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1. INTRODUCTION

A drawback of the backstepping design procedure
is the “explosion of terms” caused by the repeated
differentiations of the virtual inputs. Recently,
the dynamic surface control (DSC) technique has
been proposed to avoid this problem by introduc-
ing a first-order low-pass filter at each step of the
conventional backstepping design procedure (Yip
& Hedrick 1998; Swaroop, Hedrick, Yip & Gerdes,
2000; Wang & Huang 2001).

In this paper, motivated by the pioneering works
of the DSC technique reported in the literature,
the theory and methodology are generalized to
a class of SISO nonlinear systems in semi-strict
feedback form, where nonlinearities can exist in
the input channel of each subsystem. The design
procedure is performed in a step by step man-
ner. At each step of design, a feedback controller

strengthed by nonlinear damping terms to coun-
teract modelling errors is degined to guarantee
input-to-state practical stability (ISpS which is an
extension of the concept of input-to-state stability
(ISS), see Jiang & Praly (1998) for definition) of
the corresponding subsystem, and then parameter
adaptions are introduced to reduce the ultimate
error bound. Simulational examples are included
to verify the results of theoretical analysis.

2. STATEMENT OF THE PROBLEM

Consider the following SISO nonlinear system in
semi-strict feedback form:
ẋi = fi(xi) + gi(xi)xi+1 + ∆i(xn, t), i = 1, · · · , n− 1
ẋn = fn(xn) + gn(xn)u+ ∆n(xn, t)
y = x1

(1)



where, xi = [x1, · · · , xi]T (i = 1, · · · , n) is the
state vector up to the ith subsystem, y is the
system output; fi(xi), gi(xi) are C1 functions;
∆i(xn, t) is the lumped nonrepeatable nonlinear-
ities or external disturbances which may be non-
lipschitz, but is continuous in its arguments.

The nonlinearities are modelled as follows.
fi(xi) = f0i(xi) + ∆fi(xi,�i) + ηfi(xi)
gi(xi) = g0i(xi) + ∆gi(xi, �i) + ηgi(xi)

∆fi(xi,�i) = �T
i (xi)�i, ∆gi(xi, �i) = �T

i (xi)�i

�T
i (xi) = [φi,1(xi), · · · , φi,Mfi

(xi)]

�T
i (xi) = [ψi,1(xi), · · · , ψi,Mgi

(xi)]

�T
i = [ai,1, · · · , ai,Mfi

], �T
i = [bi,1, · · · , bi,Mgi

]

(2)

where, f0i(xi), g0i(xi) are known nominal nonlin-
ear functions; ∆fi(xi,ai), ∆gi(xi, bi) are linearly
parameterized uncertain functions with known re-
gressors φT

i (xi), ψT
i (xi) and unknown parameter

vectors ai, bi; ηfi(xi), ηgi(xi) are unmodelled un-
certainties (approximation errors) of fi(xi), gi(xi)
respectively. When the parameters are adjusted
by some suitable adaptive laws, the estimates of
fi(xi), gi(xi) are given by

f̂i(xi) = f0i(xi) + ∆̂fi

(
xi, �̂it

)
ĝi(xi) = g0i(xi) + ∆̂gi

(
xi, �̂it

) (3)

where âit, b̂it are adaptively updated parameter
vectors at time instant t.

Assumption 1: Define the desired domain of
operation (a compact set) as

Ωx =
{
xn

∣∣|xn| ≤ d, ∃d > 0
}

⊂ �
n (4)

∆fi(xi,ai),∆gi(xi, bi) are sufficiently complex
such that the modelling errors of fi(xi), gi(xi) are
sufficiently small on Ωx for ∃εfi,

∃εgi > 0:

sup
xn∈Ωx

∣∣ηfi(xi)
∣∣ ≤ εfi, sup

xn∈Ωx

|ηgi(xi)| ≤ εgi (5)

Assumption 2: The lower and upper bounds of
the parameter vectors are known a priori, i.e.,

�i ≤ �i ≤ �i, �i ≤ �i ≤ �i (6)

where ≤ holds element-wisely for the vectors.

