main objective of the feedforward
control design in the next section.

3. FEEDFORWARD CONTROL DESIGN

The inversion–based design of the nonlinear feed-
forward control is based on the inverse input–
output dynamics (8)

u∗(τ) = α−1
ε (y∗, y∗′, y∗′′/ε2, η∗, η∗′, ε), (12)

which enables an explicit calculation of the input
trajectory u∗(τ) in dependence of the output
y∗(τ), the internal dynamics state η∗(τ), and the
scaling factor ε. This concept is an elaboration
of (Graichen et al., 2004a; Graichen et al., 2004b),
where the feedforward control design is introduced
for a fixed transition time T in the original time
coordinate t ∈ [0, T ] without the consideration of
input constraints.

3.1 BVPs for constrained input

In order to determine the trajectories y∗(τ) and
η∗(τ), the BVPs (8)–(11) are rewritten in an
appropriate manner by placing the feedforward
control (12) into the internal dynamics (9). More-
over, a new function α̂ = y∗′′/ε2 for the second
time derivative y∗′′ of the output yields the two
associated second–order BVPs

y∗′′ = ε2α̂, (13)

η∗′′ = ε2β̄ε(η
∗, y∗, y∗′, α̂, ε) (14)

with β̄ε(·) = −(Dα̂+ F )/E and the eight BCs

y∗(0) = −π, y∗(T0) = 0, y∗′
∣

∣

0,T0

= 0, (15)

η∗(0) = −π, η∗(T0) = 0, η∗′
∣

∣

0,T0

= 0. (16)

Note that the representations (12)–(16) are equiv-
alent to the previous BVPs (8)–(11). The solu-
tions y∗(τ) and η∗(τ) of the BVPs (13)–(16) and
the feedforward trajectory u∗(τ) in (12) mainly
depend on the set–up of the function α̂ = y∗′′/ε2

with respect to the following objectives:

(i) C0–continuity of the feedforward trajectory
u∗(τ) at the bounds τ = 0, T0 implies that
the output trajectory y∗(τ) must meet the
two additional BCs

y∗′′(0) = 0, y∗′′(T0) = 0. (17)

(ii) The solvability of the BVPs (13)–(16), de-
fined by two second order ODEs and eight
BCs, requires at least three free param-
eters besides the scaling factor ε. In the
design approach (Graichen et al., 2004a;
Graichen et al., 2004b), the parameters p∗ =
(p∗1, p

∗
2, p

∗
3) are provided in a set–up function



Υ(τ, T0,p
∗), τ ∈ [0, T0] for the output y∗(τ),

which is constructed by the cosine series 3

Υ(τ, T0,p
∗) =

3
∑

i=0

ai(p
∗) cos

iπτ

T0
+

3
∑

i=1

p∗i cos
(i+ 3)πτ

T0
. (18)

The free parameters p∗i , i = 1, 2, 3 are the
coefficients of the highest frequencies and the
coefficients ai(p

∗), i = 0, 1, 2, 3 depend on
the parameters p∗ such that the six BCs
for y∗(τ) in (15) and (17) are satisfied. If
no input constraints are given, the second
time derivative of the set–up (18) yields α̂ =
Υ′′(τ, T0,p

∗) in (13) and (14).

(iii) The consideration of constraints |u∗(t)| ≤ û
requires to check if the input

uΥ = α−1
ε

(

y∗, y∗′,Υ′′(τ, T0,p
∗), η∗, η∗′, ε

)

which results if α̂ = Υ′′(τ, T0,p
∗) is used in

(12), lies within the specified bounds. If uΥ is
outside the bounds, α̂ must be “re–planned”
in (13)–(14), such that the bounds ±û are
met. This is accomplished by the following
case–dependent definition of the function

α̂ =











Υ′′(τ, T0,p
∗) if |uΥ| < û

αε(y
∗, y∗′, η∗, η∗′,−û, ε) if uΥ ≤ −û

αε(y
∗, y∗′, η∗, η∗′, û, ε) if uΥ ≥ û.

(19)

The calculation of the feedforward control u∗(τ),
t ∈ [0, T0] in (12) for the swing–up maneuver
requires the solution of the BVPs (13)–(16) with
(18)–(19) in dependence of the free parameters
ε and p∗. Thereby, the two additional BCs in
(17) are already satisfied by the set–up function
Υ(τ, T0,p

∗) in (18), and α̂ = Υ′′(τ, T0,p
∗) for

τ = 0, T0 in (19) holds because uΥ = 0 < û is
the stationary input at the bounds τ = 0, T0 for
the downward and the upward equilibrium.