Notice that the standard adaptive laws
˙̂

as
i,mt

= γai φi,m(xi)Si, m = 1, 2, · · · ,Mfi

˙̂
as

i,mt
= γbi

αi0ψi,m(xi)

ĝi(xi)
Si, m = 1, 2, · · · ,Mgi

(7)

do not ensure that the estimated parameters stay
in a prescribed range. Here, γai, γbi ≥ 0 are
adaptive gains, Si and αi0 will be defined later.

To let the esimated parameters stay in a pre-
scribed range and has continuous first derivative,
we adopt the following smooth projection tech-
nique (Yao & Tomizuka, 1997). Let θ = ai or
θ = bi. Then we have:
θ̂mt = π

(
θ̂s

mt

)
=⎧⎪⎨

⎪⎩
θm + ε

[
1 − exp

(
− (θ̂s

mt
− θm)/ε

)]
for θ̂s

mt
> θm

θ̂s
mt

for θ̂s
mt

∈
[
θm, θm

]
θm − ε

[
1 − exp

(
θ̂s

mt
− θm)/ε

)]
for θ̂s

mt
< θm

(8)

for m = 1, · · · , M , where M = Mfi or M = Mgi.

The adaptive laws with smooth projection ensure

âi,mt
∈

[
ai,m − ε, ai,m + ε

]
, b̂i,mt

∈
[
bi,m − ε, bi,m + ε

]
(9)

where ε is a small positive number. Furthermore,
define θ̃s

t = θ̂s
t − θ, and let γ = γai or γ = γbi.

Then we have

V (θ̃s
t , θ) =

M∑
m=1

1

γ

∫ θ̃s
mt

0

[
π
(
νm + θm

)
− θm

]
dνm, γ > 0

(10)

It can be verified that V (θ̃s
t ,θ) is positive definite

with respect to θ̃s
t , and (Yao & Tomizuka, 1997)

∂

∂θ̃s
t

V (θ̃s
t , θ) =

θ̃
T

t

γ
, θ̃t = θ̂t − θ (11)

The results are used for analysis of the perfor-
mance of the adaptive laws.

Assumption 3: The input gain gi(xi) of the ith
subsystem is bounded away from zero with known
sign. Thus, without loss of generality, we assume
gi(xi) > 0 for xn ∈ Ωx.

Assumption 4: The parameter bounds are cho-
sen such that

ĝi(xi) = g0i(xi) + ∆̂gi

(
xi, �̂it

)
> 0

gi(xi)

ĝi(xi)
> ∃Cgi > 0

(12)

for any bi,m − εbi ≤ b̂m,it ≤ bi,m + εbi (m =
1, · · · , Mgi).

Assumption 5: There exist finite positive con-
stants M∆fi, M∆i, M∆gi < ∞ and known smooth
functions d∆i(xi, t), d∆fi(xi) such that the follow-
ing inequalities hold for xn ∈ Ωx:∣∣∣∣∣ ∆i(xn, t)√

d∆i(xi, t)2 + 1

∣∣∣∣∣ ≤M∆i,

∣∣∣∣∣ f̃i(xi)√
d∆fi(xi)2 + 1

∣∣∣∣∣ ≤M∆fi∣∣∣∣ g̃i(xi)

gi(xi)

∣∣∣∣ ≤ M∆gi

(13)

where
f̃i(xi) = fi(xi) − f̂i(xi) = −�T

i (xi)�̃it + ηfi(xi)

g̃i(xi) = gi(xi) − ĝi(xi) = −�T
i (xi)�̃it + ηgi(xi)

(14)

Notice that d∆i(xi, t), d∆fi(xi) will be used for
nonlinear damping terms.

Assumption 6: All of the following known non-
linear functions

f0i(xi), g0i(xi),�
T
i (xi),�

T
i (xi), d∆i(xi, t), d∆fi(xi)

which will be used in the designed controller are
C1 functions.

Assumption 7: The reference trajectory yr(t)
is appropriately chosen as a sufficiently smooth
function such that

Ωyr =
{

yr, ẏr, ÿr

∣∣ |yr| ≤ yr , |ẏr| ≤ ẏr,

|ÿr| ≤ ÿr, ∃yr, ∃ẏr, ∃ÿr > 0
}

⊂ R
3 (15)



3. DESIGN OF THE CONTROLLER

In this section, we show the design procedure of
the proposed adaptive robust nonlinear controller.