In the special case that the feedforward con-
trol |u∗(τ)| < û lies within the bounds for the
whole transition interval τ ∈ [0, T0], y

∗′′(τ) =
ε2Υ′′(τ, T0,p

∗) leads to y∗(τ) = ε2Υ(τ, T0,p
∗).

Thereby, ε = 1 holds, since the set–up function
Υ(τ, T0,p

∗) in (18) already satisfies the six BCs
(15) and (17). This directly corresponds to the un-
constrained case with the swing–up time T = T0,
and the output trajectory y∗(τ) = Υ(τ, T0,p

∗) is
exactly the planned trajectory (18). This means
that only the second–order BVP (14) of the in-
ternal dynamics has to be solved, which requires
only two free parameters p∗1, p

∗
2 in the set–up (18)

of the output trajectory y∗(t), cf. (Graichen et
al., 2004a; Graichen et al., 2004b).

3 In (Graichen et al., 2004a; Graichen et al., 2004b), the
output trajectory y∗(t) is set–up with polynomials in a
slightly different way. For complex transition problems like
the swing–up maneuver of the pendubot, cosine series are
numerically more robust.

3.2 Numerical solution of the BVPs

The nonlinear BVPs (13)–(16) with (18)–(19) in-
cluding four unknown parameters ε and p∗ =
(p∗1, p

∗
2, p

∗
3) can be solved with the standard Mat-

lab function bvp4c (Shampine et al., 2000). The
bvp4c–function is a finite–difference code and de-
termines a numerical solution by solving a system
of algebraic equations resulting from the difference
approximation. Moreover, bvp4c estimates the er-
ror of the numerical solution on each subinterval
and adapts the mesh points. The user must pro-
vide the initial points of the mesh as well as a
guess of the solution at the mesh points. Further-
more, an initial guess of the free parameters of the
BVP is needed.

A linear interpolation between the respective BCs
on a uniform mesh with 50 grid points τk ∈ [0, T0]
serves as a reasonable guess for the trajectory
η∗(τk). The initial guesses of the unknown param-
eters are p∗ = 0 and ε = 1, respectively. Then, the
set–up function Υ(τk, T0,0) provides the initial
profile for the output trajectory y∗(τk).

The solution of the BVPs (13)–(16) with (18)–
(19) is highly sensitive with respect to the input
constraints û and the swing–up time T0 in the
unconstrained case. In a first step, the uncon-
strained case with û → ∞ is considered, and
the BVPs (13)–(16) with (18)–(19) are iteratively
solved in order to appropriately determine the
swing–up time T0 = 3.5 s. Thereby, the resulting
feedforward control |u∗(τ)| < 1.4 Nm violates the
specified constraints of û = 0.7 Nm.

In the next step, the input constraints |u∗(τ)| ≤ û
are considered by solving the BVPs (13)–(16) with
(18)–(19) in three successive runs of the Mat-

lab BVP–solver bvp4c. This iterative procedure
is necessary due to the high sensitivity of the
feedforward control with respect to û, whereby the
two last runs with decreasing input constraints
use the final profiles and free parameters of the
preceding run as initial guesses. For the input
constraints û = 0.7 Nm, this leads to the scaling
factor ε = 1.475 and the swing–up time T = εT0 =
5.16 s.

Figure 3 shows the computed trajectories of y∗(t),
η∗(t), and u∗(t) in the real time coordinate t = ετ ,
as well as time–discrete snapshots of the pen-
dubot to illustrate the counter–clockwise swing–
up maneuver. The parameterizing function α̂ in
(19) is illustrated in Figure 4, where the second
derivative of the output ÿ∗(t) = α̂ and the set–

up function ε2Ϋ(t, T,p∗) are depicted in the real
time coordinate t ∈ [0, T ]. Obviously, α̂ in (19)

is “re–planned” twice, i.e. ÿ∗(t) 6= ε2Ϋ(t, T,p∗),
such that the feedforward control (12) meets the
input constraints û. In these cases, the feedfor-
ward trajectory u∗(t) in Figure 3 stays constant
at ±0.7 Nm.
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Fig. 3. Nominal feedforward trajectories y∗(t) = φ∗(t), η∗(t) = ψ∗(t), and |u∗(t)| ≤ 0.7 Nm,
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put and set–up function ε2Ϋ(t, T,p∗) for the
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4. FEEDBACK CONTROL DESIGN AND
EXPERIMENTAL RESULTS