Step 1:

Define the output tracking error as

S1 = x1 − yr (16)

Then, we have the following dynamics of the first
subsystem:

Ṡ1 = f̂1(x1) + f̃1(x1) + ĝ1(x1)

(
1 +

g̃1(x1)

ĝ1(x1)

)
x2

+∆1(xn, t) − ẏr

(17)

To stabilize the subsystem, we design the virtual
input ξ2 as the followng:

ξ2 =
α10 − α11 − α12 − α13 − α14

ĝ1(x1)
α10 = −c1S1 − f01(x1) − �T

1 (x1)�̂1t + ẏr

α11 = κ11

√
d∆1(x1)2 + 1S1

α12 = κ12

√
α2

10 + νS1

α13 = κ13

√
d∆f1(x1)2 + 1S1

α14 = κ14ĝ1(x1)S1

(18)

where c1, κ11, κ12, κ13 > 0. α10 is a feedback con-
troller with model compensation, α11, α12, α13 are
nonlinear damping terms to respectively counter-
act ∆1(xn, t), g̃1(x1), f̃1(x1) , and α14 with κ14 >
1 is a nonlinear damping term to counteract error
signal due to S2 which will be defined later.

Motivated by the DSC technique (Yip & Hedrick
1998; Swaroop, Hedrick, Yip & Gerdes, 2000;
Wang & Huang 2001), a first-order low-pass filter
with a small positive time-constant τ2 is intro-
duced here to avoid involving calculation of ξ̇2.
Letting ξ2 pass through the low-pass filter and
defining a new signal ξ2d, we have

τ2ξ̇2d + ξ2d = ξ2, ξ2d(0) = ξ2(0) (19)

Define the error signal S2 = x2−ξ2d and the error
signal between ξ2 and its filtered version ξ2d

y2 = ξ2d − ξ2 = −τ2ξ̇2d (20)

It follows that

x2 = S2 + y2 + ξ2 = Bx2

(
S2,�1a, c1,�1, �̂1t, yr, ẏr

)
(21)

where Bx2 is an appropriate continuous function
of its arguments, and S1a = [S1, y2]T ,κ1 =

[κ11, κ12, κ13, κ14]T , θ̂1t =
[
â1

T
t , b̂1

T

t

]T .

Our task here is to establish the ISpS of the
combined subsystem C1:

C1 :

⎧⎪⎪⎨
⎪⎪⎩

Ṡ1 = −c1S1 − D1S1 + f̃1(x1) +
g̃1(x1)

ĝ1(x1)
α10

+∆1(xn, t) + g1(x1)(S2 + y2)

ẏ2 = − y2

τ2
+ By2

(22)

where D1 and By2 are appropriate continuous
functions of their arguments:

D1 =
(
κ11

√
d∆1(x1)2 + 1 + κ12

√
α2

10 + 1

+κ13

√
d∆f1(x1)2 + 1 + κ14ĝ1(x1)

) g1(x1)

ĝ1(x1)

= D1

(
S1, c1, κ1, θ̂1t, yr, ẏr

)
By2 = By2

(
S2, S1a, c1, κ1,

˙
θ̂1t(γ1), θ̂1t(θ1, θ1),

∆1(xn, t), yr, ẏr, ÿr

)
(23)

and γ1 = [γa1, γb1]T ,θ1 =
[
a1

T , b1
T ]T

,θ1 =[
a1

T , b1
T
]T .

To this purpose, we make assumption 8:

Assumption 8: The states of the combined error
system stay in a compact set Ωlarge

S1a
×Ωlarge

S2
⊂ R

3

Ωlarge
S1a

=
{
�1a

∣∣ |�1a| ≤ �
large
1a , ∃�large

1a > 0
}

⊂ �
2

Ωlarge
S2

=

{
S2

∣∣ |S2| ≤ S
large
2 ,∃ Slarge

2 > 0

}
⊂ �

1

(24)

According to assumptions 7 and 8, |D1| has a
maximum D1 on Ωlarge

S1a
× Ωyr , and |By2| has a

maximum By2 on Ωlarge
S1a

× Ωyr × Ωlarge
S2

. Let the
time-constant of the low-pass filter satisfy

1

τ2
≥ 1

4
g1(x1) + c1 +D1 +

B
2
y2

2ε
(25)

where g1 is the maximum of g1 on Ωx ⊂ R
n, and ε

is an arbitrary positive number. Notice that (25)
has transparent physical meaning, i.e., stronger
control efforts, larger adaptive gains and faster
changing reference trajectory require a smaller
filter time-constant τ2.