The experimental validation of the feedforward
control for the swing-up maneuver requires a sta-
bilization by feedback ΣFB , see Figure 1. Due
to the high accuracy of the nonlinear feedfor-
ward control ΣFF , the feedback part ΣFB can
be designed by linear methods with the pendubot
model linearized along the nominal trajectories,
such that

u = u∗ + k
T (t)(x∗ − x) (20)

is the input in closed–loop control. The time–
variant vector k

T (t) with the gains ki(t), i =

1, 2, 3, 4 of the states x = (φ, φ̇, ψ, ψ̇) are calcu-
lated point–wise in time by an LQR technique
with weighting matrices Q = diag(1, 0, 2, 0) and
R = 5 /(Nm)2. Thereby, it must be considered
that the controllability of the linearized model is
lost in the midth of the swing–up maneuver at
approximately t = 2.6 s, which leads to a finite–
time blow–up of the controller gains ki(t). This
problem is avoided by interpolating the feedback
gains ki(t) through the singularity during the time
interval t ∈ [2.4, 2.8] s, see Figure 5, as well as Fig-
ure 3 for the respective positions of the pendubot
arms at t = 2.6 s.

The tracking control has been validated in experi-
mental swing–up maneuvers of the pendubot with
mechanical parameters given in Table 1. The an-
gles φ and ψ are measured by two optical sensors
with a resolution of 250 points/π. The time deriva-

tives φ̇ and ψ̇ required by the feedback control are
determined by a numerical difference scheme. The
designed feedforward and feedback controls have
been implemented in LabVIEW on a PC Pentium
II/300 with a sampling time of 10ms. The nomi-

nal state trajectories φ∗(t), φ̇∗(t), ψ∗(t), ψ̇∗(t), the
feedforward control u∗(t), and the time–variant
feedback gain vectors ki(t), i = 1, 2, 3, 4 are stored
in look–up tables with 200 elements for the swing–
up maneuver of the pendubot.
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Fig. 5. Time–variant LQR feedback gains ki(t)
with interpolation through the singularity.

Figure 6 shows the experimental and nominal
trajectories of the angles y = φ and η = ψ
and the input u for open–loop and closed–loop
control of the swing–up maneuver. The open–
loop trajectories reveal the good accuracy of the
designed feedforward control u∗(t), but the pen-
dubot drifts away from the unstable upward po-
sition. In closed–loop, the feedback control stabi-
lizes the pendubot along the nominal trajectories
y∗(t) = φ∗(t) and η∗(t) = ψ∗(t) and also in
the unstable upward position. The noise in the
input trajectory u(t) for t > 2.5 s is mainly due
to the numerical differentiation of φ and ψ and
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Fig. 6. Experimental and nominal trajectories of the angles φ, ψ, and the input u for the tracking control
of the pendubot swing–up maneuver with T = 5.16 s, |u∗(t)| ≤ 0.7 Nm, and the model parameters
in Table 1.

the low resolution of the optical sensors, as well
as due to the high amplitudes of the feedback
gains ki(t) in the upward unstable position of the
pendubot, see Figure 5. The comparison between
the nominal and experimental trajectories reveals
very good tracking performance such that the de-
signed tracking control allows reproducible swing–
up maneuvers of the pendubot. 4

5. CONCLUSIONS

The presented design approach of nonlinear feed-
forward control solves the swing–up problem of
the pendubot as a two–point BVP with free pa-
rameters by additionally considering input con-
straints of the actuator. In the unconstrained case,
this approach is equivalent to the inversion–based
feedforward control design technique proposed by
the authors (Graichen et al., 2004a; Graichen et
al., 2004b). Open questions of the applied two–
degree–of–freedom control scheme with a nonlin-
ear feedforward and a linear feedback part concern
the existence and uniqueness of solutions to the
BVP with input constraints in course of the feed-
forward design for the swing–up maneuver and a
theoretical analysis of the robust stabilization by
the time–variant feedback gains.
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