Then the ISpS property of the combined system
(22) can be shown in the following lemma (the
proof is omitted due to limit of paper length):

Lemma 1. Let assumptions 1∼8 hold. If S2 is
made uniformly bounded at the next step, then
there exists a set of τ2, c1,κ1,γ1,θ1,θ1 for an
appropriate set of initial conditions such that the
combined system (22) is ISpS:

|�1a| ≤ |�1a(0)|e−c1t/2 +

√
ε

c1
+ sup

0≤τ≤t

µ1(τ)

where µ1(t) is a uniformly bounded signal:

µ1(t) = µ11(t) + µ12(t)|S2|

µ11(t) =

∣∣∣∣f̃1(x1) +
g̃1(x1)

ĝ1(x1)
α10 + ∆1(x1, t)

∣∣∣∣
c1

2
+D1 − g1(x1)

µ12(t) =
|g1(x1)|

c1

2
+D1 − g1(x1)

The lemma implies that we can make S1a stay in a
compact subset ΩS1a ⊂ Ωlarge

S1a
. Also, assumption

8 holds in the sense that we can find a compact
set DS1a ⊂ ΩS1a ⊂ Ωlarge

S1a
such that S1a ∈

ΩS1a ⊂ Ωlarge
S1a

for all S1a(0) ∈ DS1a . Finally,
notice the nonlinear damping terms appear in the
denominator of µ1 so that the modelling errors
that appear in the numerator are suppressed.



Furthermore, to analyze the ultimate error bound
achieved by the adaptive law, we define the fol-
lowing Lyapunov function:

V1 =
ST

1aS1a

2
+ V (ãs

1t
, a1) + V (b̃s

1t
, b1) (26)

Then we have the following results:

Lemma 2. Let the conditions and results of lemma
1 hold. If the adaptive law (8) where i = 1 is used,
and S2 is made uniformly ultimately bounded
with ultimate bound S

u

2 at the next step, then

|S1a(t)| ≤ C∆1M∆1

κ11
+

Cg1εg1

κ12
+

Cf1εf1

κ13
+

S
u

2

κ14 − 1
+

√
ε

c1

as t ≥ ∃
T1 > 0

with ∃Cf1,
∃Cg1,

∃C∆1 > 0.

Steps 2 ≤ i ≤ n − 1:

The dynamics of the ith subsystem is obtained as

Ṡi = ẋi − ξ̇id = fi(xi) + gi(xi)xi+1 + ∆i(xn, t) − ξ̇id (27)

Then we design the following controller as we did
in step 1:

ξi+1 =
αi0 − αi1 − αi2 − αi3 − αi4

ĝi(xi)

αi0 = −ciSi − f0i(xi) − φT
i (xi)âit + ξ̇id

αi1 = κi1

√
d∆i(xi)2 + 1Si

αi2 = κi2

√
α2

i0 + 1Si

αi3 = κi3

√
d∆fi(xi)2 + 1Si

αi4 = κi4ĝi(xi)Si

(28)

where ci, κi1, κi2, κi3 > 0, κi4 > 1.

Letting ξi pass through the low-pass filter and
defining a new signal ξid, we have

τi+1ξ̇(i+1)d + ξ(i+1)d = ξi+1, ξ(i+1)d(0) = ξi+1(0) (29)

Define the error signals

Si+1 = xi+1 − ξ(i+1)d, yi+1 = ξ(i+1)d − ξi+1 (30)

It follows that

xi+1 = Bx(i+1)

(
Si+1, τ2 · · · , τi, S1a, c1, κ1, θ̂1t, · · · ,

Sia, ci, κi, θ̂it, yr , ẏr

)
(31)

where Bx(i+1) is an appropriate continuous func-
tion of its arguments, and Sia = [Si, yi+1]T ,κi =

[κi1, κi2, κi3, κi4]T , θ̂it =
[
âi

T
t , b̂i

T

t

]T .

Our task here is to establish the ISpS of the
combined subsystem Ci:

Ci :

⎧⎪⎪⎨
⎪⎪⎩

Ṡi = −ciSi − DiSi + f̃i(xi) +
g̃i(xi)

ĝi(xi)
αi0

+∆i(xn, t) + gi(xi)(Si+1 + yi+1)

ẏi+1 = − yi+1

τi+1
+ By(i+1)

(32)

where Di and By(i+1) are appropriate continuous
functions of their arguments:

Di =
(
κi1

√
d∆i(xi)2 + 1 + κi2

√
α2

i0 + 1

+κi3

√
d∆fi(xi)2 + 1 + κi4ĝi(xi)

) gi(xi)

ĝi(xi)

= Di

(
Si, S1a, · · · , S(i−1)a, τ2, · · · , τi,

c1, κ1, θ̂1t, · · · , ci, κi, θ̂it, yr , ẏr

)
By(i+1) = By(i+1)

(
Si+1, τ2, · · · , τi+1,

S1a, c1, κ1,
˙

θ̂1t(γ1), θ̂1t(θ1, θ1), ∆1(xn, t), · · · ,

Sia, ci, κi,
˙

θ̂it(γi), θ̂it(θi, θi), ∆i(xn, t), yr, ẏr, ÿr

)
(33)

and γi = [γai, γbi]T ,θi =
[
ai

T , bi
T ]T

,θi =[
ai

T , bi
T
]T .

To this purpose, we make assumption 9:

Assumption 9: The states of the combined error
system stay in a compact set Ωlarge

Sia
×Ωlarge

Si+1
⊂ R

3

Ωlarge
Sia

=
{
�ia

∣∣ |�ia| ≤ �
large
ia , ∃�large

ia > 0
}

⊂ �
2

Ωlarge
Si+1

=

{
Si+1

∣∣ |Si+1| ≤ S
large
i+1 ,∃ Slarge

i+1 > 0

}
⊂ �

1

(34)

According to assumptions 7∼9, |Di| has a maxi-
mum Di on Ωlarge

S1a
×· · ·×Ωlarge

Sia
×Ωyr , and |By(i+1)|

has a maximum By(i+1) on Ωlarge
S1a

×· · ·×Ωlarge
Sia

×
Ωyr × Ωlarge

Si+1
. Let

1

τi+1
≥ 1

4
gi(xi) + ci +Di +

B
2
y(i+1)

2ε
(35)

where gi is the maximum of gi on Ωx ⊂ R
n, and

ε is an arbitrary positive number.

Then we have the following results:

Lemma 3. Let assumptions 1∼9 hold. If Si+1 is
made uniformly bounded at the next step, then
there exists a set of τ2, · · · , τi+1, c1,κ1,γ1,θ1,θ1, · · · ,
ci,κi,γi,θi,θi for an appropriate set of initial
conditions such that the combined system (32) is
ISpS:

|�ia| ≤ |�ia(0)|e−cit/2 +

√
ε

ci
+ sup

0≤τ≤t

µi(τ)

where µi(t) is a uniformly bounded signal:
µi(t) = µi1(t) + µi2(t)|Si+1|

µi1(t) =

∣∣∣∣f̃i(xi) +
g̃i(xi)

ĝi(xi)
αi0 + ∆i(x1, t)

∣∣∣∣
ci

2
+ Di − gi(xi)

µi2(t) =
|gi(xi)|

ci

2
+ Di − gi(xi)

Lemma 4. Let the conditions and results of lemma
3 hold. If the adaptive law (8) for each i is used
and Si+1 is made uniformly ultimately bounded
with ultimate bound S

u

i+1 at the next step, then

|Sia(t)| ≤ C∆iM∆i

κi1
+

Cgiεgi

κi2
+

Cfiεfi

κi3
+

S
u

i+1

κi4 − 1
+

√
ε

ci

as t ≥ ∃
Ti > 0

with ∃Cfi,
∃Cgi,

∃C∆i > 0.

Step n:



The dynamics of the nth subsystem is obtained as

Ṡn = fn(xn) + gn(xn)u+ ∆n(xn, t) − ξ̇nd (36)

Then to stabilize the final subsystem we design
the following controller:

u =
αn0 − αn1 − αn2 − αn3

ĝn(xn)
αn0 = −cnSn − f0n(xn) − �T

n (xn)�̂nt + ξ̇nd

αn1 = κn1

√
d∆n(xn)2 + 1Sn

αn2 = κn2

√
α2

n0 + 1Sn

αn3 = κn3

√
d∆fn(xn)2 + 1Sn

(37)

Substituting u into the subsystem, we have
Ṡn = −cnSn −DnSn − �T

n (xn)�̃nt + ηfn(xn)

+
−�T

n (xn)̃�nt + ηgi(xn)

ĝn(xn)
αn0 + ∆n(xn, t)

(38)

where

Dn =

(
κn1

√
d∆n(xn)2 + 1 + κn2

√
α2

n0 + 1

+κn3

√
d∆fn(xn)2 + 1

)
gn(xn)

ĝn(xn)

(39)

Similar to the previous steps, we have the follow-
ing results:

Lemma 5. Let assumptions 1∼9 hold. There ex-
ists a set of τ2, · · · , τn,c1,κ1,γ1,θ1,θ1, · · · , cn,κn,
γn,θn,θn for an appropriate set of initial condi-
tions such that subsystem (38) is ISS:

|Sn| ≤ |Sn(0)|e−cnt/2 + sup
0≤τ≤t

µn1(τ)

where µn1(t) is a uniformly bounded signal:

µn1(t) =

∣∣∣∣f̃n(xn) +
g̃n(xn)

ĝn(xn)
αn0 + ∆n(xn, t)

∣∣∣∣
cn

2
+Dn

Lemma 6. Let the conditions and results of lemma
5 hold. If the adaptive law (8) where i = n is used,
then

|Sn(t)| ≤ C∆nM∆i

κn1
+
Cgnεgn

κn2
+
Cfnεfn

κn3
, as t ≥ ∃Tn > 0

with ∃Cfn, ∃Cgn, ∃C∆n > 0.

4. ISPS STABILITY AND ULITIMATE
BOUND OF THE OVERALL ERROR

SYSTEM

Recall the results of lemmas 1, 3 and 5. We can
find that the overall error system is a cascade
of the subsystems. Along the same lines of the
proof of lemma C.4 in Krstic, Kanellakopoulos &
Kokotovic (1995), we have the ISpS property of
the overall error system:

|�(t)| ≤
√

2λne
−ρnt/2|�(0)| + Eε(n) + Eµ(n)(0, t) (40)

where � = [�T
1a, · · · ,�T

(n−1)a
, Sn]T ,

Eε1 =

√
ε

c1
, λ1 = 1, ρ1 = c1, M1 = µ12 = ‖µ12‖∞,

Eµ1(0, t) =

[
sup

0≤τ≤t

µ11(τ)

]
(41)

λj = λ
2
j−1 +

(
(λj−1 + 1)Mj−1 + 1

)
ρj = min(ρj−1/2, cj/2)

µj2 = ‖µj2‖∞

Mj =
(
(λj−1 + 1)Mj−1 + 1

)
µj2

Eεj = (λj−1 + 1)Eε(j−1)

+
(
(λj−1 + 1)Mj−1 + 1

)√ ε

cj

Eµj(0, t) = (λj−1 + 1)Eµ(j−1)(0, t)

+
(
(λj−1 + 1)Mj−1 + 1

)[
sup

0≤τ≤t

µj1(τ)

]
(42)

for j = 2, · · · , n − 1, and

λn = λ2
n−1 +

(
(λn−1 + 1)Mn−1 + 1

)
ρn = min(ρn−1/2, cn/2)

Eεn = (λn−1 + 1)Eε(n−1)

Eµn(0, t) = (λn−1 + 1)Eµ(n−1)(0, t)

+
(
(λn−1 + 1)Mn−1 + 1

)[
sup

0≤τ≤t

µn1(τ)

]
(43)

From lemmas 2, 4 and 6, we have the ultimate
error bound as

|S(t)| ≤
n∑

i=1

α∆iM∆i +

n∑
i=1

αεgi εgi +

n∑
i=1

αεf i εfi

+

n−1∑
i=1

αεi

√
ε as t ≥ ∃Tu > 0

(44)

where ∃αεf i,
∃αεgi

∃α∆i,
∃αεi > 0. Notice that

these constants can be made small by the control
gains κi1, κi2, κi3, κi4 and ci.

Finally, the theoretical results are summarized in
the following theorem (detailed analysis is omitted
due to the limit of paper length):

Theorem 1. Let the assumptions and results of
lemmas 1∼6 hold. If the reference trajectory, the
initial error signals and the design parameters are
chosen appropriately, the following results hold.

(1) There exists a compact set Dx ⊂ Ωx of
the initial states such that xn ∈ Ωx for all
xn(0) ∈ Dx .

(2) The overall error system is ISpS as charac-
terized in (40).

(3) The ultimate bound of |S(t)| can be made
sufficiently small as shown in (44).

Remark: Our practical purpose however, is to let
the output y = x1 track the reference trajectory
yr. Therefore, it is not necessary to make all of the
error signals very small by paying great efforts of
damping control and network adaption. Therefore
we can set weak control gains and discard adaptive
networks for the subsystems with large index
i. The trajectory tracking task can be achieved
by adopting relatively strong control gains and
adaptive networks for the first subsystem (17). See
the results of lemmas 1 and 2. This policy is called
“partial adaption”.



5. SIMULATIONAL EXAMPLES AND
CONCLUSIONS

Consider the following nonlinear system:
ẋ1 = f1(x1) + g1(x1)x2 + ∆1(x3, t)
ẋ2 = f2(x2) + g2(x2)x3 + ∆2(x3, t)
ẋ3 = f3(x3) + g3(x3)u+ ∆3(x3, t)

(45)

where
f1(x1) = 2x2

1sinx1

f2(x2) = x2
1 + x1x2 + x2cosx1

f3(x3) = x1x3 + x2
1sinx3 + x2

2 + x2
3 + x3sinx2

g1(x1) = 1 + 0.2x2
1

g2(x2) = 2 + (x2cosx1)
2

g3(x3) = 3 + 2esin(x1+x2+x3) +
x1x2 + x2x3 + x1x3

x12 + x22 + x32 + 1

∆1(x3, t) = 0.3
(
x2
1

)1/3
sinx2

∆2(x3, t) = 0.3x1x2sinx3
∆3(x3, t) = 0.3x3sin(10t)

(46)

The a priori known nominal functions are:
f01(x1) = 0, f02(x2) = 0, f03(x3) = 0
g01(x1) = 1, g02(x2) = 2, g03(x3) = 3

(47)

The following known smooth functions are used
for nonlinear damping terms:

d∆1(x1) = x1, d∆f1 (x1) = x2
1

d∆2(x2) = x1x2, d∆f2 (x2) = x2
1 + x2

2

d∆3(x3) = x3, d∆f3 (x3) = x2
1 + x2

2 + x2
3

(48)

Design parameters are given as follows.
c1 = c2 = c3 = 5, τ2 = 0.015, τ3 = 0.01
κ11 = κ14 = 4, κ12 = κ13 = 2
κ21 = κ22 = κ23 = 1, κ14 = 2
κ31 = κ32 = κ33 = 1

(49)

Two controllers are implemented. The first one
is a fixed robust controller without parameter
adaption, whose results are shown in figure 1. It
can be verified that all the internal signals are
bounded.

The second one is a partially adaptive robust con-
troller where only the first subsystem’s nonlinear
functions are updated adaptively. The nonlinear
functions are approximated by RBF netoworks
where the numbers of the basis functions are cho-
sen as Mf1 = Mg1 = 15. The adaptive gains are
chosen as γa1 = 80 γb1 = 2. It can be found in
figure 2 that the tracking error S1 is significantly
reduced with satisfactory transient behaviour.
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